1
|
Wang Y, Wu J, Feng J, Xu B, Niu Y, Zheng Y. From Bone Remodeling to Wound Healing: An miR-146a-5p-Loaded Nanocarrier Targets Endothelial Cells to Promote Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32992-33004. [PMID: 38887990 DOI: 10.1021/acsami.4c03598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Wound healing is a complex challenge that demands urgent attention in the clinical realm. Efficient angiogenesis is a pivotal factor in promoting wound healing. microRNA-146a (miR-146a) inhibitor has angiogenic potential in the periodontal ligament. However, free microRNAs (miRNAs) are poorly delivered into cells due to their limited tissue specificity and low intracellular delivery efficiency. To address this hurdle, we developed a nanocarrier for targeted delivery of the miR-146a inhibitor into endothelial cells. It is composed of a polyethylenimine (PEI)-modified mesoporous silica nanoparticle (MSN) core and a pentapeptide (YIGSR) layer that recognizes endothelial cells. In vitro, we defined that the miR-146a inhibitor and adiponectin (ADP) can modulate angiogenesis and the remodeling of periodontal tissues by activating the ERK and Akt signaling pathways. Then, we confirm the specificity of YIGSR to endothelial cells, and importantly, the nanocarrier effectively delivers the miR-146a inhibitor into endothelial cells, promoting angiogenesis. In a C57 mouse skin wound model, the miR-146a inhibitor is successfully delivered into endothelial cells at the wound site using the nanocarrier, resulting in the formation of new blood vessels with strong CD31 expression. Additionally, no significant differences are found in the expression levels of inflammatory markers interleukin-6 and tumor necrosis factor-α. This outcome not only brings new strategies for angiogenesis but also exhibits broader implications for bone remodeling and wound healing. The breakthrough holds significance for future research and clinical interventions.
Collapse
Affiliation(s)
- Yue Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Jinjin Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| | - Jingjing Feng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| | - Baohua Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Yuting Niu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| |
Collapse
|
2
|
Rajanala K, Upadhyay A. Epigenetic Switches in Retinal Homeostasis and Target for Drug Development. Int J Mol Sci 2024; 25:2840. [PMID: 38474086 PMCID: PMC10932288 DOI: 10.3390/ijms25052840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Retinal homeostasis, a tightly regulated process maintaining the functional integrity of the retina, is vital for visual function. Emerging research has unveiled the critical role of epigenetic regulation in controlling gene expression patterns during retinal development, maintenance, and response to mutational loads and injuries. Epigenetic switches, including DNA methylation, histone modifications, and non-coding RNAs, play pivotal roles in orchestrating retinal gene expression and cellular responses through various intracellular, extracellular, and environmental modulators. This review compiles the current knowledge on epigenetic switches in retinal homeostasis, providing a deeper understanding of their impact on retinal structural integrity and function and using them as potential targets for therapeutic interventions.
Collapse
Affiliation(s)
| | - Arun Upadhyay
- Ocugen Inc., 11 Great Valley Parkway, Malvern, PA 19355, USA;
| |
Collapse
|
3
|
Ovali F, Hakbilen M, Akalin I, Çelik G, Yildirim S. The association of microRNAs in the development of retinopathy of prematurity. J Neonatal Perinatal Med 2024; 17:49-55. [PMID: 38457157 DOI: 10.3233/npm-230029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
INTRODUCTION Retinopathy of prematurity (ROP) is one of the main reasons of preventable childhood blindness. In the development of ROP, MicroRNAs may be effective in the balance of factors that inhibit and activate angiogenic factors. We aimed to determine the changes in the blood levels of miR-146a, miR-143, miR-210, miR-21, miR-126, miR-211, miR-221, miR-106 and let 7f and to investigate their association with ROP. We hypothesed that the level of these miRNAs changed significantly in ROP cases. MATERIALS AND METHODS This observational study was conducted prospectively in preterm infants with ROP. Serum levels of 8 miRNAs were measured. The relationship between disease stage and progression with miRNA gene expression was analysed. Preterm infants without ROP were taken as the control group. RESULTS 47 patients with ROP and 14 controls, were included in the study. In the ROP group, miR-210, miR-146a, miR-21 were statistically significantly lower. In the ROP group the expression level of miR-143 was insignificantly lower, miRNA-221 was insignificantly higher, and miR-106, miR-126 and let 7f were variable. CONCLUSION It was observed that miR-210, miR-146a, miR-21 and miR-143 were significantly lower in patients with ROP compared to the control group. However, no association could be established between the type of miRNA and stage of ROP. These miRNAs may be used as adjunctive biomarkers for diagnosis of ROP.
Collapse
Affiliation(s)
- F Ovali
- Department of Pediatrics, Istanbul Medeniyet University Medical Faculty, Division of Neonatology, Istanbul, Turkey
| | - M Hakbilen
- Department of Pediatrics, Istanbul Medeniyet University Medical Faculty, Division of Neonatology, Istanbul, Turkey
| | - I Akalin
- Department of Medical Genetics, Istanbul Medeniyet University Medical Faculty, Istanbul, Turkey
| | - G Çelik
- Department of Ophtalmology, Health Sciences University, Istanbul Medical Faculty, Zeynep Kamil Maternity and Children's Hospital, Istanbul, Turkey
| | - S Yildirim
- Department of Pediatrics, Istanbul Medeniyet University Medical Faculty, Division of Neonatology, Istanbul, Turkey
| |
Collapse
|
4
|
Shi YH, Li JQ, Min-Xu, Wang YY, Wang TH, Zuo ZF, Liu XZ. Bioinformatics-based Study on the Effects of Umbilical Cord Mesenchymal Stem Cells on the Aging Retina. Curr Stem Cell Res Ther 2024; 19:1497-1513. [PMID: 38204243 DOI: 10.2174/011574888x277276231215110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Retinal aging is one of the common public health problems caused by population aging and has become an important cause of acquired vision loss in adults. The aim of this study was to determine the role of human umbilical cord mesenchymal stem cells (hUCMSCs) in delaying retinal ganglion cell (RGC) aging and part of the network of molecular mechanisms involved. METHODS A retinal ganglion cell senescence model was established in vitro and treated with UCMSC. Successful establishment of the senescence system was demonstrated using β- galactosidase staining. The ameliorative effect of MSC on senescence was demonstrated using CCK8 cell viability and Annexin V-PI apoptosis staining. The relevant targets of RGC, MSC, and senescence were mainly obtained by searching the GeneCards database. The protein interaction network among the relevant targets was constructed using the String database and Cytoscape, and 10 key target genes were calculated based on the MCC algorithm, based on which Gene ontologies (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. Changes in relevant target genes were detected using real-time fluorescence quantitative PCR and the mechanism of action of UCMSC was determined by RNA interference. RESULTS β-galactosidase staining showed that UCMSC significantly reduced the positive results of RGC. The retinal aging process was alleviated. The bioinformatics screen yielded 201 shared genes. 10 key genes were selected by the MCC algorithm, including vascular endothelial growth factor A (VEGFA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), albumin (ALB), interleukin- 6 (IL6), tumor necrosis factor (TNF), tumor protein P53 (TP53), insulin (INS), matrix metalloproteinase 9 (MMP9), epidermal growth factor (EGF), interleukin-1β (IL1B), and enrichment to related transferase activity and kinase activity regulated biological processes involved in oxidative stress and inflammation related pathways. In addition, PCR results showed that all the above molecules were altered in expression after UCMSC involvement. CONCLUSION This experiment demonstrated the role of UCMSC in delaying retinal ganglion cell senescence and further elucidated that UCMSC may be associated with the activation of VEGFA, TP53, ALB, GAPDH, IL6, IL1B, MMP9 genes and the inhibition of INS, EGF, and TNF in delaying retinal senescence.
Collapse
Affiliation(s)
- Ya-Hui Shi
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
| | - Jun-Qi Li
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
| | - Min-Xu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
| | - Yu-Ying Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
| | - Ting-Hua Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| | - Zhong-Fu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| | - Xue-Zheng Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
5
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
6
|
Hanhart J, Wiener R, Totah H, Brosh K, Zadok D. Pseudophakia as a surprising protective factor in neovascular age-related macular degeneration. J Fr Ophtalmol 2023; 46:527-535. [PMID: 36925449 DOI: 10.1016/j.jfo.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 03/18/2023]
Abstract
PURPOSE To assess the impact of lens status on macular function among patients treated for neovascular age-related macular degeneration (nvAMD) in whom scheduled intravitreal injections were delayed. METHODS We reviewed demographic and clinical data as well as macular optical coherence tomographic images of 34 patients (48 eyes) who did not follow their injection schedule during the first wave of COVID-19 in Israel. Functional worsening was defined as a loss of at least 0.1 in decimal best-corrected visual acuity (BCVA). Morphological worsening was defined as new or increased subretinal/intraretinal fluid or a new hemorrhage. OCT indices of quality were used as a measure for cataract density and progression. RESULTS Pseudophakia was associated with a better functional outcome than phakic status: there was a loss of 0.06±0.12 vs. 0.15±0.10 decimal BCVA in the pseudophakic and phakic eyes, respectively (P=.001). A similar trend was observed for morphological changes over the same period: there was an increase in macular thickness of 9±26% vs.12±40%, respectively (P=0.79). During the first wave of COVID-19, the index of OCT quality remained stable for phakic eyes (26±3.6 before the first wave of COVID-19, 26±2.9 afterward; P=1) and pseudophakic eyes (30±2.4 before the first wave of COVID-19, 30±2.6 afterward; P=1). CONCLUSION Pseudophakic eyes with nvAMD that missed their scheduled intravitreal injections experienced fewer morphological and functional complications than phakic eyes with nvAMD.
Collapse
Affiliation(s)
- J Hanhart
- Department of Ophthalmology, Shaare Zedek Medical Center, Jerusalem, Israel, affiliated to the Hebrew University, Jerusalem, Israel.
| | - R Wiener
- Department of Ophthalmology, Shaare Zedek Medical Center, Jerusalem, Israel, affiliated to the Hebrew University, Jerusalem, Israel
| | - H Totah
- Department of Ophthalmology, Shaare Zedek Medical Center, Jerusalem, Israel, affiliated to the Hebrew University, Jerusalem, Israel
| | - K Brosh
- Department of Ophthalmology, Shaare Zedek Medical Center, Jerusalem, Israel, affiliated to the Hebrew University, Jerusalem, Israel
| | - D Zadok
- Department of Ophthalmology, Shaare Zedek Medical Center, Jerusalem, Israel, affiliated to the Hebrew University, Jerusalem, Israel
| |
Collapse
|
7
|
Wang Z, Gao J, Xu C. Tackling cellular senescence by targeting miRNAs. Biogerontology 2022; 23:387-400. [PMID: 35727469 DOI: 10.1007/s10522-022-09972-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Cellular senescence, which is characterized by permanent proliferation arrest, has become an important target for the amelioration of various human diseases. The activity of senescent cells is mainly related to the senescence-associated secretory phenotype (SASP). The SASP can cause chronic inflammation in local tissues and organs through autocrine and paracrine mechanisms, and a series of factors secreted by senescent cells can deteriorate the cellular microenvironment, promoting tumor formation and exacerbating aging-related diseases. Therefore, avoiding the promotion of cancer is an urgent problem. In recent years, increased attention has been given to the mechanistic study of microRNAs in senescence. As important posttranscriptional regulators, microRNAs possess unique tissue-specific expression in senescence. MicroRNAs can regulate the SASP by regulating proteins in the senescence signaling pathway, the reverse transcriptase activity of telomerase, the generation of reactive oxygen species and oxidative damage to mitochondria. Numerous studies have confirmed that removing senescent cells does not cause significant side effects, which also opens the door to the development of treatment modalities against senescent cells. Herein, this review discusses the double-edged sword of cellular senescence in tumors and aging-related diseases and emphasizes the roles of microRNAs in regulating the SASP, especially the potential of microRNAs to be used as therapeutic targets to inhibit senescence, giving rise to novel therapeutic approaches for the treatment of aging-associated diseases.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jianwen Gao
- School of Medical Engineering, Ma'anshan University, No. 8, Huangchi Road, Gushu Town, Dangtu County, Ma'anshan, 243100, Anhui, China. .,Major of Biotechnological Pharmaceutics, Shanghai Pharmaceutical School, Shanghai, 200135, China.
| | - Congjian Xu
- Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China
| |
Collapse
|
8
|
Targeted delivery of exosomal miR-484 reprograms tumor vasculature for chemotherapy sensitization. Cancer Lett 2022; 530:45-58. [DOI: 10.1016/j.canlet.2022.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
|
9
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
10
|
Intartaglia D, Giamundo G, Conte I. The Impact of miRNAs in Health and Disease of Retinal Pigment Epithelium. Front Cell Dev Biol 2021; 8:589985. [PMID: 33520981 PMCID: PMC7844312 DOI: 10.3389/fcell.2020.589985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, are essential key players in the control of biological processes in both physiological and pathological conditions. miRNAs play important roles in fine tuning the expression of many genes, which often have roles in common molecular networks. miRNA dysregulation thus renders cells vulnerable to aberrant fluctuations in genes, resulting in degenerative diseases. The retinal pigment epithelium (RPE) is a monolayer of polarized pigmented epithelial cells that resides between the light-sensitive photoreceptors (PR) and the choriocapillaris. The demanding physiological functions of RPE cells require precise gene regulation for the maintenance of retinal homeostasis under stress conditions and the preservation of vision. Thus far, our understanding of how miRNAs function in the homeostasis and maintenance of the RPE has been poorly addressed, and advancing our knowledge is central to harnessing their potential as therapeutic agents to counteract visual impairment. This review focuses on the emerging roles of miRNAs in the function and health of the RPE and on the future exploration of miRNA-based therapeutic approaches to counteract blinding diseases.
Collapse
Affiliation(s)
| | | | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Biology, Polytechnic and Basic Sciences School, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Bone marrow stromal cells stimulated by strontium-substituted calcium silicate ceramics: release of exosomal miR-146a regulates osteogenesis and angiogenesis. Acta Biomater 2021; 119:444-457. [PMID: 33129987 DOI: 10.1016/j.actbio.2020.10.038] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Dual-functional regulation for angiogenesis and osteogenesis is crucial for desired bone regeneration especially in large-sized bone defects. Exosomes have been demonstrated to facilitate bone regeneration through enhanced osteogenesis and angiogenesis. Moreover, functional stimulation to mesenchymal stromal cells (MSCs) was reported to further boost the pro-angiogenic ability of exosomes secreted. However, whether the stimulation by bioactive trace elements of biomaterials could enhance pro-angiogenic capability of bone marrow stromal cells (BMSCs)-derived exosomes and consequently promote in vivo vascularized bone regeneration has not been investigated. In this study, strontium-substituted calcium silicate (Sr-CS) was chosen and the biological function of BMSCs-derived exosomes after Sr-CS stimulation (Sr-CS-Exo) was systemically investigated. The results showed that Sr-CS-Exo could significantly promote in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs), which might be attributed to elevated pro-angiogenic miR-146a cargos and inhibition of Smad4 and NF2 proteins. Moreover, the in vivo study confirmed that Sr-CS-Exo possessed superior pro-angiogenic ability, which contributed to the accelerated developmental vascularization in zebrafish along with the neovascularization and bone regeneration in rat distal femur defects. Our findings may provide new insights into the mechanisms underlying Sr-containing biomaterials-induced angiogenesis, and for the first time, proposed that Sr-CS-Exo may serve as the candidate engineered-exosomes with dual-functional regulation for angiogenesis and osteogenesis in vascularized bone regeneration.
Collapse
|
12
|
Smith DW, Lee CJ, Gardiner BS. No flow through the vitreous humor: How strong is the evidence? Prog Retin Eye Res 2020; 78:100845. [PMID: 32035123 DOI: 10.1016/j.preteyeres.2020.100845] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
When analyzing vitreal drug delivery, or the pharmacological effects of drugs on intraocular pressure, or when interpreting outflow facility measurements, it is generally accepted that the fluid in the vitreous humor is stagnant. It is accepted that for all practical purposes, the aqueous fluid exits the eye via anterior pathways only, and so there is negligible if any posteriorly directed flow of aqueous through the vitreous humor. This assumption is largely based on the interpretation of experimental data from key sources including Maurice (1957), Moseley (1984), Gaul and Brubaker (1986), Maurice (1987) and Araie et al. (1991). However, there is strong independent evidence suggesting there is a substantial fluid flow across the retinal pigment epithelium from key sources including Cantrill and Pederson (1984), Chihara and Nao-i, Tsuboi (1985), Dahrouj et al. (2014), Smith and Gardiner (2017) and Smith et al. (2019). The conflicting evidence creates a conundrum-how can both interpretations be true? This leads us to re-evaluate the evidence. We demonstrate that the data believed to be supporting no aqueous flow through the vitreous are in fact compatible with a significant normal aqueous flow. We identify strong and independent lines of evidence supporting fluid flow across the RPE, including our new outflow model for the eye. On balance it appears the current evidence favors the view that there is normally a significant aqueous flow across the RPE in vivo. This finding suggests that past and future analyses of outflow facility, interpretations of some drug distributions and the interpretation of some drug effects on eye tissues, may need to be revised.
Collapse
Affiliation(s)
- David W Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Australia.
| | - Chang-Joon Lee
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Australia; College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Bruce S Gardiner
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
13
|
Oltra M, Vidal-Gil L, Maisto R, Sancho-Pelluz J, Barcia JM. Oxidative stress-induced angiogenesis is mediated by miR-205-5p. J Cell Mol Med 2019; 24:1428-1436. [PMID: 31863632 PMCID: PMC6991635 DOI: 10.1111/jcmm.14822] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
miR‐205‐5p is known to be involved in VEGF‐related angiogenesis and seems to regulate associated cell signalling pathways, such as cell migration, proliferation and apoptosis. Therefore, several studies have focused on the potential role of miR‐205‐5p as an anti‐angiogenic factor. Vascular proliferation is observed in diabetic retinopathy and the ‘wet’ form of age‐related macular degeneration. Today, the most common treatments against these eye‐related diseases are anti‐VEGF therapies. In addition, both AMD and DR are typically associated with oxidative stress; hence, the use of antioxidant agents is accepted as a co‐adjuvant therapy for these patients. According to previous data, ARPE‐19 cells release pro‐angiogenic factors when exposed to oxidative insult, leading to angiogenesis. Matching these data, results reported here, indicate that miR‐205‐5p is modulated by oxidative stress and regulates VEGFA‐angiogenesis. Hence, miR‐205‐5p is proposed as a candidate against eye‐related proliferative diseases.
Collapse
Affiliation(s)
- Maria Oltra
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Neurobiología y Neurofisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Lorena Vidal-Gil
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Neurobiología y Neurofisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Rosa Maisto
- Department of Experimental Medicine, Università degli studi della Campania Luigi Vanvitelli, Napoli, Italy
| | - Javier Sancho-Pelluz
- Neurobiología y Neurofisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Jorge M Barcia
- Neurobiología y Neurofisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
14
|
Zhou L, Liang H, Zhou X, Jia J, Ye C, Hu Q, Xu S, Yu Y, Zou G, Hu G. Genetic Characteristic and RNA-Seq Analysis in Transparent Mutant of Carp-Goldfish Nucleocytoplasmic Hybrid. Genes (Basel) 2019; 10:genes10090704. [PMID: 31547242 PMCID: PMC6771007 DOI: 10.3390/genes10090704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 01/24/2023] Open
Abstract
In teleost, pigment in the skin and scales played important roles in various biological processes. Iridophores, one of the main pigment cells in teleost, could produce silver pigments to reflect light. However, the specific mechanism of the formation of silver pigments is still unclear. In our previous study, some transparent mutant individuals were found in the carp-goldfish nucleocytoplasmic hybrid (CyCa hybrid) population. In the present study, using transparent mutants (TM) and wild type (WT) of the CyCa hybrid as a model, firstly, microscopic observations showed that the silver pigments and melanin were both lost in the scales of transparent mutants compared to that in wild types. Secondly, genetic study demonstrated that the transparent trait in the CyCa hybrid was recessively inherent, and controlled by an allele in line with Mendelism. Thirdly, RNA-Seq analysis showed that differential expression genes (DEGs) between wild type and transparent mutants were mainly enriched in the metabolism of guanine, such as hydrolase, guanyl nucleotide binding, guanyl ribonucleotide binding, and GTPase activity. Among the DEGs, purine nucleoside phosphorylase 4a (pnp4a) and endothelin receptor B (ednrb) were more highly expressed in the wild type compared to the transparent mutant (p < 0.05). Finally, miRNA-Seq analysis showed that miRNA-146a and miR-153b were both more highly expressed in the transparent mutant compared to that in wild type (p < 0.05). Interaction analysis between miRNAs and mRNAs indicated that miRNA-146a was associated with six DEGs (MGAT5B, MFAP4, GP2, htt, Sema6b, Obscn) that might be involved in silver pigmentation.
Collapse
Affiliation(s)
- Lingling Zhou
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongwei Liang
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, The Chinese Academy of Fisheries Sciences, Wuhan 430223, China.
| | - Xiaoyun Zhou
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jingyi Jia
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Cheng Ye
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiongyao Hu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shaohua Xu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yongning Yu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guiwei Zou
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, The Chinese Academy of Fisheries Sciences, Wuhan 430223, China.
| | - Guangfu Hu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Huang T, Huang X, Chen W, Yin J, Shi B, Wang F, Feng W, Yao M. MicroRNA responses associated with Salmonella enterica serovar typhimurium challenge in peripheral blood: effects of miR-146a and IFN-γ in regulation of fecal bacteria shedding counts in pig. BMC Vet Res 2019; 15:195. [PMID: 31186019 PMCID: PMC6560770 DOI: 10.1186/s12917-019-1951-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/05/2019] [Indexed: 01/15/2023] Open
Abstract
Background MicroRNAs are involved in a broad range of biological processes and are known to be differentially expressed in response to bacterial pathogens. Results The present study identified microRNA responses in porcine peripheral blood after inoculation with the human foodborne pathogen Salmonella enterica serovar Typhimurium strain LT2. We compared the microRNA transcriptomes of the whole blood of pigs (Duroc × Landrace × Yorkshire) at 2-days post inoculation and before Salmonella infection. The analysis identified a total of 29 differentially expressed microRNAs, most of which are implicated in Salmonella infection and immunology signaling pathways. Joint analysis of the microRNA and mRNA transcriptomes identified 24 microRNAs with binding sites that were significantly enriched in 3′ UTR of differentially expressed mRNAs. Of these microRNAs, three were differentially expressed after Salmonella challenge in peripheral blood (ssc-miR-146a-5p, ssc-miR-125a, and ssc-miR-129a-5p). Expression of 23 targets of top-ranked microRNA, ssc-miR-146a-5p, was validated by real-time PCR. The effects of miR-146a, IFN-γ, and IL-6 on the regulation of fecal bacteria shedding counts in pigs were investigated by in vivo study with a Salmonella challenge model. Conclusions The results indicated that induction of miR-146a in peripheral blood could significantly increase the fecal bacterial load, whereas IFN-γ had the reverse effect. These microRNAs can be used to identify targets for controlling porcine salmonellosis.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiali Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wang Chen
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jun Yin
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Bomei Shi
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Fangfang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wenzhao Feng
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Min Yao
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
16
|
Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment. Front Immunol 2018; 9:1377. [PMID: 29988529 PMCID: PMC6026627 DOI: 10.3389/fimmu.2018.01377] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/04/2018] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a complicated biological and pathophysiological cascade of responses to infections and injuries, and inflammatory mechanisms are closely related to many diseases. The magnitude, the complicated network of pro- and anti-inflammatory factors, and the direction of the inflammatory response can impact on the development and progression of various disorders. The currently available treatment strategies often target the symptoms and not the causes of inflammatory disease and may often be ineffective. Since the onset and termination of inflammation are crucial to prevent tissue damage, a range of mechanisms has evolved in nature to regulate the process including negative and positive feedback loops. In this regard, microRNAs (miRNAs) have emerged as key gene regulators to control inflammation, and it is speculated that they are fine-tune signaling regulators to allow for proper resolution and prevent uncontrolled progress of inflammatory reactions. In this review, we discuss recent findings related to significant roles of miRNAs in immune regulation, especially the potential utility of these molecules as novel anti-inflammatory agents to treat inflammatory diseases. Furthermore, we discuss the possibilities of using miRNAs as drugs in the form of miRNA mimics or miRNA antagonists.
Collapse
Affiliation(s)
- Alireza Tahamtan
- Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Britt Nakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Zhang RX, Zheng Z, Li K, Wu XH, Zhu L. Both plasma and tumor tissue miR-146a high expression correlates with prolonged overall survival of surgical patients with intrahepatic cholangiocarcinoma. Medicine (Baltimore) 2017; 96:e8267. [PMID: 29095255 PMCID: PMC5682774 DOI: 10.1097/md.0000000000008267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to investigate the association of tumor tissue and plasma miR-146a/b expressions with the clinicopathological properties and overall survival (OS) in surgical patients with intrahepatic cholangiocarcinomas (ICC).Eighty-seven patients with ICC were enrolled. Tumor tissue and plasma sample were collected and miR-146a/b expressions were assessed by quantitative polymerase chain reaction (qPCR). The median follow-up duration was 31 months, and the last follow-up date was January 2017.miR-146a (P < .001) and miR-146b (P = .006) expressions in tumor tissue were positively associated with that in plasma. Tissue miR-146a was negatively correlated with age (P = .036), poor differentiation (P = .020), N stage (P = .020), and TNM stage (P = .007), as well as ECOG performance (P = .008), whereas plasma miR-146a was inversely associated with N stage (P = .003), TNM stage (P = .003), and ECOG performance (P = .011). Moreover, tissue miR-146b was negatively correlated with gender (P = .043) and T stage (P = .047). Kaplan-Meier curves suggested that high expression of tissue miR-146a (P < .001) and plasma miR-146a (P = .029) were correlated with prolonged OS. Nevertheless, no association of miR-146b expression in tumor tissue (P = .187) and plasma (P = .336) with OS was discovered. Univariate analysis indicated that both tissue miR-146a (P < .001) and plasma miR-146a (P = .035) could predict better OS, whereas multivariate analysis revealed that only tissue miR-146a (P = .001) high expression was an independent factor for prolonged OS.Both plasma and tissue miR-146a expression correlated with favorable OS, whereas only tissue miR-146a was an independent prognostic biomarker in surgical patients with ICC.
Collapse
|
18
|
Tsujinaka H, Itaya-Hironaka A, Yamauchi A, Sakuramoto-Tsuchida S, Shobatake R, Makino M, Masuda N, Hirai H, Takasawa S, Ogata N. Statins decrease vascular epithelial growth factor expression via down-regulation of receptor for advanced glycation end-products. Heliyon 2017; 3:e00401. [PMID: 28971147 PMCID: PMC5612812 DOI: 10.1016/j.heliyon.2017.e00401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/06/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022] Open
Abstract
Aims Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, possess pleiotropic effects that have been extended to modulation of various cellular behaviors. This study aimed to examine whether statins modulate vascular endothelial growth factor A (VEGF-A) expression in human retinal pigment epithelium (RPE) cells. Main methods Human RPE cells (h1RPE7), damaged by hydroquinone (HQ) + advanced glycation endproducts (AGE) in an in vitro AMD model, were treated with atorvastatin or lovastatin for 24 h. The expression of VEGF-A and receptor for AGE (RAGE) was evaluated by real-time RT-PCR. VEGF-A secretion was measured by ELISA. To investigate the impact of RAGE on VEGF-A expression, small interfering RNA (siRNA) for RAGE (siRAGE) was introduced into h1RPE7 cells and VEGF-A expression was measured by real-time RT-PCR. Deletions of VEGF-A and RAGE promoters were performed and transcriptional activities were measured after the addition of statins to HQ + AGE-damaged RPE cells. Key findings The mRNA levels of VEGF-A and RAGE and the levels of VEGF-A in the culture medium were increased by HQ + AGE. Both atorvastatin and lovastatin attenuated HQ + AGE-induced VEGF-A and RAGE expression. These statins also decreased VEGF-A levels in the culture medium. RNA interference of RAGE attenuated the up-regulation of VEGF-A in the HQ + AGE treated cells. The deletion analysis demonstrated that these statins attenuated RAGE promoter activation in HQ + AGE-damaged RPE cells. Significance Statins attenuated HQ + AGE-induced VEGF expression by decreasing RAGE expression. As VEGF is an important factor in developing wet AMD, statins could decrease the risk of wet-type AMD and be used as preventive medicines.
Collapse
Affiliation(s)
- Hiroki Tsujinaka
- Department of Ophthalmology, Nara Medical University, Kashihara 634-8522, Japan.,Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | | | - Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | | | - Ryogo Shobatake
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Mai Makino
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Naonori Masuda
- Department of Ophthalmology, Nara Medical University, Kashihara 634-8522, Japan
| | - Hiromasa Hirai
- Department of Ophthalmology, Nara Medical University, Kashihara 634-8522, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Nahoko Ogata
- Department of Ophthalmology, Nara Medical University, Kashihara 634-8522, Japan
| |
Collapse
|
19
|
Relationship between microRNA-146a expression and plasma renalase levels in hemodialyzed patients. PLoS One 2017; 12:e0179218. [PMID: 28614373 PMCID: PMC5470705 DOI: 10.1371/journal.pone.0179218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND microRNA (miRNA) belongs to the non-coding RNAs family responsible for the regulation of gene expression. Renalase is a protein composed of 342 amino acids, secreted by the kidneys and possibly plays an important role in the regulation of sympathetic tone and blood pressure. The aim of the present study was to investigate plasma renalase concentration, and explore the relationship between miRNA-146a-5p expression and plasma renalase levels in hemodialyzed patients. METHODS The study population comprised 55 subjects who succumbed to various cardiac events, 27 women and 28 men, aged 65-70 years. The total RNA including miRNA fraction was isolated using QiagenmiRNEasy Serum/Plasma kit according to the manufacturer's protocol. The isolated miRNAs were analyzed using a quantitative polymerase chain reaction (qRT-PCR) technique. The plasma renalase levels were measured using a commercial ELISA kit. RESULTS In the group of patients with high levels of renalase, higher miRNA-146a expression was found, compared with those with low concentration of renalase. Patients with simultaneous low miRNA-146a expression and high level of renalase were confirmed to deliver a significantly longer survival time compared with other patients. CONCLUSIONS miRNA-146a and plasma renalase levels were estimated as independent prognostic factors of hemodialyzed patients' survival time. Patients with low miRNA-146a expression demonstrated a significantly longer survival time in contrast to the patients with a high expression level of miRNA-146a. Moreover, a significantly longer survival time was found in patients with high renalase activity compared with patients with low activity of the enzyme.
Collapse
|
20
|
Neovascular Age-Related Macular Degeneration in the Very Old (≥90 Years): Epidemiology, Adherence to Treatment, and Comparison of Efficacy. J Ophthalmol 2017; 2017:7194927. [PMID: 28660080 PMCID: PMC5474234 DOI: 10.1155/2017/7194927] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate neovascular age-related macular degeneration (AMD) in patients aged ≥90 years from several perspectives for a comprehensive overview: prevalence, presenting characteristics, treatment adherence, reasons for discontinuation, and efficacy of antivascular endothelial growth factor (VEGF) treatment comparing Ranibizumab and Aflibercept. METHODS In this retrospective chart review, we determined the prevalence and presenting characteristics by reviewing all data for patients referred to our department with treatment-naïve neovascular AMD. By looking at historical cohorts, we determined adherence to treatment, reasons for discontinuation, and treatment outcomes after loading dose, 12 months, and 24 months. RESULTS Patients aged ≥90 years constituted 7% of the patients. Treatment was discontinued in 51%, primarily because of death and treatment burden. Mean change in best-corrected visual acuity was 3.2, 1.5, and -2.2 ETDRS letters at 4, 12, and 24 months, respectively. Aflibercept was superior to Ranibizumab in visual and anatomic outcomes. After two years of treatment, patients losing ≥15 ETDRS letters made up 19% in the Aflibercept group and 26% in the Ranibizumab group. CONCLUSIONS We propose that the very old patients with neovascular AMD may constitute a distinctive group warranting special attention and possibilities for individualized therapy. Possible differences between anti-VEGF agents need further investigations.
Collapse
|