1
|
Zeng X, Wu Z, Pan Y, Ma Y, Chen Y, Zhao Z. Effects of micronutrients and macronutrients on risk of allergic disease in the European population: a Mendelian randomization study. FOOD AGR IMMUNOL 2024; 35. [DOI: 10.1080/09540105.2024.2442369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/10/2024] [Indexed: 01/21/2025] Open
Affiliation(s)
- Xiangyue Zeng
- Department of Gastrointestinal Surgery, the Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Zhimin Wu
- Department of Otorhinolaryngology, Guiyang maternal and child health care hospital, the maternal and child health care hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Yipeng Pan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yifei Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Yi Chen
- Department of Breast and Thyroid Surgery, the Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Zeliang Zhao
- Department of Gastrointestinal Surgery, the Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| |
Collapse
|
2
|
Schuster-Little N, McCabe M, Nenninger K, Safavi-Sohi R, Whelan RJ, Hilliard TS. Generational Diet-Induced Obesity Remodels the Omental Adipose Proteome in Female Mice. Nutrients 2024; 16:3086. [PMID: 39339686 PMCID: PMC11435095 DOI: 10.3390/nu16183086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity, a complex condition that involves genetic, environmental, and behavioral factors, is a non-infectious pandemic that affects over 650 million adults worldwide with a rapidly growing prevalence. A major contributor is the consumption of high-fat diets, an increasingly common feature of modern diets. Maternal obesity results in an increased risk of offspring developing obesity and related health problems; however, the impact of maternal diet on the adipose tissue composition of offspring has not been evaluated. Here, we designed a generational diet-induced obesity study in female C57BL/6 mice that included maternal cohorts and their female offspring fed either a control diet (10% fat) or a high-fat diet (45% fat) and examined the visceral adipose proteome. Solubilizing proteins from adipose tissue is challenging due to the need for high concentrations of detergents; however, the use of a detergent-compatible sample preparation strategy based on suspension trapping (S-Trap) enabled label-free quantitative bottom-up analysis of the adipose proteome. We identified differentially expressed proteins related to lipid metabolism, inflammatory disease, immune response, and cancer, providing valuable molecular-level insight into how maternal obesity impacts the health of offspring. Data are available via ProteomeXchange with the identifier PXD042092.
Collapse
Affiliation(s)
- Naviya Schuster-Little
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; (N.S.-L.); (R.J.W.)
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Morgan McCabe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.M.); (K.N.); (R.S.-S.)
| | - Kayla Nenninger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.M.); (K.N.); (R.S.-S.)
| | - Reihaneh Safavi-Sohi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.M.); (K.N.); (R.S.-S.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Rebecca J. Whelan
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; (N.S.-L.); (R.J.W.)
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Tyvette S. Hilliard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.M.); (K.N.); (R.S.-S.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| |
Collapse
|
3
|
Song W, Yue Y, Zhang Q, Wang X. Copper homeostasis dysregulation in respiratory diseases: a review of current knowledge. Front Physiol 2024; 15:1243629. [PMID: 38883186 PMCID: PMC11176810 DOI: 10.3389/fphys.2024.1243629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/22/2024] [Indexed: 06/18/2024] Open
Abstract
Cu is an essential micronutrient for various physiological processes in almost all human cell types. Given the critical role of Cu in a wide range of cellular processes, the local concentrations of Cu and the cellular distribution of Cu transporter proteins in the lung are essential for maintaining a steady-state internal environment. Dysfunctional Cu metabolism or regulatory pathways can lead to an imbalance in Cu homeostasis in the lungs, affecting both acute and chronic pathological processes. Recent studies have identified a new form of Cu-dependent cell death called cuproptosis, which has generated renewed interest in the role of Cu homeostasis in diseases. Cuproptosis differs from other known cell death pathways. This occurs through the direct binding of Cu ions to lipoylated components of the tricarboxylic acid cycle during mitochondrial respiration, leading to the aggregation of lipoylated proteins and the subsequent downregulation of Fe-S cluster proteins, which causes toxic stress to the proteins and ultimately leads to cell death. Here, we discuss the impact of dysregulated Cu homeostasis on the pathogenesis of various respiratory diseases, including asthma, chronic obstructive pulmonary disease, idiopathic interstitial fibrosis, and lung cancer. We also discuss the therapeutic potential of targeting Cu. This study highlights the intricate interplay between copper, cellular processes, and respiratory health. Copper, while essential, must be carefully regulated to maintain the delicate balance between necessity and toxicity in living organisms. This review highlights the need to further investigate the precise mechanisms of copper interactions with infections and immune inflammation in the context of respiratory diseases and explore the potential of therapeutic strategies for copper, cuproptosis, and other related effects.
Collapse
Affiliation(s)
- Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueqing Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Savin IA, Zenkova MA, Sen’kova AV. Bronchial Asthma, Airway Remodeling and Lung Fibrosis as Successive Steps of One Process. Int J Mol Sci 2023; 24:16042. [PMID: 38003234 PMCID: PMC10671561 DOI: 10.3390/ijms242216042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bronchial asthma is a heterogeneous disease characterized by persistent respiratory system inflammation, airway hyperreactivity, and airflow obstruction. Airway remodeling, defined as changes in airway wall structure such as extensive epithelial damage, airway smooth muscle hypertrophy, collagen deposition, and subepithelial fibrosis, is a key feature of asthma. Lung fibrosis is a common occurrence in the pathogenesis of fatal and long-term asthma, and it is associated with disease severity and resistance to therapy. It can thus be regarded as an irreversible consequence of asthma-induced airway inflammation and remodeling. Asthma heterogeneity presents several diagnostic challenges, particularly in distinguishing between chronic asthma and other pulmonary diseases characterized by disruption of normal lung architecture and functions, such as chronic obstructive pulmonary disease. The search for instruments that can predict the development of irreversible structural changes in the lungs, such as chronic components of airway remodeling and fibrosis, is particularly difficult. To overcome these challenges, significant efforts are being directed toward the discovery and investigation of molecular characteristics and biomarkers capable of distinguishing between different types of asthma as well as between asthma and other pulmonary disorders with similar structural characteristics. The main features of bronchial asthma etiology, pathogenesis, and morphological characteristics as well as asthma-associated airway remodeling and lung fibrosis as successive stages of one process will be discussed in this review. The most common murine models and biomarkers of asthma progression and post-asthmatic fibrosis will also be covered. The molecular mechanisms and key cellular players of the asthmatic process described and systematized in this review are intended to help in the search for new molecular markers and promising therapeutic targets for asthma prediction and therapy.
Collapse
Affiliation(s)
| | | | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev Ave 8, 630090 Novosibirsk, Russia; (I.A.S.); (M.A.Z.)
| |
Collapse
|
5
|
Aramwit P, Fongsodsri K, Tuentam K, Reamtong O, Thiangtrongjit T, Kanjanapruthipong T, Yadavalli VK, Ampawong S. Sericin coated thin polymeric films reduce keratinocyte proliferation via the mTOR pathway and epidermal inflammation through IL17 signaling in psoriasis rat model. Sci Rep 2023; 13:12133. [PMID: 37495626 PMCID: PMC10372088 DOI: 10.1038/s41598-023-39218-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Therapeutic treatment forms can play significant roles in resolving psoriatic plaques or promoting wound repair in psoriatic skin. Considering the biocompatibility, mechanical strength, flexibility, and adhesive properties of silk fibroin sheets/films, it is useful to combine them with anti-psoriatic agents and healing stimulants, notably silk sericin. Here, we evaluate the curative properties of sericin-coated thin polymeric films (ScF) fabricated from silk fibroin, using an imiquimod-induced psoriasis rat model. The film biocompatibility and psoriatic wound improvement capacity was assessed. A proteomics study was performed to understand the disease resolving mechanisms. Skin-implantation study exhibited the non-irritation property of ScF films, which alleviate eczema histopathology. Immunohistochemical and gene expression revealed the depletion of β-defensin, caspase-3 and -9, TNF-α, CCL-20, IL-1β, IL-17, TGF-β, and Wnt expressions and S100a14 mRNA level. The proteomics study suggested that ScF diminish keratinocyte proliferation via the mTOR pathway by downregulating mTOR protein, corresponding to the modulation of TNF-α, Wnt, and IL-1β levels, leading to the enhancement of anti-inflammatory environment by IL-17 downregulation. Hematology data demonstrated the safety of using these biomaterials, which provide a potential therapeutic-option for psoriasis treatment due to desirable effects, especially anti-proliferation and anti-inflammation, functioning via the mTOR pathway and control of IL-17 signaling.
Collapse
Affiliation(s)
- Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Khwanchanok Tuentam
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA, 23284, USA
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Yang N, Zhang L, Tian D, Wang P, Men K, Ge Y, Zhang C. Tanshinone increases Hemopexin expression in lung cells and macrophages to protect against cigarette smoke-induced COPD and enhance antiviral responses. Cell Cycle 2023; 22:645-665. [PMID: 36218263 PMCID: PMC9980497 DOI: 10.1080/15384101.2022.2129933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease, while respiratory infections can elicit exacerbations in COPD patients to mediate increased mortality. Administration of Tanshinones (TS) derivatives has been demonstrated to protect against cigarette smoking (CS) and lipopolysaccharide (LPS)-induced COPD progression. However, the underlying molecular mechanisms and the roles of TS in mitigating the severity of viral-mediated exacerbations of COPD have not been elucidated. Here, we found that TS treatments significantly attenuated lung function decline, inflammatory responses and oxidative stress in CS and LPS-induced COPD mice. Subsequent RNA-seq analysis revealed significantly upregulated Hemopexin expression and enriched interferons (IFNs) signaling pathways in lung tissues of COPD mice upon TS treatments. Moreover, TS administration demonstrated Hemopexin-dependent beneficial roles in BEAS-2B lung cells and RAW264.7 macrophages, which was associated with the suppression of oxidative stress and ERK, NF-κB, and NLRP3 inflammasome signaling pathways-mediated inflammation. Furthermore, TS promoted IFN signaling and rescued impaired antiviral responses in CS and LPS-exposed lung cells that were infected by influenza virus. Notably, hemopexin over-expression in lung cells and macrophages recapitulated the pharmacological activities of TS. Taken together, these results indicate that TS administration is a promising and potential therapeutic strategy for treating COPD and preventing COPD exacerbations.
Collapse
Affiliation(s)
- Ning Yang
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Liang Zhang
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Dongdong Tian
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Ping Wang
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Kai Men
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Yiliang Ge
- Hengyang Medical School, University of South China, Hunan
| | - Cailian Zhang
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| |
Collapse
|
7
|
Ziaei M, Sabaghzade M, Galavi M, Abdolrazaghnejad A. Relationship of Mean Platelet Volume (MPV) and Mean Corpuscular Volume (MCV) with the Outcome of Patients with Acute Exacerbation of COPD. TANAFFOS 2023; 22:136-142. [PMID: 37920314 PMCID: PMC10618581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/31/2022] [Indexed: 11/04/2023]
Abstract
Background Mean platelet volume (MPV) reflects the platelet production rate and stimulation, while mean corpuscular volume (MCV) represents the average size of red blood cells. Considering the possibility of the relationship between red cell index changes and different severities of chronic obstructive pulmonary disease (COPD) as well as the uncertainty of the available results in this regard, the present study aimed at evaluating the relationship between MPV and MCV in the outcome of patients with acute exacerbation of COPD (AECOPD). Materials and Methods In this cross-sectional analytical study, 150 patients with AECOPD that referred to the emergency department (ED) were included in the study. The severity of the disease was recorded using the GOLD classification, and the MPV and the MCV were evaluated based on the reference range of kits in the laboratory. Then, the data were analyzed using SPSS software. Results The mean MPV and MCV were 9.7±8.3 and 85.9±11.5, respectively, and had no significant difference in different severities of COPD(P>0.05). Moreover, although MCV in survivals with a mean of 88.81±6.47 was higher than that of non-survivals with a mean of 85.77±11.73, and MPV in the non-survivals with a mean of 8.53±9.74 was higher than that of survivals with the mean of 8.86±0.92, this difference was not statistically significant (P>0.05). Conclusion Overall, the results of this study showed that the mean MPV and MCV did not have any significant relationship with AECOPD and patient outcome.
Collapse
Affiliation(s)
- Maryam Ziaei
- Department of Emergency Medicine, Khatam-Al-Anbia Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Meysam Sabaghzade
- Department of Emergency Medicine, Amir-Al-Momenin Hospital, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Galavi
- Department of Emergency Medicine, Ali Ibn Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Abdolrazaghnejad
- Department of Emergency Medicine, Khatam-Al-Anbia Hospital, Clinical Immunology Research Center at Zahedan University of Medical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
8
|
Vizuet-de-Rueda JC, Montero-Vargas JM, Galván-Morales MÁ, Porras-Gutiérrez-de-Velasco R, Teran LM. Current Insights on the Impact of Proteomics in Respiratory Allergies. Int J Mol Sci 2022; 23:ijms23105703. [PMID: 35628512 PMCID: PMC9144092 DOI: 10.3390/ijms23105703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Respiratory allergies affect humans worldwide, causing extensive morbidity and mortality. They include allergic rhinitis (AR), asthma, pollen food allergy syndrome (PFAS), aspirin-exacerbated respiratory disease (AERD), and nasal polyps (NPs). The study of respiratory allergic diseases requires new technologies for early and accurate diagnosis and treatment. Omics technologies provide the tools required to investigate DNA, RNA, proteins, and other molecular determinants. These technologies include genomics, transcriptomics, proteomics, and metabolomics. However, proteomics is one of the main approaches to studying allergic disorders' pathophysiology. Proteins are used to indicate normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. In this field, the principal goal of proteomics has been to discover new proteins and use them in precision medicine. Multiple technologies have been applied to proteomics, but that most used for identifying, quantifying, and profiling proteins is mass spectrometry (MS). Over the last few years, proteomics has enabled the establishment of several proteins for diagnosing and treating respiratory allergic diseases.
Collapse
|
9
|
Rajczewski AT, Han Q, Mehta S, Kumar P, Jagtap PD, Knutson CG, Fox JG, Tretyakova NY, Griffin TJ. Quantitative Proteogenomic Characterization of Inflamed Murine Colon Tissue Using an Integrated Discovery, Verification, and Validation Proteogenomic Workflow. Proteomes 2022; 10:11. [PMID: 35466239 PMCID: PMC9036229 DOI: 10.3390/proteomes10020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic inflammation of the colon causes genomic and/or transcriptomic events, which can lead to expression of non-canonical protein sequences contributing to oncogenesis. To better understand these mechanisms, Rag2-/-Il10-/- mice were infected with Helicobacter hepaticus to induce chronic inflammation of the cecum and the colon. Transcriptomic data from harvested proximal colon samples were used to generate a customized FASTA database containing non-canonical protein sequences. Using a proteogenomic approach, mass spectrometry data for proximal colon proteins were searched against this custom FASTA database using the Galaxy for Proteomics (Galaxy-P) platform. In addition to the increased abundance in inflammatory response proteins, we also discovered several non-canonical peptide sequences derived from unique proteoforms. We confirmed the veracity of these novel sequences using an automated bioinformatics verification workflow with targeted MS-based assays for peptide validation. Our bioinformatics discovery workflow identified 235 putative non-canonical peptide sequences, of which 58 were verified with high confidence and 39 were validated in targeted proteomics assays. This study provides insights into challenges faced when identifying non-canonical peptides using a proteogenomics approach and demonstrates an integrated workflow addressing these challenges. Our bioinformatic discovery and verification workflow is publicly available and accessible via the Galaxy platform and should be valuable in non-canonical peptide identification using proteogenomics.
Collapse
Affiliation(s)
- Andrew T. Rajczewski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.R.); (Q.H.); (S.M.); (P.K.); (P.D.J.)
| | - Qiyuan Han
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.R.); (Q.H.); (S.M.); (P.K.); (P.D.J.)
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.R.); (Q.H.); (S.M.); (P.K.); (P.D.J.)
| | - Praveen Kumar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.R.); (Q.H.); (S.M.); (P.K.); (P.D.J.)
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.R.); (Q.H.); (S.M.); (P.K.); (P.D.J.)
| | - Charles G. Knutson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.)
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.)
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, the Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.R.); (Q.H.); (S.M.); (P.K.); (P.D.J.)
| |
Collapse
|
10
|
Mineral Micronutrients in Asthma. Nutrients 2021; 13:nu13114001. [PMID: 34836256 PMCID: PMC8625329 DOI: 10.3390/nu13114001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Asthma represents one of the most common medical issues in the modern world. It is a chronic inflammatory disease characterized by persistent inflammation of the airways and disturbances in redox status, leading to hyperresponsiveness of bronchi and airway obstruction. Apart from classical risk factors such as air pollution, family history, allergies, or obesity, disturbances of the levels of micronutrients lead to impairments in the defense mechanisms of the affected organism against oxidative stress and proinflammatory stimuli. In the present review, the impact of micronutrients on the prevalence, severity, and possible risk factors of asthma is discussed. Although the influence of classical micronutrients such as selenium, copper, or zinc are well known, the effects of those such as iodine or manganese are only rarely mentioned. As a consequence, the aim of this paper is to demonstrate how disturbances in the levels of micronutrients and their supplementation might affect the course of asthma.
Collapse
|