1
|
Furlong MA, Paul KC, Parra KL, Fournier AJ, Ellsworth PC, Cockburn MG, Arellano AF, Bedrick EJ, Beamer PI, Ritz B. Preconception and first trimester exposure to pesticides and associations with stillbirth. Am J Epidemiol 2025; 194:44-55. [PMID: 39013781 PMCID: PMC12034837 DOI: 10.1093/aje/kwae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Associations of pesticide exposures during preconception with stillbirth have not been well explored. We linked Arizona pesticide use records with birth certificates from 2006 to 2020 and estimated associations of living within 500 m of any pyrethroid, organophosphate (OP), or carbamate pesticide applications during a 90-day preconception window or the first trimester, with stillbirth. We considered a binary measure of exposure (any exposure), as well as log-pounds and log-acres applied within 500 m, in a negative control exposure framework with log-binomial regression. We included 1 237 750 births, 2290 stillbirths, and 27 pesticides. During preconception, any exposure to pesticides was associated with stillbirth, including cyfluthrin (risk ratio [RR] = 1.97; 95% CI, 1.17-3.32); zeta-cypermethrin (RR = 1.81; 95% CI, 1.20-2.74); OPs as a class (RR = 1.60; 95% CI, 1.16-2.19); malathion (RR = 2.02; 95% CI, 1.26-3.24); carbaryl (RR = 6.39; 95% CI, 2.07-19.74); and propamocarb hydrochloride (RR = 7.72; 95% CI, 1.10-54.20). During the first trimester, fenpropathrin (RR = 4.36; 95% CI, 1.09-17.50); permethrin (RR = 1.57; 95% CI, 1.02-2.42); OPs as a class (RR = 1.50; 95% CI, 1.11-2.01); acephate (RR = 2.31; 95% CI, 1.22-4.40); and formetanate hydrochloride (RR = 7.22; 95% CI, 1.03-50.58) were associated with stillbirth. Interpretations were consistent when using continuous measures of pounds or acres of exposure. Pesticide exposures during preconception and first trimester may be associated with stillbirth. This article is part of a Special Collection on Environmental Epidemiology.
Collapse
Affiliation(s)
- Melissa A Furlong
- Department of Community, Environment, and Policy, Environmental Health Sciences, University of Arizona, Tucson, Arizona, United States
| | - Kimberly C Paul
- Department of Neurology, University of California at Los Angeles, Los Angeles, California, United States
| | - Kimberly L Parra
- Department of Epidemiology & Biostatistics, University of Arizona College of Public Health, Tucson, Arizona, United States
| | - Alfred J Fournier
- Department of Entomology, University of Arizona College of Agricultural and Life Sciences, Tucson, Arizona, United States
| | - Peter C Ellsworth
- Department of Entomology, University of Arizona College of Agricultural and Life Sciences, Tucson, Arizona, United States
| | - Myles G Cockburn
- Department of Community Medicine, University of Southern California, Los Angeles, California, United States
| | - Avelino F Arellano
- Department of Hydrology and Atmospheric Sciences, University of Arizona College of Science, Tucson, Arizona, United States
| | - Edward J Bedrick
- Department of Epidemiology & Biostatistics, University of Arizona College of Public Health, Tucson, Arizona, United States
| | - Paloma I Beamer
- Department of Community, Environment, and Policy, Environmental Health Sciences, University of Arizona, Tucson, Arizona, United States
| | - Beate Ritz
- Department of Epidemiology, University of California at Los Angeles, Los Angeles, California, United States
| |
Collapse
|
2
|
Huang J, Hu L, Yang J. Dietary zinc intake and body mass index as modifiers of the association between household pesticide exposure and infertility among US women: a population-level study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20327-20336. [PMID: 36251185 PMCID: PMC9574790 DOI: 10.1007/s11356-022-23629-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Clinical studies on the relationship between pesticide exposure at home and infertility in the general population are scarce. Whether the antioxidant nutrients or other health-related factors affect the pesticide-infertility relationship remains unknown. This nationwide study screened 29,400 participants of the National Health and Nutrition Examination Surveys conducted between 2013 and 2018. The participants were subdivided according to dietary zinc intake based on the recommended dietary allowances as the low-zinc and high-zinc groups (< 8 and ≥ 8 mg/day, respectively), and according to body mass index (BMI; cut-off 28 kg/m2) as the low-BMI and high-BMI groups. Participants who were exposed to pesticides at home had an increased risk of infertility (odds ratio [OR] = 1.56, 95% confidence intervals [CI]: 1.06-2.29). The incidence of infertility differed in low-zinc and high-zinc groups (OR, 95% CI: 2.38, 1.40-4.06 vs. 0.98, 0.53-1.79, respectively), indicating an interaction between pesticide exposure and zinc intake in households (P = 0.047), which suggests that a zinc-rich diet may reduce the risk of pesticide-induced infertility. Similarly, the relationship between pesticide exposure and infertility risk differed in the low-BMI and high-BMI groups (OR, 95% CI: 0.90, 0.42-1.93 vs. 2.23, 1.39-3.58, respectively; P = 0.045), suggesting that high BMI may intensify the infertility risk caused by pesticide exposure. These new findings reveal the antagonistic and synergistic effect of zinc and obesity, respectively, in pesticide-induced infertility risk and suggest that individuals who are obese and on a low-zinc diet may be more susceptible to infertility induced by household pesticide exposure.
Collapse
Affiliation(s)
- Jungao Huang
- Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Shaanxi Xi’an, 710061 China
- Ganzhou Maternal and Child Health Hospital, Jiangxi Province, Ganzhou, 341000 China
| | - Liqin Hu
- Ganzhou Maternal and Child Health Hospital, Jiangxi Province, Ganzhou, 341000 China
| | - Juan Yang
- Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Shaanxi Xi’an, 710061 China
| |
Collapse
|
3
|
Milesi MM, Lorenz V, Durando M, Rossetti MF, Varayoud J. Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects. Front Endocrinol (Lausanne) 2021; 12:672532. [PMID: 34305812 PMCID: PMC8293380 DOI: 10.3389/fendo.2021.672532] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Glyphosate base herbicides (GBHs) are the most widely applied pesticides in the world and are mainly used in association with GBH-tolerant crop varieties. Indiscriminate and negligent use of GBHs has promoted the emergence of glyphosate resistant weeds, and consequently the rise in the use of these herbicides. Glyphosate, the active ingredient of all GBHs, is combined with other chemicals known as co-formulants that enhance the herbicide action. Nowadays, the safety of glyphosate and its formulations remain to be a controversial issue, as evidence is not conclusive whether the adverse effects are caused by GBH or glyphosate, and little is known about the contribution of co-formulants to the toxicity of herbicides. Currently, alarmingly increased levels of glyphosate have been detected in different environmental matrixes and in foodstuff, becoming an issue of social concern. Some in vitro and in vivo studies have shown that glyphosate and its formulations exhibit estrogen-like properties, and growing evidence has indicated they may disrupt normal endocrine function, with adverse consequences for reproductive health. Moreover, multigenerational effects have been reported and epigenetic mechanisms have been proved to be involved in the alterations induced by the herbicide. In this review, we provide an overview of: i) the routes and levels of human exposure to GBHs, ii) the potential estrogenic effects of glyphosate and GBHs in cell culture and animal models, iii) their long-term effects on female fertility and mechanisms of action, and iv) the consequences on health of successive generations.
Collapse
Affiliation(s)
- María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
4
|
Environmental Exposures and Adverse Pregnancy-Related Outcomes. HEALTH IMPACTS OF DEVELOPMENTAL EXPOSURE TO ENVIRONMENTAL CHEMICALS 2020. [DOI: 10.1007/978-981-15-0520-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Oocyte Aging: The Role of Cellular and Environmental Factors and Impact on Female Fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1247:109-123. [PMID: 31802446 DOI: 10.1007/5584_2019_456] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Female aging is one of the most important factors that impacts human reproduction. With aging, there is a natural decline in female fertility. The decrease in fertility is slow and steady in women aged 30-35 years; however, this decline is accelerated after the age of 35 due to decreases in the ovarian reserve and oocyte quality. Human oocyte aging is affected by different environmental factors, such as dietary habits and lifestyle. The ovarian microenvironment contributes to oocyte aging and longevity. The immediate oocyte microenvironment consists of the surrounding cells. Crosstalk between the oocyte and microenvironment is mediated by direct contact with surrounding cells, the extracellular matrix, and signalling molecules, including hormones, growth factors, and metabolic products. In this review, we highlight the different microenvironmental factors that accelerate human oocyte aging and decrease oocyte function. The ovarian microenvironment and the stress that is induced by environmental pollutants and a poor diet, along with other factors, impact oocyte quality and function and contribute to accelerated oocyte aging and diseases of infertility.
Collapse
|
6
|
Milesi MM, Lorenz V, Pacini G, Repetti MR, Demonte LD, Varayoud J, Luque EH. Perinatal exposure to a glyphosate-based herbicide impairs female reproductive outcomes and induces second-generation adverse effects in Wistar rats. Arch Toxicol 2018; 92:2629-2643. [PMID: 29947892 DOI: 10.1007/s00204-018-2236-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022]
Abstract
Glyphosate-based herbicides (GBHs) are the most globally used herbicides raising the risk of environmental exposition. Here, we investigated whether perinatal exposure to low doses of a GBH alters the female reproductive performance, and/or induced second-generation effects related to congenital anomalies or growth alterations. Pregnant rats (F0) received a GBH through food, in a dose of 2 mg (GBH-LD: GBH-low dose group) or 200 mg (GBH-HD: GBH-high dose group) of glyphosate/kg bw/day from gestational day (GD) 9 until weaning. Body weight gain and vaginal canal-opening of F1 females were recorded. Sexually mature F1 females were mated to evaluate their reproductive performance by assessing the pregnancy rate, and on GD19, the number of corpora lutea, the implantation sites (IS) and resorption sites. To analyze second-generation effects on F2 offspring, we analyzed the fetal morphology on GD19, and assessed the fetal length and weight, and the placental weight. GBH exposure neither altered the body weight gain of F1 females, nor vaginal opening onset. Although all GBH-exposed F1 rats became pregnant, a lower number of IS was detected. F2 offspring from both GBH groups showed delayed growth, evidenced by lower fetal weight and length, associated with a higher incidence of small for gestational age fetuses. In addition, higher placental weight and placental index were found in F2 offspring from GBH-HD dams. Surprisingly, structural congenital anomalies (conjoined fetuses and abnormally developed limbs) were detected in the F2 offspring from GBH-HD group. In conclusion, perinatal exposure to low doses of a GBH impaired female reproductive performance and induced fetal growth retardation and structural congenital anomalies in F2 offspring.
Collapse
Affiliation(s)
- María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina.
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina
| | - Guillermina Pacini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, UNL, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, UNL, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina
| |
Collapse
|
7
|
Pestizidrückstände in Gemüse und Obst und Outcome bei Frauen unter ART. GYNAKOLOGISCHE ENDOKRINOLOGIE 2018. [DOI: 10.1007/s10304-018-0176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Chiu YH, Williams PL, Gillman MW, Gaskins AJ, Mínguez-Alarcón L, Souter I, Toth TL, Ford JB, Hauser R, Chavarro JE. Association Between Pesticide Residue Intake From Consumption of Fruits and Vegetables and Pregnancy Outcomes Among Women Undergoing Infertility Treatment With Assisted Reproductive Technology. JAMA Intern Med 2018; 178:17-26. [PMID: 29084307 PMCID: PMC5814112 DOI: 10.1001/jamainternmed.2017.5038] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/22/2017] [Indexed: 12/28/2022]
Abstract
Importance Animal experiments suggest that ingestion of pesticide mixtures at environmentally relevant concentrations decreases the number of live-born offspring. Whether the same is true in humans is unknown. Objective To examine the association of preconception intake of pesticide residues in fruits and vegetables (FVs) with outcomes of infertility treatment with assisted reproductive technologies (ART). Design, Setting, and Participants This analysis included 325 women who completed a diet assessment and subsequently underwent 541 ART cycles in the Environment and Reproductive Health (EARTH) prospective cohort study (2007-2016) at a fertility center at a teaching hospital. We categorized FVs as having high or low pesticide residues using a validated method based on surveillance data from the US Department of Agriculture. Cluster-weighted generalized estimating equations were used to analyze associations of high- and low-pesticide residue FV intake with ART outcomes. Main Outcomes and Measures Adjusted probabilities of clinical pregnancy and live birth per treatment cycle. Results In the 325 participants (mean [SD] age, 35.1 [4.0] y; body mass index, 24.1 [4.3]), mean (SD) intakes of high- and low-pesticide residue FVs were 1.7 (1.0) and 2.8 (1.6) servings/d, respectively. Greater intake of high-pesticide residue FVs was associated with a lower probability of clinical pregnancy and live birth. Compared with women in the lowest quartile of high-pesticide FV intake (<1.0 servings/d), women in the highest quartile (≥2.3 servings/d) had 18% (95% CI, 5%-30%) lower probability of clinical pregnancy and 26% (95% CI, 13%-37%) lower probability of live birth. Intake of low-pesticide residue FVs was not significantly related to ART outcomes. Conclusions and Relevance Higher consumption of high-pesticide residue FVs was associated with lower probabilities of pregnancy and live birth following infertility treatment with ART. These data suggest that dietary pesticide exposure within the range of typical human exposure may be associated with adverse reproductive consequences.
Collapse
Affiliation(s)
- Yu-Han Chiu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Paige L. Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Matthew W. Gillman
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
- now with Environmental Influences on Child Health Outcomes Program, Office of the Director, National Institutes of Health, Rockville, Maryland
| | - Audrey J. Gaskins
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Irene Souter
- Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Thomas L. Toth
- Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer B. Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Russ Hauser
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|