1
|
Zhang HL, Doblin S, Zhang ZW, Song ZJ, Dinesh B, Tabana Y, Saad DS, Adam Ahmed Adam M, Wang Y, Wang W, Zhang HL, Wu S, Zhao R, Khaled B. Elucidating the molecular basis of ATP-induced cell death in breast cancer: Construction of a robust prognostic model. World J Clin Oncol 2024; 15:208-242. [PMID: 38455130 PMCID: PMC10915939 DOI: 10.5306/wjco.v15.i2.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/10/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Breast cancer is a multifaceted and formidable disease with profound public health implications. Cell demise mechanisms play a pivotal role in breast cancer pathogenesis, with ATP-triggered cell death attracting mounting interest for its unique specificity and potential therapeutic pertinence. AIM To investigate the impact of ATP-induced cell death (AICD) on breast cancer, enhancing our understanding of its mechanism. METHODS The foundational genes orchestrating AICD mechanisms were extracted from the literature, underpinning the establishment of a prognostic model. Simultaneously, a microRNA (miRNA) prognostic model was constructed that mirrored the gene-based prognostic model. Distinctions between high- and low-risk cohorts within mRNA and miRNA characteristic models were scrutinized, with the aim of delineating common influence mechanisms, substantiated through enrichment analysis and immune infiltration assessment. RESULTS The mRNA prognostic model in this study encompassed four specific mRNAs: P2X purinoceptor 4, pannexin 1, caspase 7, and cyclin 2. The miRNA prognostic model integrated four pivotal miRNAs: hsa-miR-615-3p, hsa-miR-519b-3p, hsa-miR-342-3p, and hsa-miR-324-3p. B cells, CD4+ T cells, CD8+ T cells, endothelial cells, and macrophages exhibited inverse correlations with risk scores across all breast cancer subtypes. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis revealed that genes differentially expressed in response to mRNA risk scores significantly enriched 25 signaling pathways, while miRNA risk scores significantly enriched 29 signaling pathways, with 16 pathways being jointly enriched. CONCLUSION Of paramount significance, distinct mRNA and miRNA signature models were devised tailored to AICD, both potentially autonomous prognostic factors. This study's elucidation of the molecular underpinnings of AICD in breast cancer enhances the arsenal of potential therapeutic tools, offering an unparalleled window for innovative interventions. Essentially, this paper reveals the hitherto enigmatic link between AICD and breast cancer, potentially leading to revolutionary progress in personalized oncology.
Collapse
Affiliation(s)
- Hao-Ling Zhang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Sandai Doblin
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Zhong-Wen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Babu Dinesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Dahham Sabbar Saad
- Department of Science, University of Technology and Applied Sciences Rustaq, Rustaq 10 P.C. 329, Oman
| | - Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, United States
| | - Yong Wang
- Department of Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Wei Wang
- College of Acupuncture-moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Long Zhang
- Universiti Sains Malaysia, Advanced Medical and Dental Institute, Penang 13200, Malaysia
| | - Sen Wu
- Department of Biomedical Science, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Barakat Khaled
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| |
Collapse
|
2
|
Zhang HL, Sandai D, Zhang ZW, Song ZJ, Babu D, Tabana Y, Dahham SS, Adam Ahmed Adam M, Wang Y, Wang W, Zhang HL, Zhao R, Barakat K, Harun MSR, Shapudin SNM, Lok B. Adenosine triphosphate induced cell death: Mechanisms and implications in cancer biology and therapy. World J Clin Oncol 2023; 14:549-569. [PMID: 38179405 PMCID: PMC10762532 DOI: 10.5306/wjco.v14.i12.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023] Open
Abstract
Adenosine triphosphate (ATP) induced cell death (AICD) is a critical cellular process that has garnered substantial scientific interest for its profound relevance to cancer biology and to therapeutic interventions. This comprehensive review unveils the intricate web of AICD mechanisms and their intricate connections with cancer biology. This review offers a comprehensive framework for comprehending the multifaceted role of AICD in the context of cancer. This is achieved by elucidating the dynamic interplay between systemic and cellular ATP homeostasis, deciphering the intricate mechanisms governing AICD, elucidating its intricate involvement in cancer signaling pathways, and scrutinizing validated key genes. Moreover, the exploration of AICD as a potential avenue for cancer treatment underscores its essential role in shaping the future landscape of cancer therapeutics.
Collapse
Affiliation(s)
- Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Doblin Sandai
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Zhong-Wen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Sabbar Saad Dahham
- Department of Science, University of Technology and Applied Sciences Rustaq, Rustaq 10 P.C. 329, Oman
| | - Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, United States
| | - Yong Wang
- Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Long Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Mohammad Syamsul Reza Harun
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Siti Nurfatimah Mohd Shapudin
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Bronwyn Lok
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| |
Collapse
|
3
|
Sekar P, Hsiao G, Chen YS, Lin WW, Chan CM. P2X7 Is Involved in the Mouse Retinal Degeneration via the Coordinated Actions in Different Retinal Cell Types. Antioxidants (Basel) 2023; 12:141. [PMID: 36671003 PMCID: PMC9854982 DOI: 10.3390/antiox12010141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Adenosine triphosphate (ATP) released from dying cells with high concentrations is sensed as a danger signal by the P2X7 receptor. Sodium iodate (NaIO3) is an oxidative toxic agent, and its retinal toxicity has been used as the model of dry age-related macular degeneration (AMD). In this study, we used NaIO3-treated mice and cultured retinal cells, including BV-2 microglia, 661W photoreceptors, rMC1 Müller cells and ARPE-19 retinal epithelial cells, to understand the pathological action of P2X7 in retinal degeneration. We found that NaIO3 can significantly decrease the photoreceptor function by reducing a-wave and b-wave amplitudes in electroretinogram (ERG) analysis. Optical coherence tomography (OCT) analysis revealed the degeneration of retinal epithelium and ganglion cell layers. Interestingly, P2X7-/- mice were protected from the NaIO3-induced retinopathy and inflammatory NLRP3, IL-1β and IL-6 gene expression in the retina. Hematoxylin and eosin staining indicated that the retinal epithelium was less deteriorated in P2X7-/- mice compared to the WT group. Although P2X7 was barely detected in 661W, rMC1 and ARPE-19 cells, its gene and protein levels can be increased after NaIO3 treatment, leading to a synergistic cytotoxicity of BzATP [2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate tri(triethyleneammonium)salt] and NaIO3 administration in ARPE-19 cells. In conclusion, the paracrine action of the ATP/P2X7 axis via cell-cell communication is involved in NaIO3-induced retinal injury. Our results show that P2X7 antagonist might be a potential therapy in inflammation-related retinal degeneration.
Collapse
Affiliation(s)
- Ponarulselvam Sekar
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - George Hsiao
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yuan-Shen Chen
- Department of Neurosurgery, National Taiwan University, Yunlin Branch, Yunlin County 640203, Taiwan
| | - Wan-Wan Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
4
|
Khalafalla MG, Woods LT, Jasmer KJ, Forti KM, Camden JM, Jensen JL, Limesand KH, Galtung HK, Weisman GA. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front Pharmacol 2020; 11:222. [PMID: 32231563 PMCID: PMC7082426 DOI: 10.3389/fphar.2020.00222] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.
Collapse
Affiliation(s)
- Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kimberly J. Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Janicke L. Jensen
- Institute of Clinical Dentistry, Section of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Hilde K. Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Liu L, Sun B. Neutrophil pyroptosis: new perspectives on sepsis. Cell Mol Life Sci 2019; 76:2031-2042. [PMID: 30877336 PMCID: PMC11105444 DOI: 10.1007/s00018-019-03060-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023]
Abstract
Pyroptosis is a caspase-1 or caspase-4/5/11-dependent programmed cell death associated with inflammation, which is initiated by inflammasomes or cytosolic LPS in innate immunity. Sepsis is a life-threatening organ dysfunction caused by an imbalance in the body's response to infection. It is a complex interaction between the pathogen and the host's immune system. Neutrophils play the role of a double-edged sword in sepsis, and a number of studies have previously shown that regulation of neutrophils is the most crucial part of sepsis treatment. Pyroptosis is one of the important forms for neutrophils to function, which is increasingly understood as a host active immune response. There is ample evidence that neutrophil pyroptosis may play an important role in sepsis. In recent years, a breakthrough in pyroptosis research has revealed the main mechanism of pyroptosis. However, the potential value of neutrophil pyroptosis in the treatment of sepsis did not draw enough attention. A literature review was performed on the main mechanism of pyroptosis in sepsis and the potential value of neutrophils pyroptosis in sepsis, which may be suitable targets for sepsis treatment in future.
Collapse
Affiliation(s)
- Lu Liu
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, 438 Jiefang Rd., Zhenjiang, 212001, Jiangsu, China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, 438 Jiefang Rd., Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
6
|
Coordinate effects of P2X7 and extracellular acidification in microglial cells. Oncotarget 2018; 9:12718-12731. [PMID: 29560104 PMCID: PMC5849168 DOI: 10.18632/oncotarget.24331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022] Open
Abstract
Extracellular adenosine 5′-triphosphate (ATP) is a damage-associated molecular pattern and contributes to inflammation associated diseases including cancer. Extracellular acidosis is a novel danger signal in the inflammatory sites, where it can modulate inflammation, immunity and tumor growth. Extracellular acidification was shown to inhibit P2X7-mediated channel currents, while it remains unknown how acidification and P2X7 together affect cellular responses. Here, we treated BV-2 microglial cells with ATP in a short period (<15 min) or a sustained acidified condition. For short acidification we compared the actions of neutralized ATP and acidic ATP in a condition with pH buffering. For sustained acidification, we treated cells with neutralized ATP in acidic medium or acidic ATP in medium without pH buffering. In the short acidified condition, neutralized ATP induced higher responses than acidic ATP to increase intracellular calcium and reactive oxygen species, decrease intracellular potassium and induce cell death. In contrast, these cellular responses and mitochondrial fission caused by neutralized ATP were enhanced by pH 6.0 and pH 4.5 media. P2X7 activation can also rapidly block mitochondrial ATP turnover and respiration capacity, both of which were mimicked by nigericin and enhanced by acidity. Taken together P2X7-mediated ionic fluxes and reactive oxygen species production are attenuated under short acidification, while sustained acidification itself can induce mitochondrial toxicity which deteriorates the mitochondrial function under P2X7 activation.
Collapse
|
7
|
Khalafalla MG, Woods LT, Camden JM, Khan AA, Limesand KH, Petris MJ, Erb L, Weisman GA. P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. J Biol Chem 2017; 292:16626-16637. [PMID: 28798231 DOI: 10.1074/jbc.m117.790741] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/03/2017] [Indexed: 01/06/2023] Open
Abstract
Salivary gland inflammation is a hallmark of Sjögren's syndrome (SS), a common autoimmune disease characterized by lymphocytic infiltration of the salivary gland and loss of saliva secretion, predominantly in women. The P2X7 receptor (P2X7R) is an ATP-gated nonselective cation channel that induces inflammatory responses in cells and tissues, including salivary gland epithelium. In immune cells, P2X7R activation induces the production of proinflammatory cytokines, including IL-1β and IL-18, by inducing the oligomerization of the multiprotein complex NLRP3-type inflammasome. Here, our results show that in primary mouse submandibular gland (SMG) epithelial cells, P2X7R activation also induces the assembly of the NLRP3 inflammasome and the maturation and release of IL-1β, a response that is absent in SMG cells isolated from mice deficient in P2X7Rs (P2X7R-/-). P2X7R-mediated IL-1β release in SMG epithelial cells is dependent on transmembrane Na+ and/or K+ flux and the activation of heat shock protein 90 (HSP90), a protein required for the activation and stabilization of the NLRP3 inflammasome. Also, using the reactive oxygen species (ROS) scavengers N-acetyl cysteine and Mito-TEMPO, we determined that mitochondrial reactive oxygen species are required for P2X7R-mediated IL-1β release. Lastly, in vivo administration of the P2X7R antagonist A438079 in the CD28-/-, IFNγ-/-, NOD.H-2h4 mouse model of salivary gland exocrinopathy ameliorated salivary gland inflammation and enhanced carbachol-induced saliva secretion. These findings demonstrate that P2X7R antagonism in vivo represents a promising therapeutic strategy to limit salivary gland inflammation and improve secretory function.
Collapse
Affiliation(s)
- Mahmoud G Khalafalla
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Lucas T Woods
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Jean M Camden
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Aslam A Khan
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Kirsten H Limesand
- the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721
| | - Michael J Petris
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and.,Department of Nutrition and Exercise Physiology,University of Missouri, Columbia, Missouri, 65211-7310 and
| | - Laurie Erb
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Gary A Weisman
- From the Department of Biochemistry, .,Christopher S. Bond Life Sciences Center, and
| |
Collapse
|
8
|
Tan TW, Pfau B, Jones D, Meyer T. Stimulation of primary osteoblasts with ATP induces transient vinculin clustering at sites of high intracellular traction force. J Mol Histol 2013; 45:81-9. [PMID: 23933795 PMCID: PMC4544565 DOI: 10.1007/s10735-013-9530-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/25/2013] [Indexed: 01/24/2023]
Abstract
Adenosine 5′-triphosphate (ATP), released in response to mechanical and inflammatory stimuli, induces the dynamic and asynchronous protrusion and subsequent retraction of local membrane structures in osteoblasts. The molecular mechanisms involved in the ligand-stimulated herniation of the plasma membrane are largely unknown, which prompted us to investigate whether the focal-adhesion protein vinculin is engaged in the cytoskeletal alterations that underlie the ATP-induced membrane blebbing. Using time-lapse fluorescence microscopy of primary bovine osteoblast-like cells expressing green fluorescent protein-tagged vinculin, we found that stimulation of cells with 100 μM ATP resulted in the transient and rapid clustering of recombinant vinculin in the cell periphery, starting approximately 100 s after addition of the nucleotide. The ephemeral nature of the vinculin clusters was made evident by the brevity of their mean assembly and disassembly times (66.7 ± 13.3 s and 99.0 ± 6.6 s, respectively). Traction force vector maps demonstrated that the vinculin-rich clusters were localized predominantly at sites of high traction force. Intracellular calcium measurements showed that the ligand-induced increase in [Ca2+]i clearly preceded the clustering of vinculin, since [Ca2+]i levels returned to normal within 30 s of exposure to ATP, indicating that intracellular calcium transients trigger a cascade of signalling events that ultimately result in the incorporation of vinculin into membrane-associated focal aggregates.
Collapse
Affiliation(s)
- Toh Weng Tan
- Institute for Experimental Orthopaedics and Biomechanics, University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
9
|
Lester S, Stokes L, Skarratt KK, Gu BJ, Sivils KL, Lessard CJ, Wiley JS, Rischmueller M. Epistasis with HLA DR3 implicates the P2X7 receptor in the pathogenesis of primary Sjögren's syndrome. Arthritis Res Ther 2013; 15:R71. [PMID: 23819992 PMCID: PMC3979150 DOI: 10.1186/ar4248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/02/2013] [Accepted: 06/02/2013] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION The aim of this study was to examine the association between functional polymorphisms in the pro-inflammatory P2X7 receptor and the Ro/La autoantibody response in primary Sjögren's syndrome (pSS). METHODS Twelve functional P2RX7 polymorphisms were genotyped in 114 pSS patients fulfilling the Revised American-European Consensus Criteria for pSS, and 136 controls. Genotyping of the A1405G (rs2230912) polymorphism was performed on a replication cohort consisting of 281 pSS patients and 534 controls. P2X7 receptor function in lymphocytes and monocytes was assessed by measurement of ATP-induced ethidium+ uptake. Serum IL-18 levels were determined by ELISA. RESULTS The minor allele of P2RX7 A1405G is a tag for a common haplotype associated with gain in receptor function, as assessed by ATP-induced ethidium+ uptake. A positive association between 1405G and anti-Ro±La seropositive pSS patients was observed in Cohort 1. Although not replicated in Cohort 2, there was a consistent, significant, negative epistatic interaction effect with HLA-DR3 in seropositive pSS patients from both cohorts, thereby implicating this gain of function variant in the pathogenesis of pSS. Serum IL-18 was elevated in seropositive pSS patients, but was not influenced by P2RX7 A1405G. CONCLUSIONS The P2RX7 1405G gain-of-function haplotype may be a risk factor for seropositive pSS in a subset of subjects who do not carry HLA risk alleles, but has no effect in subjects who do (epistasis). Potential mechanisms relate to autoantigen exposure and inflammatory cytokine expression. The observed elevation of IL-18 levels is consistent with P2X7 receptor activation in seropositive pSS patients. Collectively these findings implicate P2X7 receptor function in the pathogenesis of pSS.
Collapse
Affiliation(s)
- Susan Lester
- Department of Rheumatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Leanne Stokes
- Sydney Medical School Nepean, University of Sydney, Nepean Hospital, Penrith, NSW, Australia
- Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Kristen K Skarratt
- Sydney Medical School Nepean, University of Sydney, Nepean Hospital, Penrith, NSW, Australia
| | - Ben J Gu
- Sydney Medical School Nepean, University of Sydney, Nepean Hospital, Penrith, NSW, Australia
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Christopher J Lessard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - James S Wiley
- Sydney Medical School Nepean, University of Sydney, Nepean Hospital, Penrith, NSW, Australia
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia
| | - Maureen Rischmueller
- Department of Rheumatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Discipline of Medicine, University of Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Woods LT, Camden JM, Batek JM, Petris MJ, Erb L, Weisman GA. P2X7 receptor activation induces inflammatory responses in salivary gland epithelium. Am J Physiol Cell Physiol 2012; 303:C790-801. [PMID: 22875784 DOI: 10.1152/ajpcell.00072.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inflammation of the salivary gland is a well-documented aspect of salivary gland dysfunction that occurs in Sjogren's syndrome (SS), an autoimmune disease, and in γ-radiation-induced injury during treatment of head and neck cancers. Extracellular nucleotides have gained recognition as key modulators of inflammation through activation of cell surface ionotropic and metabotropic receptors, although the contribution of extracellular nucleotides to salivary gland inflammation is not well understood. In vitro studies using submandibular gland (SMG) cell aggregates isolated from wild-type C57BL/6 mice indicate that treatment with ATP or the high affinity P2X7R agonist 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) induces membrane blebbing and enhances caspase activity, responses that were absent in SMG cell aggregates isolated from mice lacking the P2X7R (P2X7R(-/-)). Additional studies with SMG cell aggregates indicate that activation of the P2X7R with ATP or BzATP stimulates the cleavage and release of α-fodrin, a cytoskeletal protein thought to act as an autoantigen in the development of SS. In vivo administration of BzATP to ligated SMG excretory ducts enhances immune cell infiltration into the gland and initiates apoptosis of salivary epithelial cells in wild-type, but not P2X7R(-/-), mice. These findings indicate that activation of the P2X7R contributes to salivary gland inflammation in vivo, suggesting that the P2X7R may represent a novel target for the treatment of salivary gland dysfunction.
Collapse
Affiliation(s)
- Lucas T Woods
- Dept. of Biochemistry, Univ. of Missouri, Columbia, MO 65211-7310, USA
| | | | | | | | | | | |
Collapse
|
11
|
Silber AS, Pfau B, Tan TW, Jacob R, Jones D, Meyer T. Dynamic redistribution of paxillin in bovine osteoblasts stimulated with adenosine 5'-triphosphate. J Mol Histol 2012; 43:571-80. [PMID: 22556032 PMCID: PMC3460167 DOI: 10.1007/s10735-012-9419-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/09/2012] [Indexed: 01/21/2023]
Abstract
Exposure to extracellular 5′-adenosine triphosphate (ATP) is known to induce membrane blebbing. In this study, we investigated the subcellular distribution of the cytoskeletal adaptor protein paxillin in primary bovine osteoblasts upon stimulation with ATP. Cells expressing a fusion protein of green fluorescent protein (GFP) and paxillin were followed by time-lapse video-microscopy after stimulation with 100 μM ATP. Within 100 s, GFP-paxillin became incorporated in numerous de novo formed focal aggregates localized at the cell periphery. The assembly of individual paxillin-containing aggregates occurred with a mean half-life time of <60 s, whereas their disassembly lasted twice as long. Despite the ongoing presence of ATP, the formation of paxillin aggregates was self-limiting within 25 min. Paxillin clustering was preceded by a transient rise in cytoplasmic calcium transients, which peaked already 20 s after adding ATP. The high mobility of paxillin was confirmed by measuring the dissociation rate of GFP-paxillin at mature focal adhesions, demonstrating the presence of a highly mobile fraction with a mean recovery half-life of 8.2 ± 1.2 s, followed by a slower phase (53 ± 20 s). Thus, both the exchange of paxillin at mature focal adhesions and the increase in intracellular calcium concentrations upon ATP stimulation are very rapid processes, which override the time course of ATP-induced paxillin membrane clustering by one to two orders of magnitude. Our data demonstrate that the transient recruitment of paxillin in membrane protuberances is based on the high intracytoplasmic mobility of unbound paxillin molecules and their rapid focal accumulation.
Collapse
Affiliation(s)
- Ann-Sophie Silber
- Institut für Experimentelle Orthopädie und Biomechanik, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Kim NH, Park KS, Sohn JH, Yeh BI, Ko CM, Kong ID. Functional Expression of P2Y Receptors in WERI-Rb1 Retinoblastoma Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:61-6. [PMID: 21461242 DOI: 10.4196/kjpp.2011.15.1.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 01/28/2023]
Abstract
P2Y receptors are metabotropic G-protein-coupled receptors, which are involved in many important biologic functions in the central nervous system including retina. Subtypes of P2Y receptors in retinal tissue vary according to the species and the cell types. We examined the molecular and pharmacologic profiles of P2Y purinoceptors in retinoblastoma cell, which has not been identified yet. To achieve this goal, we used Ca(2+) imaging technique and western blot analysis in WERI-Rb-1 cell, a human retinoblastoma cell line. ATP (10 µM) elicited strong but transient [Ca(2+)](i) increase in a concentration-dependent manner from more than 80% of the WERI-Rb-1 cells (n=46). Orders of potency of P2Y agonists in evoking [Ca(2+)](i) transients were 2MeS-ATP>ATP>>UTP=αβ-MeATP, which was compatible with the subclass of P2Y(1) receptor. The [Ca(2+)](i) transients evoked by applications of 2MeS-ATP and/or ATP were also profoundly suppressed in the presence of P2Y(1) selective blocker (MRS 2179; 30 µM). P2Y(1) receptor expression in WERI-Rb-1 cells was also identified by using western blot. Taken together, P2Y(1) receptor is mainly expressed in a retinoblastoma cell, which elicits Ca(2+) release from internal Ca(2+) storage sites via the phospholipase C-mediated pathway. P2Y(1) receptor activation in retinoblastoma cell could be a useful model to investigate the role of purinergic [Ca(2+)](i) signaling in neural tissue as well as to find a novel therapeutic target to this lethal cancer.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Department of Basic Nursing Science and Institute for Nursing Science, Keimyung University, Daegu 704-701, Korea
| | | | | | | | | | | |
Collapse
|