1
|
Lei Z, Wu H, Yang Y, Hu Q, Lei Y, Liu W, Nie Y, Yang L, Zhang X, Yang C, Lin T, Tong F, Zhu J, Guo J. Ovariectomy Impaired Hepatic Glucose and Lipid Homeostasis and Altered the Gut Microbiota in Mice With Different Diets. Front Endocrinol (Lausanne) 2021; 12:708838. [PMID: 34276568 PMCID: PMC8278766 DOI: 10.3389/fendo.2021.708838] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
The lower incidence of metabolic diseases of women than men and the increasing morbidity of metabolic disorders of menopausal women indicated that hormones produced by ovaries may affect homeostasis of glucose and lipid metabolism, but the underlying mechanisms remain unclear. To explore the functions of ovaries on regulating glucose and lipid metabolism in females, 8 weeks old C57BL/6 mice were preformed ovariectomy and administrated with normal food diet (NFD) or high fat diet (HFD). Six weeks after ovariectomy, blood biochemical indexes were tested and the morphology and histology of livers were checked. The expression levels of genes related to glucose and lipid metabolism in liver were detected through transcriptome analysis, qPCR and western blot assays. 16S rDNA sequence was conducted to analyze the gut microbiota of mice with ovariectomy and different diets. The serum total cholesterol (TC) was significantly increased in ovariectomized (OVX) mice fed with NFD (OVXN), and serum low density lipoprotein-cholesterol (LDL-C) was significantly increased in both OVXN mice and OVX mice fed with HFD (OVXH). The excessive glycogen storage was found in livers of 37.5% mice from OVXN group, and lipid accumulation was detected in livers of the other 62.5% OVXN mice. The OVXN group was further divided into OVXN-Gly and OVXN-TG subgroups depending on histological results of the liver. Lipid drops in livers of OVXH mice were more and larger than other groups. The expression level of genes related with lipogenesis was significantly increased and the expression level of genes related with β-oxidation was significantly downregulated in the liver of OVXN mice. Ovariectomy also caused the dysbiosis of intestinal flora of OVXN and OVXH mice. These results demonstrated that hormones generated by ovaries played important roles in regulating hepatic glucose and lipid metabolism and communicating with the gut microbiota in females.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Xueying Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Changyuan Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiamin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| |
Collapse
|
2
|
Refaie MMM, Rifaai RA, Zenhom NM. Role of PPAR-α agonist fenofibrate in the treatment of induced benign prostatic hyperplasia with dysplastic changes in rats. Fundam Clin Pharmacol 2018; 32:617-626. [PMID: 29862557 DOI: 10.1111/fcp.12384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/13/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022]
Abstract
Nearly all men who reach average life expectancy have prostate disease. The most common is benign prostatic hyperplasia (BPH). Peroxisome proliferator-activated receptor alpha (PPARα) had protective effect in different models, but still, there are no studies explain its role in BPH. So that we investigated the effect of fenofibrate (FEN) on induced BPH by testosterone propionate (TP) (3 mg/kg/day for 4 weeks) subcutaneous injection followed by FEN (300 mg/kg/day) was given orally for 4 weeks. We measured prostate weights changes, prostatic tissue superoxide dismutase (SOD), and malondialdehyde (MDA) levels. Prostate-specific antigen (PSA), dihydrotestosterone (DHT), and total antioxidant capacity (TAC) in serum were determined. The mRNA gene expressions of proliferating cell nuclear antigen (PCNA), PPARα, and glutathione peroxidase (GPx) in prostatic tissue were also measured by quantitative real-time polymerase chain reaction. In addition, the histopathological changes and activated caspase3 immunoexpression were evaluated. Our results showed that TP succeeded in induction of BPH, which was detected by significant increase in prostate weights, prostatic tissue MDA, serum levels of DHT, PSA, and mRNA gene expression of PCNA but significant decrease in PPARα and GPx gene expression. Moreover, TAC in serum and SOD level in prostate tissue decreased. The histopathological examination showed typical changes of BPH with dysplastic changes with marked decrease in activated caspase3 immunoexpression indicating marked suppression of the apoptotic process. FEN significantly improved all disturbed parameters of BPH model. Moreover, there are no dysplastic changes with co-administration of FEN to BPH induced group.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511, Minia, Egypt
| | - Rehab A Rifaai
- Department of Histology, Faculty of Medicine, Minia University, 61511, Minia, Egypt
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
4
|
Park MK, Han Y, Kim MS, Seo E, Kang S, Park SY, Koh H, Kim DK, Lee HJ. Reduction of Food Intake by Fenofibrate is Associated with Cholecystokinin Release in Long-Evans Tokushima Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:181-6. [PMID: 22802699 PMCID: PMC3394920 DOI: 10.4196/kjpp.2012.16.3.181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/03/2012] [Accepted: 05/29/2012] [Indexed: 11/29/2022]
Abstract
Fenofibrate is a selective peroxisome proliferator-activated receptor α (PPARα) activator and is prescribed to treat hyperlipidemia. The mechanism through which PPARα agonists reduce food intake, body weight, and adiposity remains unclear. One explanation for the reduction of food intake is that fenofibrate promotes fatty acid oxidation and increases the production of ketone bodies upon a standard experimental dose of the drug (100~300 mg/kg/day). We observed that low-dose treatment of fenofibrate (30 mg/kg/day), which does not cause significant changes in ketone body synthesis, reduced food intake in Long-Evans Tokushima (LETO) rats. LETO rats are the physiologically normal controls for Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which are obese and cholecystokinin (CCK)-A receptor deficient. We hypothesized that the reduced food intake by fenofibrate-treated LETO rats may be associated with CCK production. To investigate the anorexic effects of fenofibrate in vivo and to determine whether CCK production may be involved, we examined the amount of food intake and CCK production. Fenofibrate-treated OLETF rats did not significantly change their food intake while LETO rats decreased their food intake. Treatment of fenofibrate increased CCK synthesis in the duodenal epithelial cells of both LETO and OLETF rats. The absence of a change in the food intake of OLETF rats, despite the increase in CCK production, may be explained by the absence of CCK-A receptors. Contrary to the OLETF rats, LETO rats, which have normal CCK receptors, presented a decrease in food intake and an increase in CCK production. These results suggest that reduced food intake by fenofibrate treatment may be associated with CCK production.
Collapse
Affiliation(s)
- Mi-Kyoung Park
- Department of Internal Medicine, Medical Science Research Center, Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan 602-714, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The aging process affects all organs, including the kidneys. As part of this process, progressive scarring and a measurable decline in renal function occur in most people over time. The improved understanding of the processes that can lead to and/or hasten scarring and loss of renal function over time parallels advances in our understanding of the aging process. Clinical factors, including hypertension, diabetes mellitus, obesity, abnormal lipid levels and vitamin D deficiency, have been associated with increasing renal sclerosis with age. In addition, tissue factors such as angiotensin II, advanced glycation end products, oxidative stress and Klotho are associated with renal aging. These associations and possible interventions, including the control of blood pressure, blood sugar, weight, diet and calorie restriction might make renal aging more preventable than inevitable.
Collapse
|