3
|
Nogi M, Satoh K, Sunamura S, Kikuchi N, Satoh T, Kurosawa R, Omura J, Elias-Al-Mamun M, Abdul Hai Siddique M, Numano K, Kudo S, Miyata S, Akiyama M, Kumagai K, Kawamoto S, Saiki Y, Shimokawa H. Small GTP-Binding Protein GDP Dissociation Stimulator Prevents Thoracic Aortic Aneurysm Formation and Rupture by Phenotypic Preservation of Aortic Smooth Muscle Cells. Circulation 2019; 138:2413-2433. [PMID: 29921611 DOI: 10.1161/circulationaha.118.035648] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) and dissection are fatal diseases that cause aortic rupture and sudden death. The small GTP-binding protein GDP dissociation stimulator (SmgGDS) is a crucial mediator of the pleiotropic effects of statins. Previous studies revealed that reduced force generation in aortic smooth muscle cells (AoSMCs) causes TAA and thoracic aortic dissection. METHODS To examine the role of SmgGDS in TAA formation, we used an angiotensin II (1000 ng·min-1·kg-1, 4 weeks)-induced TAA model. RESULTS We found that 33% of Apoe-/- SmgGDS+/- mice died suddenly as a result of TAA rupture, whereas there was no TAA rupture in Apoe-/- control mice. In contrast, there was no significant difference in the ratio of abdominal aortic aneurysm rupture between the 2 genotypes. We performed ultrasound imaging every week to follow up the serial changes in aortic diameters. The diameter of the ascending aorta progressively increased in Apoe-/- SmgGDS+/- mice compared with Apoe-/- mice, whereas that of the abdominal aorta remained comparable between the 2 genotypes. Histological analysis of Apoe-/- SmgGDS+/- mice showed dissections of major thoracic aorta in the early phase of angiotensin II infusion (day 3 to 5) and more severe elastin degradation compared with Apoe-/- mice. Mechanistically, Apoe-/- SmgGDS+/- mice showed significantly higher levels of oxidative stress, matrix metalloproteinases, and inflammatory cell migration in the ascending aorta compared with Apoe-/- mice. For mechanistic analyses, we primary cultured AoSMCs from the 2 genotypes. After angiotensin II (100 nmol/L) treatment for 24 hours, Apoe-/- SmgGDS+/- AoSMCs showed significantly increased matrix metalloproteinase activity and oxidative stress levels compared with Apoe-/- AoSMCs. In addition, SmgGDS deficiency increased cytokines/chemokines and growth factors in AoSMCs. Moreover, expressions of fibrillin-1 ( FBN1), α-smooth muscle actin ( ACTA2), myosin-11 ( MYH11), MYLLK, and PRKG1, which are force generation genes, were significantly reduced in Apoe-/- SmgGDS+/- AoSMCs compared with Apoe-/- AoSMCs. A similar tendency was noted in AoSMCs from patients with TAA compared with those from control subjects. Finally, local delivery of the SmgGDS gene construct reversed the dilation of the ascending aorta in Apoe-/- SmgGDS+/- mice. CONCLUSIONS These results suggest that SmgGDS is a novel therapeutic target for the prevention and treatment of TAA.
Collapse
Affiliation(s)
- Masamichi Nogi
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimio Satoh
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichiro Sunamura
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhiro Kikuchi
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taijyu Satoh
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Kurosawa
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junichi Omura
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Md Elias-Al-Mamun
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mohammad Abdul Hai Siddique
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Numano
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Kudo
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Miyata
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatoshi Akiyama
- Cardiovascular Surgery (M.A., K.K., S. Kawamoto, Y.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiichiro Kumagai
- Cardiovascular Surgery (M.A., K.K., S. Kawamoto, Y.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunsuke Kawamoto
- Cardiovascular Surgery (M.A., K.K., S. Kawamoto, Y.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikatsu Saiki
- Cardiovascular Surgery (M.A., K.K., S. Kawamoto, Y.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Chen MK, Du Y, Sun L, Hsu JL, Wang YH, Gao Y, Huang J, Hung MC. H 2O 2 induces nuclear transport of the receptor tyrosine kinase c-MET in breast cancer cells via a membrane-bound retrograde trafficking mechanism. J Biol Chem 2019; 294:8516-8528. [PMID: 30962283 DOI: 10.1074/jbc.ra118.005953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/27/2019] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are cellular by-products produced from metabolism and also anticancer agents, such as ionizing irradiation and chemotherapy drugs. The ROS H2O2 has high rates of production in cancer cells because of their rapid proliferation. ROS oxidize DNA, protein, and lipids, causing oxidative stress in cancer cells and making them vulnerable to other stresses. Therefore, cancer cell survival relies on maintaining ROS-induced stress at tolerable levels. Hepatocyte growth factor receptor (c-MET) is a receptor tyrosine kinase overexpressed in malignant cancer types, including breast cancer. Full-length c-MET triggers a signal transduction cascade from the plasma membrane that, through downstream signaling proteins, up-regulates cell proliferation and migration. Recently, c-MET was shown to interact and phosphorylate poly(ADP-ribose) polymerase 1 in the nucleus and to induce poly(ADP-ribose) polymerase inhibitor resistance. However, it remains unclear how c-MET moves from the cell membrane to the nucleus. Here, we demonstrate that H2O2 induces retrograde transport of membrane-associated full-length c-MET into the nucleus of human MCF10A and MCF12A or primary breast cancer cells. We further show that knocking down either coatomer protein complex subunit γ1 (COPG1) or Sec61 translocon β subunit (SEC61β) attenuates the accumulation of full-length nuclear c-MET. However, a c-MET kinase inhibitor did not block nuclear c-MET transport. Moreover, nuclear c-MET interacted with KU proteins in breast cancer cells, suggesting a role of full-length nuclear c-MET in ROS-induced DNA damage repair. We conclude that a membrane-bound retrograde vesicle transport mechanism facilitates membrane-to-nucleus transport of c-MET in breast cancer cells.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yi Du
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Linlin Sun
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yu-Han Wang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 402, Taiwan
| | - Yuan Gao
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiaxing Huang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mien-Chie Hung
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 402, Taiwan; Center of Molecular Medicine, China Medical University, Taichung 402, Taiwan.
| |
Collapse
|