1
|
Shankar K, Bonnet-Zahedi S, Milan K, D'argence AR, Sneddon E, Qiao R, Chonwattangul S, Carrette LLG, Kallupi M, George O. Acute nicotine activates orectic and inhibits anorectic brain regions in rats exposed to chronic nicotine. Neuropharmacology 2024; 253:109959. [PMID: 38648925 PMCID: PMC11734747 DOI: 10.1016/j.neuropharm.2024.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Nicotine use produces psychoactive effects, and chronic use is associated with physiological and psychological symptoms of addiction. However, chronic nicotine use is known to decrease food intake and body weight gain, suggesting that nicotine also affects central metabolic and appetite regulation. We recently showed that acute nicotine self-administration in nicotine-dependent animals produces a short-term increase in food intake, contrary to its long-term decrease of feeding behavior. As feeding behavior is regulated by complex neural signaling mechanisms, this study aimed to test the hypothesis that nicotine intake in animals exposed to chronic nicotine may increase activation of pro-feeding regions and decrease activation of pro-satiety regions to produce the acute increase in feeding behavior. FOS immunohistochemistry revealed that acute nicotine intake in nicotine self-administering animals increased activation of the pro-feeding arcuate and lateral hypothalamic nuclei and decreased activation of the pro-satiety parabrachial nucleus. Regional correlational analysis also showed that acute nicotine changes the functional connectivity of the hunger/satiety network. Further dissection of the role of the arcuate nucleus using electrophysiology found that putative POMC neurons in animals given chronic nicotine exhibited decreased firing following acute nicotine application. These brain-wide central signaling changes may contribute to the acute increase in feeding behavior we see in rats after acute nicotine and provide new areas of focus for studying both nicotine addiction and metabolic regulation.
Collapse
Affiliation(s)
- Kokila Shankar
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Sélène Bonnet-Zahedi
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA; Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, 13005, France
| | - Kristel Milan
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Andrea Ruiz D'argence
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Elizabeth Sneddon
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Ran Qiao
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Supakorn Chonwattangul
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Lieselot L G Carrette
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Nakamoto K, Matsuura W, Tokuyama S. Nicotine suppresses central post-stroke pain via facilitation of descending noradrenergic neuron through activation of orexinergic neuron. Eur J Pharmacol 2023; 943:175518. [PMID: 36706800 DOI: 10.1016/j.ejphar.2023.175518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Central post-stroke pain (CPSP) is a type of central neuropathic pain, whose underlying mechanisms remain unknown. We previously reported that bilateral carotid artery occlusion (BCAO)-induced CPSP model mice showed mechanical hypersensitivity and decreased mRNA levels of preproorexin, an orexin precursor, in the hypothalamus. Recently, nicotine was shown to regulate the neuronal activity of orexin in the lateral hypothalamus (LH) and suppress inflammatory and neuropathic pain. In this study, we evaluated whether nicotine could suppress BCAO-induced mechanical allodynia through the activation of orexinergic neurons. Mice were subjected to BCAO for 30 min. Mechanical hypersensitivity was assessed by the von Frey test. BCAO mice showed hypersensitivity to mechanical stimuli three days after BCAO surgery. The intracerebroventricular injection of nicotine suppressed BCAO-induced mechanical hypersensitivity in a dose-dependent manner. These effects were inhibited by α7 or α4β2-nicotinic receptor antagonists. After nicotine injection, the level of c-fos, a neuronal activity marker, increased in the LH and locus coeruleus (LC) of Sham and BCAO mice. Increased number of c-Fos-positive cells partly colocalized with orexin A-positive cells in the LH, as well as tyrosine hydroxylase-positive cells in the LC. Orexinergic neurons project to the LC area. Nicotine-induced antinociception tended to cancel by the pretreatment of SB334867, an orexin receptor1 antagonist into the LC. Intra-LH microinjection of nicotine attenuated BCAO-induced mechanical hypersensitivity. Nicotine-induced antinociception was inhibited by intrathecal pre-treatment with yohimbine, an α2 adrenergic receptor antagonist. These results indicated that nicotine may suppress BCAO-induced mechanical hypersensitivity through the activation of the descending pain control system via orexin neurons.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Wataru Matsuura
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
3
|
McDermott MV, Ram A, Mattoon MT, Haderlie EE, Raddatz MC, Thomason MK, Bobeck EN. A small molecule ligand for the novel pain target, GPR171, produces minimal reward in mice. Pharmacol Biochem Behav 2023; 224:173543. [PMID: 36933620 PMCID: PMC11472835 DOI: 10.1016/j.pbb.2023.173543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
ProSAAS is one of the most abundant proteins in the brain and is processed into several smaller peptides. One of which, BigLEN, is an endogenous ligand for the G protein-coupled receptor, GPR171. Recent work in rodent models has shown that a small-molecule ligand for GPR171, MS15203, increases morphine antinociception and is effective in lessening chronic pain. While these studies provide evidence for GPR171 as a possible pain target, its abuse liability has not yet been assessed and was evaluated in the current study. We first mapped the distribution of GPR171 and ProSAAS throughout the reward circuit of the brain using immunohistochemistry and showed that GPR171 and ProSAAS are localized in the hippocampus, basolateral amygdala, nucleus accumbens, prefrontal cortex. In the major dopaminergic structure, the ventral tegmental area (VTA), GPR171 appeared to be primarily localized in dopamine neurons while ProSAAS is outside of dopamine neurons. Next, MS15203 was administered to mice with or without morphine, and VTA slices were stained for the immediate early gene c-Fos as a marker of neuronal activation. Quantification of c-Fos-positive cells revealed no statistical difference between MS15203 and saline, suggesting that MS15203 does not increase VTA activation and dopamine release. The results of a conditioned place preference experiment showed that treatment with MS15203 produced no place preference indicating a lack of reward-related behavior. Taken together this data provides evidence that the novel pain therapeutic, MS15203, has minimal reward liability. Therefore, GPR171 deserves further exploration as a pain target. SIGNIFICANCE STATEMENT: MS15203, a drug that activates the receptor GPR171, was previously shown to increase morphine analgesia. The authors use in vivo and histological techniques to show that it fails to activate the rodent reward circuitry, providing support for the continued exploration of MS15203 as a novel pain drug, and GPR171 a novel pain target.
Collapse
Affiliation(s)
- Max V McDermott
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America; Interdisciplinary Neuroscience Program, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Akila Ram
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Matthew T Mattoon
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Emmaline E Haderlie
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Megan C Raddatz
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America; Interdisciplinary Neuroscience Program, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Madi K Thomason
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Erin N Bobeck
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America; Interdisciplinary Neuroscience Program, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America.
| |
Collapse
|
4
|
Kalló I, Omrani A, Meye FJ, de Jong H, Liposits Z, Adan RAH. Characterization of orexin input to dopamine neurons of the ventral tegmental area projecting to the medial prefrontal cortex and shell of nucleus accumbens. Brain Struct Funct 2022; 227:1083-1098. [PMID: 35029758 PMCID: PMC8930802 DOI: 10.1007/s00429-021-02449-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
Orexin neurons are involved in homeostatic regulatory processes, including arousal and feeding, and provide a major input from the hypothalamus to the ventral tegmental area (VTA) of the midbrain. VTA neurons are a central hub processing reward and motivation and target the medial prefrontal cortex (mPFC) and the shell part of nucleus accumbens (NAcs). We investigated whether subpopulations of dopamine (DA) neurons in the VTA projecting either to the mPFC or the medial division of shell part of nucleus accumbens (mNAcs) receive differential input from orexin neurons and whether orexin exerts differential electrophysiological effects upon these cells. VTA neurons projecting to the mPFC or the mNAcs were traced retrogradely by Cav2-Cre virus and identified by expression of yellow fluorescent protein (YFP). Immunocytochemical analysis showed that a higher proportion of all orexin-innervated DA neurons projected to the mNAcs (34.5%) than to the mPFC (5.2%). Of all sampled VTA neurons projecting either to the mPFC or mNAcs, the dopaminergic (68.3 vs. 79.6%) and orexin-innervated DA neurons (68.9 vs. 64.4%) represented the major phenotype. Whole-cell current clamp recordings were obtained from fluorescently labeled neurons in slices during baseline periods and bath application of orexin A. Orexin similarly increased the firing rate of VTA dopamine neurons projecting to mNAcs (1.99 ± 0.61 Hz to 2.53 ± 0.72 Hz) and mPFC (0.40 ± 0.22 Hz to 1.45 ± 0.56 Hz). Thus, the hypothalamic orexin system targets mNAcs and to a lesser extent mPFC-projecting dopaminergic neurons of the VTA and exerts facilitatory effects on both clusters of dopamine neurons.
Collapse
Affiliation(s)
- Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Eötvös Loránd Research Center, Budapest, 1083, Hungary
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, 1083, Hungary
| | - Azar Omrani
- Department of Translational Neuroscience, UMC Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584, Utrecht, The Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, UMC Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584, Utrecht, The Netherlands
| | - Han de Jong
- Department of Translational Neuroscience, UMC Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584, Utrecht, The Netherlands
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Eötvös Loránd Research Center, Budapest, 1083, Hungary.
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, 1083, Hungary.
| | - Roger A H Adan
- Department of Translational Neuroscience, UMC Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584, Utrecht, The Netherlands.
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Goteborg, Sweden.
| |
Collapse
|
5
|
de Oliveira RP, de Andrade JS, Spina M, Chamon JV, Silva PHD, Werder AK, Ortolani D, Thomaz LDSC, Romariz S, Ribeiro DA, Longo BM, Spadari RC, Viana MDB, Melo-Thomas L, Céspedes IC, da Silva RCB. Clozapine prevented social interaction deficits and reduced c-Fos immunoreactivity expression in several brain areas of rats exposed to acute restraint stress. PLoS One 2022; 17:e0262728. [PMID: 35239670 PMCID: PMC8893644 DOI: 10.1371/journal.pone.0262728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
In the present study, we evaluate the effect of acute restraint stress (15 min) of male Wistar rats on social interaction measurements and c-Fos immunoreactivity (c-Fos-ir) expression, a marker of neuronal activity, in areas involved with the modulation of acute physical restraint in rats, i.e., the paraventricular nucleus of the hypothalamus (PVN), median raphe nucleus (MnR), medial prefrontal cortex (mPFC), cingulate prefrontal cortex (cPFC), nucleus accumbens (NaC), hippocampus (CA3), lateral septum (LS) and medial amygdala (MeA). We considered the hypothesis that restraint stress exposure could promote social withdrawal induced by the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis, and increase c-Fos expression in these limbic forebrain areas investigated. In addition, we investigated whether pretreatment with the atypical antipsychotic clozapine (5 mg/kg; I.P.) could attenuate or block the effects of restraint on these responses. We found that restraint stress induced social withdrawal, and increased c-Fos-ir in these areas, demonstrating that a single 15 min session of physical restraint of rats effectively activated the HPA axis, representing an effective tool for the investigation of neuronal activity in brain regions sensitive to stress. Conversely, pretreatment with clozapine, prevented social withdrawal and reduced c-Fos expression. We suggest that treatment with clozapine exerted a preventive effect in the social interaction deficit, at least in part, by blocking the effect of restraint stress in brain regions that are known to regulate the HPA-axis, including the cerebral cortex, hippocampus, hypothalamus, septum and amygdala. Further experiments will be done to confirm this hypothesis.
Collapse
Affiliation(s)
| | - José Simões de Andrade
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | - Marianna Spina
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | - João Vítor Chamon
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | | | - Ana Keyla Werder
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | - Daniela Ortolani
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | | | - Simone Romariz
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP/SP), São Paulo, Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | - Beatriz Monteiro Longo
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP/SP), São Paulo, Brazil
| | - Regina Célia Spadari
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | - Liana Melo-Thomas
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-Universityof Marburg, Marburg, Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB), Marburg, Marburg, Germany
| | - Isabel Cristina Céspedes
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Regina Cláudia Barbosa da Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Fartootzadeh R, Alaei H, Reisi P. Mutual assistance of nucleus accumbens cannabinoid receptor-1 and orexin receptor-2 in response to nicotine: a single-unit study. Res Pharm Sci 2021; 16:173-181. [PMID: 34084204 PMCID: PMC8102922 DOI: 10.4103/1735-5362.310524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/22/2020] [Accepted: 01/24/2021] [Indexed: 11/28/2022] Open
Abstract
Background and purpose: The nucleus accumbens (NAc) express both orexin-2 receptor (OX2R) and cannabinoid receptor type 1 (CB1R). Orexin and cannabinoid regulate the addictive properties of nicotine. In this study, the effect of the CB1R blockade on the electrical activity of NAc neurons in response to nicotine, and its probable interaction with the OX2R in this event, within this area, were examined via the single-unit recording. Experimental approach: The spontaneous firing rate of NAc was initially recorded for 15 min, and then 5 min before subcutaneous injection of nicotine (0.5 mg/kg)/saline, AM251 and TCS-OX2-29 were injected into the NAc. Neuronal responses were recorded for 70 min, after nicotine administration. Findings/Results: Nicotine excited the NAc neurons significantly and intra-NAc microinjection of AM251 (25 and 125 ng/rat), as a selective CB1R antagonist, prevented the nicotine-induced increases of NAc neuronal responses. Moreover, microinjection of AM251 (125 ng/rat), before saline injection, could not affect the percentage of change of the neuronal response. Finally, simultaneous intra-NAc administration of the effective or ineffective doses of AM251 and TCS-OX2-29 (a selective antagonist of OX2R) prevented the nicotine- induced increases of NAc neuronal responses, so that there was a significant difference between the group received ineffective doses of both antagonists and the AM251 ineffective dose. Conclusion and implications: The results suggest that the CB1R can modulate the NAc reaction to the nicotine, and it can be concluded that there is a potential interplay between the OX2R and CB1R in the NAc, in relation to nicotine.
Collapse
Affiliation(s)
- Reza Fartootzadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
7
|
Duan S, Ma Y, Xie L, Zheng L, Huang J, Guo R, Sun Z, Xie Y, Lv J, Lin Z, Ma S. Effects of Chronic Ephedrine Toxicity on Functional Connections, Cell Apoptosis, and CREB-Related Proteins in the Prefrontal Cortex of Rhesus Monkeys. Neurotox Res 2020; 37:602-615. [PMID: 31858422 DOI: 10.1007/s12640-019-00146-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 02/05/2023]
Abstract
Ephedrine abuse has spread in many parts of the world, severely threatening human health. The mechanism of ephedrine toxicity is still unclear. To explore the possible neural mechanisms of ephedrine toxicity, this study established a non-human primate model of ephedrine exposure, analyzed the functional connectivity changes in its prefrontal cortex through resting state BOLD-fMRI, and then inspected the pathophysiological changes as well as the expression of the cyclic adenosine monophosphate response element-binding protein (CREB), phosphorylated CREB (P-CREB), and CREB target proteins (c-fos and fosB) in the prefrontal cortex. After ephedrine toxicity, we found that the prefrontal cortex of monkeys strengthened its functional connectivity with the brain regions that perform motivation, drive, reward, and learning and memory functions and weakened its functional connectivity with the brain regions that perform cognitive control. These results suggest that ephedrine toxicity causes abnormal neural circuits that lead to the amplification and enhancement of drug-related cues and the weakening and damage of cognitive control function. Histology showed that the neurocytotoxicity of ephedrine can cause neuronal degeneration and apoptosis. Real-time PCR and Western blot showed increased expression of CREB mRNA and CREB/P-CREB/c-fos/fosB protein in the prefrontal cortex after ephedrine toxicity. Collectively, the present study indicates that the enhancement of drug-related cues and the weakening of cognitive control caused by abnormal neural circuits after drug exposure may be a major mechanism of brain function changes caused by ephedrine. These histological and molecular changes may be the pathophysiological basis of brain function changes caused by ephedrine.
Collapse
Affiliation(s)
- Shouxing Duan
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Ye Ma
- Department of Linguistics & Languages, Michigan State University, East Lansing, MI, 48824, USA
| | - Lei Xie
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Lian Zheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Jinzhuang Huang
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Ruiwei Guo
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Zongbo Sun
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Yao Xie
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Junyao Lv
- Department of Forensic Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Zhirong Lin
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Shuhua Ma
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China.
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China.
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China.
| |
Collapse
|
8
|
Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020; 167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Hypocretin/orexin neurons are distributed restrictively in the hypothalamus, a brain region known to orchestrate diverse functions including sleep, reward processing, food intake, thermogenesis, and mood. Since the hypocretins/orexins were discovered more than two decades ago, extensive studies have accumulated concrete evidence showing the pivotal role of hypocretin/orexin in diverse neural modulation. New method of viral-mediated tracing system offers the possibility to map the monosynaptic inputs and detailed anatomical connectivity of Hcrt neurons. With the development of powerful research techniques including optogenetics, fiber-photometry, cell-type/pathway specific manipulation and neuronal activity monitoring, as well as single-cell RNA sequencing, the details of how hypocretinergic system execute functional modulation of various behaviors are coming to light. In this review, we focus on the function of neural pathways from hypocretin neurons to target brain regions. Anatomical and functional inputs to hypocretin neurons are also discussed. We further briefly summarize the development of pharmaceutical compounds targeting hypocretin signaling. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Adolescent nicotine challenge promotes the future vulnerability to opioid addiction: Involvement of lateral paragigantocellularis neurons. Life Sci 2019; 234:116784. [DOI: 10.1016/j.lfs.2019.116784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/11/2019] [Accepted: 08/20/2019] [Indexed: 02/03/2023]
|
10
|
Fartootzadeh R, Azizi F, Alaei H, Reisi P. Orexin type-2 receptor blockade prevents the nicotine-induced excitation of nucleus accumbens core neurons in rats: An electrophysiological perspective. Pharmacol Rep 2019; 71:361-366. [PMID: 30831442 DOI: 10.1016/j.pharep.2018.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/11/2018] [Accepted: 12/29/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND The nucleus accumbens core (NAcc) expresses both orexin and nicotinic acetylcholine receptors (nAChRs). Orexin is among important neurotransmitters, which regulates addictive properties of drugs of abuse including nicotine. The role of orexin-2 receptor (OX2R) in the regulation of NAcc neural activity in response to nicotine has not yet been studied. Hence, in this study, we examined whether the OX2R antagonist (TCS-OX2-29) can adjust the effects of nicotine on electrical activity of NAcc neurons, in urethane-anesthetized rats, using the single unit recording. METHODS Neuronal firing of NAcc was recorded for 15 min, then TCS-OX2-29 (OX2R-antagonist; 1, 3 and 10 ng/rat) or DMSO were microinjected into NAcc, just 5 min before subcutaneous (sc) administration of nicotine (0.5 mg/kg) or saline. The spontaneous firing activity was recorded for 70 min, after nicotine injection. RESULTS The results demonstrated that nicotine significantly excites the NAcc neurons and interestingly, the administration of TCS-OX2-29 (3 and 10 ng/rat) into the NAcc, inhibited nicotine-induced increases of NAcc neuronal responses. Furthermore, administration of TCS-OX2-29 (10 ng/rat), just 5 min before sc administration of saline instead of nicotine, did not significantly alter the neuronal responses, compared to the saline-control group. CONCLUSION Our results showed that, although OX2R blockade alone did not affect neuronal activity in the NAcc, it was able to prevent the exciting effects of nicotine on NAcc neuronal activity. Therefore, we proposed that orexin has a potential modulator effect, in response to nicotine.
Collapse
Affiliation(s)
- Reza Fartootzadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Azizi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Iyer M, Essner RA, Klingenberg B, Carter ME. Identification of discrete, intermingled hypocretin neuronal populations. J Comp Neurol 2018; 526:2937-2954. [PMID: 30019757 DOI: 10.1002/cne.24490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 01/04/2023]
Abstract
Neurons in the lateral hypothalamic area that express hypocretin (Hcrt) neuropeptides help regulate many behaviors including wakefulness and reward seeking. These neurons project throughout the brain, including to neural populations that regulate wakefulness, such as the locus coeruleus (LC) and tuberomammilary nucleus (TMN), as well as to populations that regulate reward, such as the nucleus accumbens (NAc) and ventral tegmental area (VTA). To address the roles of Hcrt neurons in seemingly disparate behaviors, it has been proposed that Hcrt neurons can be anatomically subdivided into at least two distinct subpopulations: a "medial group" that projects to the LC and TMN, and a "lateral group" that projects to the NAc and VTA. Here, we use a dual retrograde tracer strategy to test the hypotheses that Hcrt neurons can be classified based on their downstream projections and medial/lateral location within the hypothalamus. We found that individual Hcrt neurons were significantly more likely to project to both the LC and TMN or to both the VTA and NAc than would be predicted by chance. In contrast, we found that Hcrt neurons that projected to the LC or TMN were mostly distinct from Hcrt neurons that projected to the VTA or NAc. Interestingly, these two populations of Hcrt neurons are intermingled within the hypothalamus and cannot be classified into medial or lateral groups. These results suggest that Hcrt neurons can be distinguished based on their downstream projections but are intermingled within the hypothalamus.
Collapse
Affiliation(s)
- Manasi Iyer
- Department of Biology, Williams College, Williamstown, Massachusetts.,Program in Neuroscience, Williams College, Williamstown, Massachusetts
| | - Rachel A Essner
- Department of Biology, Williams College, Williamstown, Massachusetts.,Program in Neuroscience, Williams College, Williamstown, Massachusetts
| | - Bernhard Klingenberg
- Department of Mathematics and Statistics, Williams College, Williamstown, Massachusetts
| | - Matthew E Carter
- Department of Biology, Williams College, Williamstown, Massachusetts.,Program in Neuroscience, Williams College, Williamstown, Massachusetts
| |
Collapse
|
12
|
Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2018; 1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Orexin-expressing neurons are located exclusively in the lateral hypothalamic and perifornical areas and exhibit complex connectivity. The intricate wiring pattern is evident from a diverse function for orexin neurons in regulating many physiological processes and behaviors including sleep, metabolism, circadian cycles, anxiety, and reward. Nevertheless, the precise synaptic and circuitry-level mechanisms mediating these processes remain enigmatic, partially due to the wide spread connectivity of the orexin system, complex neurochemistry of orexin neurons, and previous lack of suitable tools to address its complexity. Here we summarize recent advances, focusing on synaptic regulatory mechanisms in the orexin neurocircuitry, including both the synaptic inputs to orexin neurons as well as their downstream targets in the brain. A clear and detailed elucidation of these mechanisms will likely provide novel insight into how dysfunction in orexin-mediated signaling leads to human disease and may ultimately be treated with more precise strategies.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - Vincent R Mirabella
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
13
|
Abstract
Purpose of Review The aim of this review was to summarize collected data on the role of orexin and orexin neurons in the control of sleep and blood pressure. Recent Findings Although orexins (hypocretins) have been known for only 20 years, an impressive amount of data is now available regarding their physiological role. Hypothalamic orexin neurons are responsible for the control of food intake and energy expenditure, motivation, circadian rhythm of sleep and wake, memory, cognitive functions, and the cardiovascular system. Multiple studies show that orexinergic stimulation results in increased blood pressure and heart rate and that this effect may be efficiently attenuated by orexinergic antagonism. Increased activity of orexinergic neurons is also observed in animal models of hypertension. Summary Pharmacological intervention in the orexinergic system is now one of the therapeutic possibilities in insomnia. Although the role of orexin in the control of blood pressure is well described, we are still lacking clinical evidence that this is a possibility for a new approach in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-235, Gdansk, Poland.
| | - Jacek Szypenbejl
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-235, Gdansk, Poland
| | - Eemil Partinen
- Department of Neurology, University of Helsinki, Helsinki, Finland
- Vitalmed Helsinki Sleep Clinic, Helsinki, Finland
| |
Collapse
|
14
|
Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018; 11:220. [PMID: 30002617 PMCID: PMC6031739 DOI: 10.3389/fnmol.2018.00220] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022] Open
Abstract
Orexins, also known as hypocretins, are two neuropeptides secreted from orexin-containing neurons, mainly in the lateral hypothalamus (LH). Orexins orchestrate their effects by binding and activating two G-protein–coupled receptors (GPCRs), orexin receptor type 1 (OX1R) and type 2 (OX2R). Orexin/receptor pathways play vital regulatory roles in many physiological processes, especially feeding behavior, sleep–wake rhythm, reward and addiction and energy balance. Furthermore several reports showed that orexin/receptor pathways are involved in pathological processes of neurological diseases such as narcolepsy, depression, ischemic stroke, drug addiction and Alzheimer’s disease (AD). This review article summarizes the expression patterns, physiological functions and potential molecular mechanisms of the orexin/receptor system in neurological diseases, providing an overall framework for considering these pathways from the standpoints of basic research and clinical treatment of neurological diseases.
Collapse
Affiliation(s)
- Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Yanyou Pan
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Chao Xu
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Baohua Cheng
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bo Bai
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
15
|
Dehkordi O, Rose JE, Millis RM, Dalivand MM, Johnson SM. GABAergic Neurons as Putative Neurochemical Substrate Mediating Aversive Effects of Nicotine. ACTA ACUST UNITED AC 2018; 6. [PMID: 30009210 PMCID: PMC6042868 DOI: 10.4172/2329-6488.1000312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nicotine, the main addictive component of tobacco smoke, has both rewarding and aversive properties. Recent studies have suggested that GABAergic neurons, one of the main neurochemical components of the reward-addiction circuitry, may also play a role in the aversive responses to nicotine. In the present study of transgenic mice expressing Green Fluorescent Protein (GFP) in Glutamate Decarboxylase 67 (GAD67) neurons, we hypothesized that a subpopulation of GABAergic neurons in the Ventral Tegmental Area (VTA) are the targets of aversive doses of nicotine in the CNS. We tested this hypothesis using c-Fos immunohistochemical techniques to identify GAD67-GFP positive cells within the VTA, that are activated by a single intraperitoneal (i.p.) injection of a low (40 ug/kg) or a high (2 mg/kg) dose of nicotine. We also assessed the anatomical location of GAD67-GFP positive cells with respect to tyrosine hydroxylase (TH) Immunoreactive (IR) dopaminergic cells in VTA. Consistent with our previous studies low- and high-dose nicotine both induced c-Fos activation of various intensities at multiple sites in VTA. Double labeling of c-Fos activated cells with GAD67-GFP positive cells identified a subpopulation of GABAergic neurons in Substantia Nigra Compact part Medial tier (SNCM) that were activated by high- but not by low-dose nicotine. Of 217 GABAergic cells counted at this site, 48.9% exhibited nicotine induced c-fos immunoreactivity. GAD67-GFP positive cells in other regions of VTA were not activated by the nicotine doses tested. Double labeling of GAD67-GFP positive cells with TH IR cells showed that the GABAergic neurons that were activated by high-dose nicotine were located in close proximity to the dopaminergic neurons of substantia nigra compact part and VTA. Dose-dependent activation of GAD67-GFP positive neurons in SNCM, by a nicotine dose known to produce aversive responses, implies that GABAergic neurons at these sites may be an important component of the nicotine aversive circuitry.
Collapse
Affiliation(s)
- Ozra Dehkordi
- Department of Neurology, Howard University Hospital Washington D.C. 20060, United States.,Department of Physiology & Biophysics, Howard University College of Medicine Washington, D.C. 20059, United States
| | - Jed E Rose
- Department of Psychiatry, Duke University Medical Center, Durham, NC 27705, United States
| | - Richard M Millis
- Department of Medical Physiology, American University of Antigua College of Medicine, Antigua & Barbuda, West Indies
| | | | - Shereé M Johnson
- Department of Physiology & Biophysics, Howard University College of Medicine Washington, D.C. 20059, United States
| |
Collapse
|
16
|
Olivo G, Latini F, Wiemerslage L, Larsson EM, Schiöth HB. Disruption of Accumbens and Thalamic White Matter Connectivity Revealed by Diffusion Tensor Tractography in Young Men with Genetic Risk for Obesity. Front Hum Neurosci 2018. [PMID: 29520227 PMCID: PMC5826967 DOI: 10.3389/fnhum.2018.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Neurovascular coupling is associated with white matter (WM) structural integrity, and it is regulated by specific subtypes of dopaminergic receptors. An altered activity of such receptors, highly expressed in reward-related regions, has been reported in carriers of obesity-risk alleles of the fat mass and obesity associated (FTO) gene. Among the reward-related regions, the thalamus and the nucleus accumbens are particularly vulnerable to blood pressure dysregulation due to their peculiar anatomo-vascular characteristics, and have been consistently reported to be altered in early-stage obesity. We have thus hypothesized that a disruption in thalamus and nucleus accumbens WM microstructure, possibly on neurovascular basis, could potentially be a predisposing factor underlying the enhanced risk for obesity in the risk-allele carriers. Methods: We have tested WM integrity in 21 male participants genotyped on the FTO risk single nucleotide polymorphisms (SNP) rs9939609, through a deterministic tractography analysis. Only homozygous participants (9 AA, 12 TT) were included. 11 tracts were selected and categorized as following according to our hypothesis: “risk tracts”, “obesity-associated tracts”, and a control tract (forcpes major). We investigated whether an association existed between genotype, body mass index (BMI) and WM microstructural integrity in the “risk-tracts” (anterior thalamic radiation and accumbofrontal fasciculus) compared to other tracts. Moreover, we explored whether WM diffusivity could be related to specific personality traits in terms of punishment and reward sensitivity, as measure by the BIS/BAS questionnaire. Results: An effect of the genotype and an interaction effect of genotype and BMI were detected on the fractional anisotropy (FA) of the “risk tracts”. Correlations between WM diffusivity parameters and measures of punishment and reward sensitivity were also detected in many WM tracts of both networks. Conclusions: A disruption of the structural connectivity from the nucleus accumbens and the thalamus might occur early in carriers of the FTO AA risk-allele, and possibly act as a predisposing factor to the development of obesity.
Collapse
Affiliation(s)
- Gaia Olivo
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francesco Latini
- Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lyle Wiemerslage
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- Neuroradiology, Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|