1
|
Kriener K, Sinclair K, Robison G, Lala R, Finley H, Richardson WJ, Midwinter MJ. Investigating the Reliability of Shore Hardness in the Design of Procedural Task Trainers. Bioengineering (Basel) 2025; 12:41. [PMID: 39851315 PMCID: PMC11762807 DOI: 10.3390/bioengineering12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
The haptic fidelity of biomimetic materials used in the design of procedural task trainers is of growing interest to the medical community. Shore hardness has been proposed as a method for assessing tissue biomechanics and replicating the results as a way to increase the fidelity of biomimetics to tissues. However, there is limited research on the reliability of human tissue measurements using Shore scales. Using human tissues (internal carotid artery [ICA], internal jugular vein [IJV], vagus nerve [VN], sternocleidomastoid muscle [SCM], and overlying skin [skin]), this study evaluates (1) the inter-rater reliability of Shore hardness measurements, (2) examines the relationship between tissue thickness and hardness, and (3) investigates the impact of a measurement method (freehand vs. durometer stand). Preserved tissues, specifically a liver and components of the anterior triangle of the neck, were extracted from cadavers and measured by three independent raters using digital Shore durometers. Testing revealed that although Shore A demonstrated better inter-rater reliability compared to Shore OO, both scales exhibited poor-to-moderate reliability. ICC values for Shore A ranged from 0.21 to 0.80 and were statistically significant (p < 0.05) for all tissue types except the SCM. In contrast, Shore OO demonstrated poorer reliability, with ICC values ranging from 0.00 to 0.41. The ICC values were only significant for the ICA, IJV, and VN (p < 0.05). An inverse correlation between tissue thickness and hardness on the Shore A scale was found for all tissues and was significant (p < 0.05) for ICA, VN, and skin. There were mixed results for the correlation between tissue thickness and hardness on the Shore OO scale (-0.06-0.92), and only IJV had a statistically significant correlation (p < 0.05). Finally, the median hardness values on the Shore OO scale were significantly greater when measured using a durometer stand vs. freehand (Z = 4.78, p < 0.05). In summary, when using appropriate standards and addressing the challenges of tissue thickness and variability in freehand measures, Shore hardness has the potential to be used by clinicians in the clinical setting and in the selection of biomimetic materials in the design of task trainers.
Collapse
Affiliation(s)
- Kyleigh Kriener
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (K.S.); (W.J.R.)
- Ochsner Clinical School, 1401 Jefferson Hwy, Jefferson, LA 70121, USA
| | - Kate Sinclair
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (K.S.); (W.J.R.)
| | - Grant Robison
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (K.S.); (W.J.R.)
- Ochsner Clinical School, 1401 Jefferson Hwy, Jefferson, LA 70121, USA
| | - Raushan Lala
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (K.S.); (W.J.R.)
| | - Hayley Finley
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (K.S.); (W.J.R.)
| | - William Jase Richardson
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (K.S.); (W.J.R.)
| | - Mark J. Midwinter
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (K.S.); (W.J.R.)
| |
Collapse
|
2
|
Valls-Esteve A, Tejo-Otero A, Adell-Gómez N, Lustig-Gainza P, Fenollosa-Artés F, Buj-Corral I, Rubio-Palau J, Munuera J, Krauel L. Advanced Strategies for the Fabrication of Multi-Material Anatomical Models of Complex Pediatric Oncologic Cases. Bioengineering (Basel) 2023; 11:31. [PMID: 38247908 PMCID: PMC10813349 DOI: 10.3390/bioengineering11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
The printing and manufacturing of anatomical 3D models has gained popularity in complex surgical cases for surgical planning, simulation and training, the evaluation of anatomical relations, medical device testing and patient-professional communication. 3D models provide the haptic feedback that Virtual or Augmented Reality (VR/AR) cannot provide. However, there are many technologies and strategies for the production of 3D models. Therefore, the aim of the present study is to show and compare eight different strategies for the manufacture of surgical planning and training prototypes. The eight strategies for creating complex abdominal oncological anatomical models, based on eight common pediatric oncological cases, were developed using four common technologies (stereolithography (SLA), selectie laser sinterning (SLS), fused filament fabrication (FFF) and material jetting (MJ)) along with indirect and hybrid 3D printing methods. Nine materials were selected for their properties, with the final models assessed for application suitability, production time, viscoelastic mechanical properties (shore hardness and elastic modulus) and cost. The manufacturing and post-processing of each strategy is assessed, with times ranging from 12 h (FFF) to 61 h (hybridization of FFF and SLS), as labor times differ significantly. Cost per model variation is also significant, ranging from EUR 80 (FFF) to EUR 600 (MJ). The main limitation is the mimicry of physiological properties. Viscoelastic properties and the combination of materials, colors and textures are also substantially different according to the strategy and the intended use. It was concluded that MJ is the best overall option, although its use in hospitals is limited due to its cost. Consequently, indirect 3D printing could be a solid and cheaper alternative.
Collapse
Affiliation(s)
- Arnau Valls-Esteve
- Innovation Department, SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Aitor Tejo-Otero
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
| | - Núria Adell-Gómez
- Innovation Department, SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Pamela Lustig-Gainza
- Innovation Department, SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Felip Fenollosa-Artés
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Irene Buj-Corral
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Josep Rubio-Palau
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology, Pediatric Surgery Department, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain
- Maxillofacial Unit, Department of Pediatric Surgery, Pediatric Surgical Oncology, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain
| | - Josep Munuera
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, 08027 Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau—Centre CERCA, 08041 Barcelona, Spain
| | - Lucas Krauel
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology, Pediatric Surgery Department, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain
| |
Collapse
|
3
|
Lee N, Cha S, Kim J, Lee Y, Kang E, Kim HJ, Hong SH, Rhu J, Choi GS, Joh JW. Ventilator support in the pretransplant period predisposes early graft failure after deceased donor liver transplantation. Ann Surg Treat Res 2023; 105:141-147. [PMID: 37693286 PMCID: PMC10485352 DOI: 10.4174/astr.2023.105.3.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose Deceased donor liver transplantation (DDLT) recipients in Korea are generally sicker due to an increasing organ shortage. In the present study, the risk factors for early 30-day liver graft failure after DDLT were identified. Methods From August 2017 to February 2021, 265 adult DDLTs were performed. The characteristics of patients with and without 30-day graft failure were compared. Results Liver graft failure occurred in 11 patients (17.7%) after DDLT. Baseline and perioperative characteristics of donors and recipients were not statistically significantly different between the 2 groups. The cumulative graft and overall survival rates at 6 months were 83.9% and 88.7%, respectively. Multivariate analysis showed ventilator support in the pretransplant period was a predisposing factor for 30-day graft failure after DDLT. Conclusion Present study indicates that cautious decision is required when allocating DDLT in critically ill patients on mechanical ventilatory support.
Collapse
Affiliation(s)
- Nuri Lee
- Department of Surgery, Veterans Health Service Medical Center, Seoul, Korea
| | - Sora Cha
- Organ Transplant Center, Samsung Medical Center, Seoul, Korea
| | - Jongman Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yunmi Lee
- Organ Transplant Center, Samsung Medical Center, Seoul, Korea
| | - Enjin Kang
- Organ Transplant Center, Samsung Medical Center, Seoul, Korea
| | - Hyun Jung Kim
- Organ Transplant Center, Samsung Medical Center, Seoul, Korea
| | - Seung Hui Hong
- Organ Transplant Center, Samsung Medical Center, Seoul, Korea
| | - Jinsoo Rhu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gyu-Seong Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Won Joh
- Department of Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
4
|
Valls-Esteve A, Lustig-Gainza P, Adell-Gomez N, Tejo-Otero A, Englí-Rueda M, Julian-Alvarez E, Navarro-Sureda O, Fenollosa-Artés F, Rubio-Palau J, Krauel L, Munuera J. A state-of-the-art guide about the effects of sterilization processes on 3D-printed materials for surgical planning and medical applications: A comparative study. Int J Bioprint 2023; 9:756. [PMID: 37555083 PMCID: PMC10406103 DOI: 10.18063/ijb.756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/01/2023] [Indexed: 08/10/2023] Open
Abstract
Surgeons use different medical devices in the surgery, such as patient-specific anatomical models, cutting and positioning guides, or implants. These devices must be sterilized before being used in the operation room. There are many sterilization processes available, with autoclave, hydrogen peroxide, and ethylene oxide being the most common in hospital settings. Each method has both advantages and disadvantages in terms of mechanics, chemical interaction, and post-treatment accuracy. The aim of the present study is to evaluate the dimensional and mechanical effect of the most commonly used sterilization techniques available in clinical settings, i.e., Autoclave 121, Autoclave 134, and hydrogen peroxide (HPO), on 11 of the most used 3D-printed materials fabricated using additive manufacturing technologies. The results showed that the temperature (depending on the sterilization method) and the exposure time to that temperature influence not only the mechanical behavior but also the original dimensioning planned on the 3D model. Therefore, HPO is a better overall option for most of the materials evaluated. Finally, based on the results of the study, a recommendation guide on sterilization methods per material, technology, and clinical application is presented.
Collapse
Affiliation(s)
- Arnau Valls-Esteve
- Innovation Department, Hospital Sant Joan de Déu,
Esplugues de Llobregat, Spain
- Medicina i Recerca Translacional, Facultat de Medicina i
Ciències de la Salut, Universitat de Barcelona, Spain
- 3D for Health Unit (3D4H), Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
| | | | - Nuria Adell-Gomez
- Innovation Department, Hospital Sant Joan de Déu,
Esplugues de Llobregat, Spain
- 3D for Health Unit (3D4H), Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
| | - Aitor Tejo-Otero
- Centre CIM, Universitat Politècnica de Catalunya
(CIM UPC), Barcelona, Spain
| | - Marti Englí-Rueda
- Innovation Department, Hospital Sant Joan de Déu,
Esplugues de Llobregat, Spain
- 3D for Health Unit (3D4H), Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
| | | | - Osmeli Navarro-Sureda
- Sterilization Department, Hospital Sant Joan de Déu,
Universitat de Barcelona, Spain
| | - Felip Fenollosa-Artés
- Centre CIM, Universitat Politècnica de Catalunya
(CIM UPC), Barcelona, Spain
- Department of Mechanical Engineering, School of Engineering
of Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Barcelona,
Spain
| | - Josep Rubio-Palau
- Medicina i Recerca Translacional, Facultat de Medicina i
Ciències de la Salut, Universitat de Barcelona, Spain
- 3D for Health Unit (3D4H), Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
- Department of Pediatric Surgery, Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
- Maxillofacial Unit, Department of Pediatric Surgery,
Hospital Sant Joan de Déu, Universitat de Barcelona, Spain
| | - Lucas Krauel
- Medicina i Recerca Translacional, Facultat de Medicina i
Ciències de la Salut, Universitat de Barcelona, Spain
- 3D for Health Unit (3D4H), Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
- Department of Pediatric Surgery, Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
| | - Josep Munuera
- Medicina i Recerca Translacional, Facultat de Medicina i
Ciències de la Salut, Universitat de Barcelona, Spain
- 3D for Health Unit (3D4H), Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
- Department of Diagnostic Imaging, Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
| |
Collapse
|
5
|
Valls-Esteve A, Tejo-Otero A, Lustig-Gainza P, Buj-Corral I, Fenollosa-Artés F, Rubio-Palau J, Barber-Martinez de la Torre I, Munuera J, Fondevila C, Krauel L. Patient-Specific 3D Printed Soft Models for Liver Surgical Planning and Hands-On Training. Gels 2023; 9:gels9040339. [PMID: 37102951 PMCID: PMC10138006 DOI: 10.3390/gels9040339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Background: Pre-surgical simulation-based training with three-dimensional (3D) models has been intensively developed in complex surgeries in recent years. This is also the case in liver surgery, although with fewer reported examples. The simulation-based training with 3D models represents an alternative to current surgical simulation methods based on animal or ex vivo models or virtual reality (VR), showing reported advantages, which makes the development of realistic 3D-printed models an option. This work presents an innovative, low-cost approach for producing patient-specific 3D anatomical models for hands-on simulation and training. Methods: The article reports three paediatric cases presenting complex liver tumours that were transferred to a major paediatric referral centre for treatment: hepatoblastoma, hepatic hamartoma and biliary tract rhabdomyosarcoma. The complete process of the additively manufactured liver tumour simulators is described, and the different steps for the correct development of each case are explained: (1) medical image acquisition; (2) segmentation; (3) 3D printing; (4) quality control/validation; and (5) cost. A digital workflow for liver cancer surgical planning is proposed. Results: Three hepatic surgeries were planned, with 3D simulators built using 3D printing and silicone moulding techniques. The 3D physical models showed highly accurate replications of the actual condition. Additionally, they proved to be more cost-effective in comparison with other models. Conclusions: It is demonstrated that it is possible to manufacture accurate and cost-effective 3D-printed soft surgical planning simulators for treating liver cancer. The 3D models allowed for proper pre-surgical planning and simulation training in the three cases reported, making it a valuable aid for surgeons.
Collapse
Affiliation(s)
- Arnau Valls-Esteve
- Innovation Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Aitor Tejo-Otero
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
| | - Pamela Lustig-Gainza
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
| | - Irene Buj-Corral
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Felip Fenollosa-Artés
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Josep Rubio-Palau
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology Unit, Pediatric Surgery Department, Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Maxillofacial Unit, Department of Pediatric Surgery, Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | | | - Josep Munuera
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Department of Diagnostic Imaging, Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Constantino Fondevila
- Hepatopancreatobiliary Surgery and Transplantation, General and Digestive Surgery, Metabolic and Digestive Diseases Institute (ICMDM), Hospital Clínic, CIBERehd, IDIBAPS, University of Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Lucas Krauel
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology Unit, Pediatric Surgery Department, Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
6
|
Ge C, Cretu E. A Polymeric Piezoelectric Tactile Sensor Fabricated by 3D Printing and Laser Micromachining for Hardness Differentiation during Palpation. MICROMACHINES 2022; 13:2164. [PMID: 36557463 PMCID: PMC9782577 DOI: 10.3390/mi13122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Tactile sensors are important bionic microelectromechanical systems that are used to implement an artificial sense of touch for medical electronics. Compared with the natural sense of touch, this artificial sense of touch provides more quantitative information, augmenting the objective aspects of several medical operations, such as palpation-based diagnosis. Tactile sensors can be effectively used for hardness differentiation during the palpation process. Since palpation requires direct physical contact with patients, medical safety concerns are alleviated if the sensors used can be made disposable. In this respect, the low-cost, rapid fabrication of tactile sensors based on polymers is a possible alternative. The present work uses the 3D printing of elastic resins and the laser micromachining of piezoelectric polymeric films to make a low-cost tactile sensor for hardness differentiation through palpation. The fabricated tactile sensor has a sensitivity of 1.52 V/mm to mechanical deformation at the vertical direction, a sensitivity of 11.72 mV/HA in sensing material hardness with a pressing depth of 500 µm for palpation, and a validated capability to detect rigid objects buried in a soft tissue phantom. Its performance is comparable with existing piezoelectric tactile sensors for similar applications. In addition, the tactile sensor has the additional advantage of providing a simpler microfabrication process.
Collapse
|
7
|
Arm R, Shahidi A, Clarke C, Alabraba E. Synthesis and characterisation of a cancerous liver for presurgical planning and training applications. BMJ Open Gastroenterol 2022; 9:e000909. [PMID: 35853677 PMCID: PMC9301799 DOI: 10.1136/bmjgast-2022-000909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Oncology surgeons use animals and cadavers in training because of a lack of alternatives. The aim of this work was to develop a design methodology to create synthetic liver models familiar to surgeons, and to help plan, teach and rehearse patient-specific cancerous liver resection surgery. DESIGN Synthetic gels were selected and processed to recreate accurate anthropomorphic qualities. Organic and synthetic materials were mechanically tested with the same equipment and standards to determine physical properties like hardness, elastic modulus and viscoelasticity. Collected data were compared with published data on the human liver. Patient-specific CT data were segmented and reconstructed and additive manufactured models were made of the liver vasculature, parenchyma and lesion. Using toolmaking and dissolvable scaffolds, models were transformed into tactile duplicates that could mimic liver tissue behaviour. RESULTS Porcine liver tissue hardness was found to be 23 H00 (±0.1) and synthetic liver was 10 H00 (±2.3), while human parenchyma was reported as 15.06 H00 (±2.64). Average elastic Young's modulus of human liver was reported as 0.012 MPa, and synthetic liver was 0.012 MPa, but warmed porcine parenchyma was 0.28 MPa. The final liver model demonstrated a time-dependant viscoelastic response to cyclic loading. CONCLUSION Synthetic liver was better than porcine liver at recreating the mechanical properties of living human liver. Warmed porcine liver was more brittle, less extensible and stiffer than both human and synthetic tissues. Qualitative surgical assessment of the model by a consultant liver surgeon showed vasculature was explorable and that bimanual palpation, organ delivery, transposition and organ slumping were analogous to human liver behaviour.
Collapse
Affiliation(s)
- Richard Arm
- School of Art and Design, Nottingham Trent University City Campus, Nottingham, UK
| | - Arash Shahidi
- School of Art and Design, Nottingham Trent University City Campus, Nottingham, UK
| | - Christopher Clarke
- Department of Radiology, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Edward Alabraba
- Department of Hepatobiliary and Pancreatic Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
8
|
Bauer DF, Rosenkranz J, Golla AK, Tönnes C, Hermann I, Russ T, Kabelitz G, Rothfuss AJ, Schad LR, Stallkamp JL, Zöllner FG. Development of an abdominal phantom for the validation of an oligometastatic disease diagnosis workflow. Med Phys 2022; 49:4445-4454. [PMID: 35510908 DOI: 10.1002/mp.15701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/01/2021] [Accepted: 04/14/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The liver is a common site for metastatic disease, which is a challenging and life-threatening condition with a grim prognosis and outcome. We propose a standardized workflow for the diagnosis of oligometastatic disease (OMD), as a gold standard workflow has not been established yet. The envisioned workflow comprises the acquisition of a multimodal image dataset, novel image processing techniques, and cone beam computed tomography (CBCT)-guided biopsy for subsequent molecular subtyping. By combining morphological, molecular, and functional information about the tumor, a patient-specific treatment planning is possible. We designed and manufactured an abdominal liver phantom that we used to demonstrate multimodal image acquisition, image processing, and biopsy of the OMD diagnosis workflow. METHODS The anthropomorphic abdominal phantom contains a rib cage, a portal vein, lungs, a liver with six lesions, and a hepatic vessel tree. This phantom incorporates three different lesion types with varying visibility under computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography CT (PET-CT), which reflects clinical reality. The phantom is puncturable and the size of the corpus and the organs is comparable to those of a real human abdomen. By using several modern additive manufacturing techniques, the manufacturing process is reproducible and allows to incorporate patient-specific anatomies. As a first step of the OMD diagnosis workflow, a pre-interventional CT, MRI, and PET-CT dataset of the phantom was acquired. The image information was fused using image registration and organ information was extracted via image segmentation. A CBCT-guided needle puncture experiment was performed, where all six liver lesions were punctured with coaxial biopsy needles. RESULTS Qualitative observation of the image data and quantitative evaluation using contrast-to-noise ratio (CNR) confirms that one lesion type is visible only in MRI and not CT. The other two lesion types are visible in CT and MRI. The CBCT-guided needle placement was performed for all six lesions, including those visible only in MRI and not CBCT. This was possible by successfully merging multimodal pre-interventional image data. Lungs, bones, and liver vessels serve as realistic inhibitions during needle path planning. CONCLUSIONS We have developed a reusable abdominal phantom that has been used to validate a standardized OMD diagnosis workflow. Utilizing the phantom, we have been able to show that a multimodal imaging pipeline is advantageous for a comprehensive detection of liver lesions. In a CBCT-guided needle placement experiment we have punctured lesions that are invisible in CBCT using registered pre-interventional MRI scans for needle path planning. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dominik F Bauer
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julian Rosenkranz
- Fraunhofer Institute for Manufacturing Engineering and Automation, Department of Clinical Health Technologies, Mannheim, Germany
| | - Alena-Kathrin Golla
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Tönnes
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ingo Hermann
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tom Russ
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gordian Kabelitz
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Lothar R Schad
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jan L Stallkamp
- Automation in Medicine and Biotechnology, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Soft-Tissue-Mimicking Using Hydrogels for the Development of Phantoms. Gels 2022; 8:gels8010040. [PMID: 35049575 PMCID: PMC8774477 DOI: 10.3390/gels8010040] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022] Open
Abstract
With the currently available materials and technologies it is difficult to mimic the mechanical properties of soft living tissues. Additionally, another significant problem is the lack of information about the mechanical properties of these tissues. Alternatively, the use of phantoms offers a promising solution to simulate biological bodies. For this reason, to advance in the state-of-the-art a wide range of organs (e.g., liver, heart, kidney as well as brain) and hydrogels (e.g., agarose, polyvinyl alcohol –PVA–, Phytagel –PHY– and methacrylate gelatine –GelMA–) were tested regarding their mechanical properties. For that, viscoelastic behavior, hardness, as well as a non-linear elastic mechanical response were measured. It was seen that there was a significant difference among the results for the different mentioned soft tissues. Some of them appear to be more elastic than viscous as well as being softer or harder. With all this information in mind, a correlation between the mechanical properties of the organs and the different materials was performed. The next conclusions were drawn: (1) to mimic the liver, the best material is 1% wt agarose; (2) to mimic the heart, the best material is 2% wt agarose; (3) to mimic the kidney, the best material is 4% wt GelMA; and (4) to mimic the brain, the best materials are 4% wt GelMA and 1% wt agarose. Neither PVA nor PHY was selected to mimic any of the studied tissues.
Collapse
|
10
|
Yamada H, Tanikawa M, Sakata T, Aihara N, Mase M. Usefulness of T2 Relaxation Time for Quantitative Prediction of Meningioma Consistency. World Neurosurg 2021; 157:e484-e491. [PMID: 34695610 DOI: 10.1016/j.wneu.2021.10.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Meningioma consistency is one of the most critical factors affecting the difficulty of surgery. Although many studies have attempted to predict meningioma consistency via magnetic resonance imaging findings, no definitive method has been established, because most have been based on qualitative evaluations. Therefore, the present study examined the potential of the T2 relaxation time (T2 value), a tissue-specific quantitative parameter, for assessment of meningioma consistency. METHODS Eighteen surgically treated meningiomas in 16 patients were included in the present study. Preoperatively, the T2 values of all meningiomas were calculated pixel by pixel, and a T2 value distribution map was generated. A total of 27 tumor specimens (multiple specimens were procured if heterogeneous) were taken from these meningiomas, with each localization identified intraoperatively using image guidance. The consistency of the specimens was measured with a durometer, originally a device for measuring the hardness of material such as elastic rubber, and their water content was subsequently measured using wet and dry measurements. RESULTS A significant correlation was found between the T2 values of the matched locations identified by image guidance intraoperatively and the consistency measured using the durometer (r = -0.722; P < 0.01) and the water content (r = 0.621; P = 0.01). In addition, the water content correlated significantly with the durometer consistency (r = -0.677; P < 0.01). CONCLUSIONS The T2 values could be a reliable quantitative predictor of meningioma consistency, and the T2 value distribution map, which elucidated the internal structure of the tumor in detail, could provide helpful information for surgical resection.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Motoki Tanikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.
| | - Tomohiro Sakata
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Noritaka Aihara
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
An Investigation of Regional Plantar Soft Tissue Hardness and Its Potential Correlation with Plantar Pressure Distribution in Healthy Adults. Appl Bionics Biomech 2021; 2021:5566036. [PMID: 34239603 PMCID: PMC8241530 DOI: 10.1155/2021/5566036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background The plantar soft tissue plays a critical role in absorbing shocks and attenuating excessive stresses during walking. Plantar soft tissue property and plantar pressure are critical information for footwear design and clinical assessment. The aim of this study was to investigate the relationship between plantar soft tissue hardness and plantar pressure during walking. Methods 59 healthy volunteers (27 males and 32 females, aged 20 to 82) participated in this study. The plantar surface was divided into five regions: lateral rearfoot, medial rearfoot, lateral midfoot, lateral forefoot, and medial forefoot, and the plantar tissue hardness was tested using Shore durometer in each region. Average dynamic pressures in each region were analyzed for the five regions corresponding to the hardness tests. The relationship between hardness and average dynamic pressure was analyzed in each region. Results The average hardness of the plantar soft tissue in the above five regions is as follows: lateral rearfoot (34.49 ± 6.77), medial rearfoot (34.47 ± 6.64), lateral midfoot (27.95 ± 6.13), lateral forefoot (29.72 ± 5.47), and medial forefoot (28.58 ± 4.41). Differences of hardness were observed between age groups, and hardness of plantar soft tissues in forefoot regions increased with age (P < 0.05). A negative relationship was found between plantar soft tissue hardness and pressure reduction at lateral rearfoot, medial rearfoot, and lateral midfoot (P < 0.05). Conclusion The hardness of plantar soft tissues changes with age in healthy individuals, and there is a trend of increasing hardness of the plantar soft tissue with age. The plantar soft tissue hardness increases with plantar pressure.
Collapse
|
12
|
Ju BJ, Jin M, Tian Y, Zhen X, Kong DX, Wang WL, Yan S. Model for liver hardness using two-dimensional shear wave elastography, durometer, and preoperative biomarkers. World J Gastrointest Surg 2021; 13:127-140. [PMID: 33643533 PMCID: PMC7898182 DOI: 10.4240/wjgs.v13.i2.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/27/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Post-hepatectomy liver failure (PHLF) increases morbidity and mortality after liver resection for patients with advanced liver fibrosis and cirrhosis. Preoperative liver stiffness using two-dimensional shear wave elastography (2D-SWE) is widely used to evaluate the degree of fibrosis. However, the 2D-SWE results were not accurate. A durometer measures hardness by quantifying the ability of a material to locally resist the intrusion of hard objects into its surface. However, the durometer score can only be obtained during surgery.
AIM To measure correlations among 2D-SWE, palpation by surgeons, and durometer-measured objective liver hardness and to construct a liver hardness regression model.
METHODS We enrolled 74 hepatectomy patients with liver hardness in a derivation cohort. Tactile-based liver hardness scores (0-100) were determined through palpation of the liver tissue by surgeons. Additionally, liver hardness was measured using a durometer. Correlation coefficients for durometer-measured hardness and preoperative parameters were calculated. Multiple linear regression models were constructed to select the best predictive durometer scale. Receiver operating characteristic (ROC) curves and univariate and multivariate analyses were used to calculate the best model’s prediction of PHLF and risk factors for PHLF, respectively. A separate validation cohort (n = 162) was used to evaluate the model.
RESULTS The stiffness measured using 2D-SWE and palpation scale had good linear correlation with durometer-measured hardness (Pearson rank correlation coefficient 0.704 and 0.729, respectively, P < 0.001). The best model for the durometer scale (hardness scale model) was based on stiffness, hepatitis B virus surface antigen, and albumin level and had an R2 value of 0.580. The area under the ROC for the durometer and hardness scale for PHLF prediction were 0.807 (P = 0.002) and 0.785 (P = 0.005), respectively. The optimal cutoff value of the durometer and hardness scale was 27.38 (sensitivity = 0.900, specificity = 0.660) and 27.87 (sensitivity = 0.700, specificity = 0.787), respectively. Patients with a hardness scale score of > 27.87 were at a significantly higher risk of PHLF with hazard ratios of 7.835 (P = 0.015). The model’s PHLF predictive ability was confirmed in the validation cohort.
CONCLUSION Liver stiffness assessed by 2D-SWE and palpation correlated well with durometer hardness values. The multiple linear regression model predicted durometer hardness values and PHLF.
Collapse
Affiliation(s)
- Bing-Jie Ju
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou 310009, Zhejiang Province, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
| | - Ming Jin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou 310009, Zhejiang Province, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
| | - Yang Tian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou 310009, Zhejiang Province, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
| | - Xiang Zhen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou 310009, Zhejiang Province, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
| | - De-Xing Kong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Wei-Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou 310009, Zhejiang Province, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou 310009, Zhejiang Province, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
13
|
3D printed soft surgical planning prototype for a biliary tract rhabdomyosarcoma. J Mech Behav Biomed Mater 2020; 109:103844. [PMID: 32543408 DOI: 10.1016/j.jmbbm.2020.103844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Biliary tract rhabdomyosarcoma is a soft tissue malignant musculoskeletal tumor which is located in the biliary tract. Although this tumor represents less than 1% of the total amount of childhood cancers, when localized, a >70% overall 5-year survival rate, the resection is clinically challenging and complications might exist during the biliary obstruction. Although surgery remains a mainstay, complete tumor resection is generally difficult to achieve without mutilation and severe long-term sequelae. Therefore, manufacturing multi-material 3D surgical planning prototypes of the case provides a great opportunity for surgeons to learn beforehand what they can expect. Additionally, practicing before the operation enhances the probability of success. That is why different compositions of materials have been characterized to match the mechanical properties of the liver. To do this, Dynamic Mechanical Analysis (DMA) tests and Shore hardness tests have been carried out. Amongst the material samples produced, 6%wt PVA (poly vinyl alcohol)/1%wt PHY (Phytagel)-1FT (Freeze-Thaw cycles) and 1%wt agarose appear as the best options for mimicking the liver tissue in terms of viscoelasticity. Regarding the Shore hardness, the best solution is 1%wt agarose. Additionally, a surgical planning prototype using this last material mentioned was manufactured and validated using a CT (Computed Tomography) scanner. In most of the structures the difference between the 3D model and the organ in terms of dimensions is less than 3.35 mm, which represents a low dimensional error, around 1%. On the other hand, the total manufacturing cost of the 3D physical model was €513 which is relatively low in comparison with other technologies.
Collapse
|
14
|
Quantifying tactile properties of liver tissue, silicone elastomers, and a 3D printed polymer for manufacturing realistic organ models. J Mech Behav Biomed Mater 2020; 104:103630. [DOI: 10.1016/j.jmbbm.2020.103630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/17/2023]
|
15
|
Matsumoto S, Takeuchi Y. A Prototyping of Penile Tumescence Continuous Observation Device. ADVANCED BIOMEDICAL ENGINEERING 2020. [DOI: 10.14326/abe.9.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Seiji Matsumoto
- Clinical Research Support Center, Asahikawa Medical University Hospital
| | - Yasuhito Takeuchi
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University
| |
Collapse
|
16
|
Frishman S, Kight A, Pirozzi I, Coffey MC, Daniel BL, Cutkosky MR. Enabling In-Bore MRI-Guided Biopsies With Force Feedback. IEEE TRANSACTIONS ON HAPTICS 2020; 13:159-166. [PMID: 31976906 DOI: 10.1109/toh.2020.2967375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Limited physical access to target organs of patients inside an MRI scanner is a major obstruction to real-time MRI-guided interventions. Traditional teleoperation technologies are incompatible with the MRI environment and although several solutions have been explored, a versatile system that provides high-fidelity haptic feedback and access deep inside the bore remains a challenge. We present a passive and nearly frictionless MRI-compatible hydraulic teleoperator designed for in-bore liver biopsies. We describe the design components, characterize the system transparency, and evaluate the performance with a user study in a laboratory and a clinical setting. The results demonstrate % difference between input and output forces during realistic manipulation. A user study with participants conducting mock needle biopsy tasks indicates that a remote operator performs equally well when using the device as when holding a biopsy needle directly in hand. Additionally, MRI compatibility tests show no reduction in signal-to-noise ratio in the presence of the device.
Collapse
|
17
|
Nichols CW, Brismée JM, Hooper TL, Bertrand-Grenier A, Gilbert KK, St-Pierre MO, Kapila J, Sobczak S. Glenohumeral joint capsular tissue tension loading correlates moderately with shear wave elastography: a cadaveric investigation. Ultrasonography 2019; 39:114-120. [PMID: 31786904 PMCID: PMC7065991 DOI: 10.14366/usg.19032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose The purpose of this study was to investigate changes in the mechanical properties of capsular tissue using shear wave elastography (SWE) and a durometer under various tensile loads, and to explore the reliability and correlation of SWE and durometer measurements to evaluate whether SWE technology could be used to assess tissue changes during capsule tensile loading. Methods The inferior glenohumeral joint capsule was harvested from 10 fresh human cadaveric specimens. Tensile loading was applied to the capsular tissue using 1-, 3-, 5-, and 8-kg weights. Blinded investigators measured tissue stiffness and hardness during loading using SWE and a durometer, respectively. Intraobserver reliability was established for SWE and durometer measurements using intraclass correlation coefficients (ICCs). The Pearson product-moment correlation was used to assess the associations between SWE and durometer measurements. Results The ICC3,5 for durometer measurements was 0.90 (95% confidence interval [CI], 0.79 to 0.96; P<0.001) and 0.95 (95% CI, 0.88 to 0.98; P<0.001) for SWE measurements. The Pearson correlation coefficient values for 1-, 3-, and 5-kg weights were 0.56 (P=0.095), 0.36 (P=0.313), and -0.56 (P=0.089), respectively. When the 1- and 3-kg weights were combined, the ICC3,5 was 0.72 (P<0.001), and it was 0.62 (P<0.001) when the 1-, 3-, and 5-kg weights were combined. The 8-kg measurements were severely limited due to SWE measurement saturation of the tissue samples. Conclusion This study suggests that SWE is reliable for measuring capsular tissue stiffness changes in vitro at lower loads (1 and 3 kg) and provides a baseline for the non-invasive evaluation of effects of joint loading and mobilization on capsular tissues in vivo.
Collapse
Affiliation(s)
- Charles W Nichols
- Department of Physical Therapy, School of Health Professions, University of North Texas Health Science Center, Ft. Worth, TX, USA
| | - Jean-Michel Brismée
- Department of Rehabilitation Sciences, Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Troy L Hooper
- Department of Rehabilitation Sciences, Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Antony Bertrand-Grenier
- Centre Intégré Universitaire de Santé et de Services Sociaux de la Mauricie-et-du-Centre-du-Québec (CIUSSS MCQ), TroisRivières, Québec, Canada.,Centre Hospitalier Affilié Universitaire Régional, Centre Intégré Universitaire de Santé et de Services Sociaux de la Mauricie-et-du-Centre-du-Québec (CIUSSS MCQ), Trois-Rivières, Québec, Canada.,Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Kerry K Gilbert
- Department of Rehabilitation Sciences, Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marc-Olivier St-Pierre
- Département d'Anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Jeegisha Kapila
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Stéphane Sobczak
- Département d'Anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.,Unité de Recherche en Anatomie Clinique et Fonctionnelle (URACEF), Trois-Rivires, Québec, Canada
| |
Collapse
|