1
|
Xiang Y, Liu J, Nie M, Nilsson G, Säfholm J, Adner M. Toll-like receptor activation induces airway obstruction and hyperresponsiveness in guinea pigs. Respir Res 2024; 25:421. [PMID: 39614276 DOI: 10.1186/s12931-024-03050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Microbial infections, particularly those caused by rhinovirus (RV) and respiratory syncytial virus (RSV), are major triggers for asthma exacerbations. These viruses activate toll-like receptors (TLRs), initiating an innate immune response. To better understand microbial-induced asthma exacerbations, animal models that closely mimic human lung characteristics are essential. This study aimed to assess airway responses in guinea pigs exposed to TLR agonists, simulating microbial infections. METHODS The agonists poly(I: C) (TLR3), lipopolysaccharide (LPS; TLR4) and imiquimod (TLR7), or the combination of poly(I: C) and imiquimod (P/I) were administered intranasally once a day over four consecutive days. The latter group received daily intraperitoneal injections of dexamethasone starting one day before the TLR agonists challenge. Respiratory functions were measured by whole-body plethysmography and forced oscillatory technique. Bronchoalveolar lavage fluid (BALF) cells and lungs were collected for analysis. RESULTS The intranasal exposure of LPS and P/I caused an increase in enhanced pause (Penh) after challenge, whereas neither poly(I: C) nor imiquimod alone showed any effect. After the challenges of LPS, poly(I: C) or P/I, but not imiquimod alone, induced an increase of both Rrs (resistance of the respiratory system) and Ers (elastance of the respiratory system). LPS exposure caused an increase of neutrophils in BALF, whereas none of the other exposures affected the composition of cells in BALF. Exposure to LPS, poly (I: C), imiquimod, and P/I all caused a marked infiltration of inflammatory cells and an increase of mast cells around the small airways. For the expression of inflammatory mediators, LPS increased CXCL8, poly(I: C) and imiquimod decreased IL-4 and IL-5, and increased IFNγ. Imiquimod increased CXCL8 and IL-6, whereas P/I decreased IL-5, and increased IL-6 and IFNγ. The increases in Rrs, Ers, and airway inflammation, but not the altered expression of inflammatory cytokines, were attenuated by dexamethasone. CONCLUSIONS TLR agonists promote acute airway inflammation and induce airway obstruction and hyperresponsiveness in guinea pigs. The severity of these effects varies depending on the specific agonists used. Notably, dexamethasone reversed pulmonary functional changes and mitigated bronchial inflammation caused by the combined treatment of P/I. However, it had no impact on the expression of inflammatory mediators.
Collapse
Affiliation(s)
- Yujiao Xiang
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jielu Liu
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mu Nie
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jesper Säfholm
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Adner
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, SE-171 77, Sweden.
| |
Collapse
|
2
|
Lu T, Lahousse L, Wijnant S, Chen J, Brusselle GG, van Hoek M, Zillikens MC. The AGE-RAGE axis associates with chronic pulmonary diseases and smoking in the Rotterdam study. Respir Res 2024; 25:85. [PMID: 38336742 PMCID: PMC10858545 DOI: 10.1186/s12931-024-02698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and asthma associate with high morbidity and mortality. High levels of advanced glycation end products (AGEs) were found in tissue and plasma of COPD patients but their role in COPD and asthma is unclear. METHODS In the Rotterdam Study (n = 2577), AGEs (by skin autofluorescence (SAF)), FEV1 and lung diffusing capacity (DLCOc and DLCOc /alveolar volume [VA]) were measured. Associations of SAF with asthma, COPD, GOLD stage, and lung function were analyzed using logistic and linear regression adjusted for covariates, followed by interaction and stratification analyses. sRAGE and EN-RAGE associations with COPD prevalence were analyzed by logistic regression. RESULTS SAF associated with COPD prevalence (OR = 1.299 [1.060, 1.591]) but not when adjusted for smoking (OR = 1.106 [0.89, 1.363]). SAF associated with FEV1% predicted (β=-3.384 [-4.877, -1.892]), DLCOc (β=-0.212 [-0.327, -0.097]) and GOLD stage (OR = 4.073, p = 0.001, stage 3&4 versus 1). Stratified, the association between SAF and FEV1%predicted was stronger in COPD (β=-6.362 [-9.055, -3.670]) than non-COPD (β=-1.712 [-3.306, -0.118]). Association of SAF with DLCOc and DLCOc/VA were confined to COPD (β=-0.550 [-0.909, -0.191]; β=-0.065 [-0.117, -0.014] respectively). SAF interacted with former smoking and COPD prevalence for associations with lung function. Lower sRAGE and higher EN-RAGE associated with COPD prevalence (OR = 0.575[0.354, 0.931]; OR = 1.778[1.142, 2.768], respectively). CONCLUSIONS Associations between SAF, lung function and COPD prevalence were strongly influenced by smoking. SAF associated with COPD severity and its association with lung function was more prominent within COPD. These results fuel further research into interrelations and causality between SAF, smoking and COPD. TAKE-HOME MESSAGE Skin AGEs associated with prevalence and severity of COPD and lung function in the general population with a stronger effect in COPD, calling for further research into interrelations and causality between SAF, smoking and COPD.
Collapse
Affiliation(s)
- Tianqi Lu
- Department of Internal Medicine, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lies Lahousse
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sara Wijnant
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jinluan Chen
- Department of Internal Medicine, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Guy G Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mandy van Hoek
- Department of Internal Medicine, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015GD, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Singh H, Rai V, Agrawal DK. LPS and oxLDL-induced S100A12 and RAGE expression in carotid arteries of atherosclerotic Yucatan microswine. Mol Biol Rep 2022; 49:8663-8672. [PMID: 35771356 DOI: 10.1007/s11033-022-07703-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND S100A12, also known as Calgranulin C, is a ligand for the receptor for advanced glycation end products (RAGE) and plays key roles in cardiovascular and other inflammatory diseases. Interactions between S100A12 and RAGE initiate downstream signaling activating extracellular signal-regulated kinases (ERK1/2), mitogen activated protein kinases (MAPK), and transcription factor NF-κB. This increases the expression of pro-inflammatory cytokines to induce the inflammatory response. S100A12, and RAGE play a critical role in the development and progression of atherosclerosis. There is a well-known relationship between the bacterial endotoxin lipopolysaccharide (LPS) and the lipid antigens oxidized low-density lipoprotein (oxLDL) in driving the immune response in atherosclerosis. METHODS AND RESULTS Our study aimed to compare the potential of LPS and oxLDL in regulating the expression of S100A12 and RAGE in atherosclerosis. The expression of these proteins was assessed in the harvested carotid arteries from LPS- and oxLDL-treated atherosclerotic Yucatan microswine. Tissues were collected from five different treatment groups: (i) angioplasty alone, (ii) LPS alone, (iii) oxLDL alone, (iv) angioplasty with LPS, and (v) angioplasty with oxLDL. Immunohistochemical findings revealed that angioplasty with LPS induced higher expression of S100A12 and RAGE compared to other treatment groups. The results were further corroborated by testing their gene expression through qPCR in cultured vascular smooth muscle cells (VSMCs) isolated from control carotid arteries and LPS- and oxLDL-treated arteries. CONCLUSIONS The results of this study suggest that LPS induces the expression of S100A12 and RAGE more than oxLDL in atherosclerotic artery and both S100A12 and RAGE could be therapeutic targets.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
4
|
Jiang X, Huang CM, Feng CM, Xu Z, Fu L, Wang XM. Associations of Serum S100A12 With Severity and Prognosis in Patients With Community-Acquired Pneumonia: A Prospective Cohort Study. Front Immunol 2021; 12:714026. [PMID: 34745092 PMCID: PMC8569229 DOI: 10.3389/fimmu.2021.714026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022] Open
Abstract
Background Previous studies indicated the calcium-binding protein S100A12 to be involved in the pathophysiology of pulmonary inflammatory diseases. However, the role of S100A12 has remained elusive in patients with community-acquired pneumonia (CAP). Therefore, the purpose of this prospective cohort study was to evaluate the association between serum S100A12 with severity and prognosis in CAP patients. Methods Two groups with either 239 CAP patients or 239 healthy controls were enrolled in our study. Fasting blood and clinical characteristics were collected. On admission, serum S100A12 was measured using enzyme-linked immunosorbent assay (ELISA). Results Serum S100A12 was increased in CAP patients compared to control subjects. Furthermore, serum S100A12 was elevated according to the severity of CAP. Correlative analysis suggested that the level of serum S100A12 was associated with blood routine indices, renal function markers, inflammatory cytokines and other clinical parameters among CAP patients. Additionally, linear and logistical regression analyses indicated that serum S100A12 was positively associated with CAP severity scores in CAP patients. In addition, the association of high serum S100A12 and prognosis was accessed using a follow-up research. Elevated serum S100A12 on admission increased the risk of death and hospital stay in CAP patients during hospitalization. Conclusions Elevated serum S100A12 on admission is positively associated with the severity and adverse prognosis in CAP patients, suggesting that S100A12 may involve in the pathophysiological process of CAP. The titre of serum S100A12 may be used as a biomarker for diagnosis and prognosis among CAP patients.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Nephrology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chun-Mei Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chun-Mei Feng
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zheng Xu
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lin Fu
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Xin-Ming Wang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Third-Grade Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Kumar S, Singh B, Kumari P, Kumar PV, Agnihotri G, Khan S, Kant Beuria T, Syed GH, Dixit A. Identification of multipotent drugs for COVID-19 therapeutics with the evaluation of their SARS-CoV2 inhibitory activity. Comput Struct Biotechnol J 2021; 19:1998-2017. [PMID: 33841751 PMCID: PMC8025584 DOI: 10.1016/j.csbj.2021.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022] Open
Abstract
The SARS-CoV2 is a highly contagious pathogen that causes COVID-19 disease. It has affected millions of people globally with an average lethality of ~3%. There is an urgent need of drugs for the treatment of COVID-19. In the current studies, we have used bioinformatics techniques to screen the FDA approved drugs against nine SARS-CoV2 proteins to identify drugs for repurposing. Additionally, we analyzed if the identified molecules can also affect the human proteins whose expression in lung changed during SARS-CoV2 infection. Targeting such genes may also be a beneficial strategy to curb disease manifestation. We have identified 74 molecules that can bind to various SARS-CoV2 and human host proteins. We experimentally validated our in-silico predictions using vero E6 cells infected with SARS-CoV2 virus. Interestingly, many of our predicted molecules viz. capreomycin, celecoxib, mefloquine, montelukast, and nebivolol showed good activity (IC50) against SARS-CoV2. We hope that these studies may help in the development of new therapeutic options for the treatment of COVID-19.
Collapse
Affiliation(s)
- Sugandh Kumar
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Bharati Singh
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Pratima Kumari
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana 121001, India
| | - Preethy V. Kumar
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Geetanjali Agnihotri
- School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Shaheerah Khan
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana 121001, India
| | - Tushar Kant Beuria
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Gulam Hussain Syed
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
6
|
Poachanukoon O, Roytrakul S, Koontongkaew S. A shotgun proteomic approach reveals novel potential salivary protein biomarkers for asthma. J Asthma 2020; 59:243-254. [PMID: 33211619 DOI: 10.1080/02770903.2020.1850773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to determine if there is an association between the salivary protein profile and disease control in asthma. METHODS Thirty asthmatic patients (17 adults and 13 children) participated in this study. Saliva samples were collected from healthy subjects, controlled and uncontrolled asthmatics. Individual samples from each group were combined to form a pooled sample, from which proteomic analysis was performed using gel-based quantitative proteomics. RESULTS Fourteen out of thirty asthmatics were classified to be controlled asthma. Most of asthmatics received inhaled corticosteroids as the controller medications. SDS-PAGE showed predominant bands at high molecular weight in asthmatic saliva compared to that of the controls. Shotgun proteomic analyses indicated that 193 salivary proteins were expressed in both controlled and uncontrolled asthmatics. They were predicted to associate with proteins involved in pathogenesis of asthma including IL-5, IL-6, MCP-1, VEGF, and periostin and asthma medicines (Cromolyn, Nedocromil, and Theophylline). Nucleoside diphosphate kinase (NME1-NME2) only expressed in controlled asthmatics whereas polycystic kidney and hepatic disease 1 (PKHD1)/fibrocystin, zinc finger protein 263 (ZNF263), uncharacterized LOC101060047 (ENSG00000268865), desmoglein 2 (DSG2) and S100 calcium binding protein A2 (S100A2) were only found in uncontrolled asthma. Therefore, the six proteins were associated with disease control in children and adults with asthma. CONCLUSION Our findings suggest that NME1-NME2, PKHD1, ZNF 263, uncharacterized LOC101060047, DSG 2 and S100 A2 in saliva are associated with disease control in asthma.
Collapse
Affiliation(s)
- Orapan Poachanukoon
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Klong Luang, Prathumthani, Thailand.,Center of Excellence for Allergy, Asthma and Pulmonary Diseases, Thammasat University Hospital, Klong Luang, Pathumtani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, Thailand
| | - Sittichai Koontongkaew
- Department of Oral Biology, Faculty of Dentistry, Thammasat University (Rangsit Campus), Klong Luang, Prathumthani, Thailand.,International College of Dentistry, Walailak University, Bangkok, Thailand
| |
Collapse
|
7
|
Wu Y, Zhang W, Gunst SJ. S100A4 is secreted by airway smooth muscle tissues and activates inflammatory signaling pathways via receptors for advanced glycation end products. Am J Physiol Lung Cell Mol Physiol 2020; 319:L185-L195. [PMID: 32432920 DOI: 10.1152/ajplung.00347.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
S100A4 is a low-molecular-mass (12 kDa) EF-hand Ca2+-binding S100 protein that is expressed in a broad range of normal tissue and cell types. S100A4 can be secreted from some cells to act in an autocrine or paracrine fashion on target cells and tissues. S100A4 has been reported in the extracellular fluids of subjects with several inflammatory diseases, including asthma. Airway smooth muscle plays a critical role in airway inflammation by synthesizing and secreting inflammatory cytokines. We hypothesized that S100A4 may play an immunomodulatory role in airway smooth muscle. Trachealis smooth muscle tissues were stimulated with recombinant His-S100A4, and the effects on inflammatory responses were evaluated. S100A4 induced the activation of Akt and NF-κB and stimulated eotaxin secretion. It also increased the expression of RAGE and endogenous S100A4 in airway tissues. Stimulation of airway smooth muscle tissues with IL-13 or TNF-α induced the secretion of S100A4 from the tissues and promoted the expression of endogenous receptors for advanced glycation end products (RAGE) and S100A4. The role of RAGE in mediating the responses to S100A4A was evaluated by expressing a mutant nonfunctional RAGE (RAGEΔcyto) in tracheal muscle tissues and by treating tissues with a RAGE inhibitor. S100A4 did not activate NF-κB or Akt in tissues that were expressing RAGEΔcyto or treated with a RAGE inhibitor, indicating that S100A4 mediates its effects by acting on RAGE. Our results demonstrate that inflammatory mediators stimulate the synthesis and secretion of S100A4 in airway smooth muscle tissues and that extracellular S100A4 acts via RAGE to mediate airway smooth muscle inflammation.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
8
|
Tzouvelekis A, Herazo-Maya JD, Ryu C, Chu JH, Zhang Y, Gibson KF, Adonteng-Boateng PK, Li Q, Pan H, Cherry B, Ahmad F, Ford HJ, Herzog EL, Kaminski N, Fares WH. S100A12 as a marker of worse cardiac output and mortality in pulmonary hypertension. Respirology 2018; 23:771-779. [PMID: 29611244 PMCID: PMC6047907 DOI: 10.1111/resp.13302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 02/20/2018] [Accepted: 03/05/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Molecular biomarkers are needed to refine prognostication and phenotyping of pulmonary hypertension (PH) patients. S100A12 is an emerging biomarker of various inflammatory diseases. This study aims to determine the prognostic value of S100A12 in PH. METHODS Exploratory microarray analysis performed on peripheral blood mononuclear cells (PBMC) collected from idiopathic pulmonary fibrosis (IPF) patients suggested an association between S100A12 and both PH and mortality. So the current study was designed to evaluate for an association between S100A12 in peripheral blood collected from two well-phenotyped PH cohorts in two other centres to derive and validate an association between S100A12 protein serum concentrations and mortality. RESULTS The majority of the patients in the discovery and validation cohorts were either World Health Organization (WHO) group 1 (pulmonary arterial hypertension (PAH)) or 3 (lung disease-associated) PH. In the discovery PH cohort, S100A12 was significantly increased in patients with PH (n = 51) compared to controls (n = 22) (29.8 vs 15.7 ng/mL, P < 0.001) and negatively correlated with cardiac output (r = -0.58, P < 0.001) in PH patients. When S100A12 data were pooled from both cohorts, PAH and non-PAH PH patients had higher S100A12 compared to healthy external controls (32.6, 30.9, 15.7 ng/mL; P < 0.001). S100A12 was associated with an increased risk in overall mortality in PH patients in both the discovery (n = 51; P = 0.008) and validation (n = 40; P < 0.001) cohorts. CONCLUSION S100A12 levels are increased in PH patients and are associated with increased mortality.
Collapse
Affiliation(s)
- Argyrios Tzouvelekis
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jose D Herazo-Maya
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Changwan Ryu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jen-Hwa Chu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin F Gibson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Percy K Adonteng-Boateng
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Qin Li
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Hongyi Pan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Benjamin Cherry
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ferhaan Ahmad
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hubert J Ford
- Division of Pulmonary and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Erica L Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wassim H Fares
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|