1
|
Amelkina O, Gardner S, Edge JC, Butt Z, Tinning H, Forde N. Ruminating on Bovine Implantation: Its Importance in Fertility, Food Production, Conservation, and Health. Annu Rev Anim Biosci 2025; 13:143-165. [PMID: 39531737 DOI: 10.1146/annurev-animal-111523-102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Implantation in cattle is a key developmental checkpoint for pregnancy success. It involves careful spatiotemporal changes to the transcriptional landscape of the endometrium, with the heterogeneous nature of the endometrium increasing the complexity of understanding of the mechanism involved. Implantation is impacted by the developmental competency of the embryo, use of assisted reproductive technologies, and the environment in which this process occurs. We identify the factors that most impact the implantation process in cattle and highlight how it differs with that in other placental mammals. We propose the major areas that lack evidence are the mechanism(s) by which implantation itself occurs and how different stressors alter this process. Our understanding is hindered by a lack of appropriate in vitro models; however, development of novel 3D tools and available data sets will further elucidate the implantation process. Perhaps more importantly, this will develop methods to mitigate against these stressors to improve implantation success and offspring health.
Collapse
Affiliation(s)
- Olga Amelkina
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom;
| | - Samantha Gardner
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom;
| | - Jessica C Edge
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom;
| | - Zenab Butt
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom;
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom;
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
2
|
Juli MSB, Boe-Hansen GB, Raza A, Forutan M, Ong CT, Siddle HV, Tabor AE. A systematic review of predictive, diagnostic, and prognostic biomarkers for detecting reproductive diseases in cattle using traditional and omics approaches. J Reprod Immunol 2024; 165:104315. [PMID: 39154625 DOI: 10.1016/j.jri.2024.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Reproductive diseases and illnesses pose significant challenges in cattle farming, affecting fertility, milk production, and overall herd health. In recent years, the integration of various omics approaches, including transcriptomics, proteomics, metagenomics, miRNAomics, and metabolomics, has revolutionized the study of these conditions. This systematic review summarised the findings from studies that investigated reproductive disease biomarkers in both male and female cattle. After extracting 6137 studies according to exclusion and inclusion criteria, a total of 60 studies were included in this review. All studies identified were associated with female cattle and none were related to reproductive diseases in bulls. The analysis highlights specific biomarkers, metabolic pathways, and microbial compositions associated with bovine reproductive disease conditions, providing valuable insights into the underlying molecular mechanisms of disease. Pro-inflammatory cytokines such as IL-1β, IL-8, IL-4, IL-6, TNFα and acute-phase response proteins such as SAA and HP have been identified as promising biomarkers for bovine reproductive diseases. However, further research is needed to validate these markers clinically and to explore potential strategies for improving cow reproductive health. The role of bulls as carriers of venereal diseases has been underestimated in the current literature and therefore needs more attention to understand their impact on infectious reproductive diseases of female cattle.
Collapse
Affiliation(s)
- Mst Sogra Banu Juli
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Gry B Boe-Hansen
- The University of Queensland, School of Veterinary Science, Gatton, Queensland 4343, Australia.
| | - Ali Raza
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Mehrnush Forutan
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Chian Teng Ong
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Hannah V Siddle
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Ala E Tabor
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia; The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
3
|
Jamwal S, Jena MK, Tyagi N, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK. Proteomic Approaches to Unravel the Molecular Dynamics of Early Pregnancy in Farm Animals: An In-Depth Review. J Dev Biol 2023; 12:2. [PMID: 38248867 PMCID: PMC10801625 DOI: 10.3390/jdb12010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Infertility is a major problem in farm animals, which has a negative economic effect on farm industries. Infertility can be defined as the inability of animals to achieve a successful pregnancy. Early pregnancy is crucial to establish a successful pregnancy, and it is reported that 70-80% and 20-30% of total embryonic loss occur in cattle and pigs, respectively, during the first month of pregnancy. The advanced high-throughput proteomics techniques provide valuable tools for in-depth understanding of the implantation process in farm animals. In the present review, our goal was to compile, assess, and integrate the latest proteomic research on farm animals, specifically focused on female reproduction, which involves endometrial tissues, uterine fluids, oviductal fluids, and microRNAs. The series of studies has provided in-depth insights into the events of the implantation process by unfolding the molecular landscape of the uterine tract. The discussed data are related to pregnant vs. non-pregnant animals, pregnancy vs. oestrous cycle, different days of the early pregnancy phase, and animals with uterine infections affecting reproduction health. Some of the studies have utilized non-invasive methods and in vitro models to decipher the molecular events of embryo-maternal interaction. The proteomics data are valuable sources for discovering biomarkers for infertility in ruminants and new regulatory pathways governing embryo-uterine interaction, endometrium receptivity, and embryonic development. Here, we envisage that the identified protein signatures can serve as potential therapeutic targets and biomarkers to develop new therapeutics against pregnancy diseases.
Collapse
Affiliation(s)
- Shradha Jamwal
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Nikunj Tyagi
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Sudhakar Kancharla
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA;
| | - Gowtham Mandadapu
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Ashok Kumar Mohanty
- ICAR–Central Institute for Research on Cattle, Meerut Cantt 250001, Uttar Pradesh, India
| |
Collapse
|
4
|
Transcriptome, Spliceosome and Editome Expression Patterns of the Porcine Endometrium in Response to a Single Subclinical Dose of Salmonella Enteritidis Lipopolysaccharide. Int J Mol Sci 2020; 21:ijms21124217. [PMID: 32545766 PMCID: PMC7352703 DOI: 10.3390/ijms21124217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Endometrial infections at a young age can lead to fertility issues in adulthood. Bacterial endotoxins, such as lipopolysaccharide (LPS), can participate in long-term molecular changes even at low concentrations. Lipopolysaccharide plays a crucial role in the progression of septic shock, inflammation and auto-immune diseases. The aim of this study was to describe transcriptomic modulations in the porcine endometrium, induced in vivo by a single subclinical dose of LPS from Salmonella Enteritidis. which did not produce clinical symptoms of toxicity. The RNA-seq methodology was applied to reveal 456 differentially expressed regions, including 375 genes, four long noncoding RNAs, and 77 other unclassified transcripts. Two independent methods confirmed 118 alternatively spliced genes that participate i.a., in the formation of the MHC-I complex and the adaptive immune response. Single nucleotide variant-calling algorithms supported the identification of 3730 allele-specific expression variants and 57 canonical A-to-I RNA editing sites. The results demonstrated that the differential expression of genes involved in inflammation, immune response, angiogenesis and endometrial development may be maintained for up to 7 days after exposure to LPS. RNA editing sites and long noncoding RNAs (lncRNAs) play an important role in transcriptional regulatory machinery in the porcine endometrium in response to LPS administration.
Collapse
|
5
|
Miller BA, Brewer A, Nanni P, Lim JJ, Callanan JJ, Grossmann J, Kunz L, de Almeida AM, Meade KG, Chapwanya A. Characterization of circulating plasma proteins in dairy cows with cytological endometritis. J Proteomics 2019; 205:103421. [PMID: 31233901 DOI: 10.1016/j.jprot.2019.103421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/27/2019] [Accepted: 06/18/2019] [Indexed: 02/02/2023]
Abstract
Early diagnosis of endometritis in dairy cattle is currently requires invasive techniques and specialist expertise. The goal of this study is to utilize a gel-free mass-spectrometry based proteomics approach to compare the plasma proteome of dairy cattle with cytological endometritis to those without. Blood samples were collected from cows (N = 112) seven days postpartum (DPP). Plasma samples from a cohort of 20 animals with cytological endometritis (n = 10) and without (n = 10) as classified 21 DPP were selected for proteomic analysis. Differential abundances of proteins between the two animal groups were determined using both fold change (≥1.5 fold change) and statistical significance threshold (p < .05). A total of 181 non-redundant proteins were quantified, and 25 proteins were found with differential abundance. These include 4 binding protein alpha and mannose binding lectin 2 involved in immune responses. Differentially abundant proteins between the animals were then processed using PANTHER for gene ontology. Gene ontology included associations with innate immune processes, acute phase responses and immune regulation. A potential marker for disease identified here is the "uncharacterized protein G5E513," a protein previously defined by RNA-transcripts. These proteins may form the basis for endometritis prognosis, the development of which is proceeded by systemic changes in immune function. SIGNIFICANCE: Endometritis is a costly reproductive disease of lactating dairy cows that warrants timely diagnosis. We utilized a gel-free mass-spectrometry based proteomics approach to compare the plasma proteome of dairy cattle with cytological endometritis to those without, for the characterization of changes in the proteomic profile associated with uterine disease postpartum. Furthermore, we compared the plasma proteome of healthy and affected cows in the same physiological status of production to better understand the relationship between changes in expression of circulating proteins and to unravel essential biological mechanisms involved in bovine cytological endometritis.
Collapse
Affiliation(s)
- Blake A Miller
- Ross University School of Veterinary Medicine, Department of Clinical Sciences, Basseterre, Saint Kitts and Nevis
| | - Amy Brewer
- Animal and Bioscience Research Centre, Teagasc, Grange, Ireland
| | - Paolo Nanni
- Functional Genomics Centre of Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Joseph J Lim
- Ross University School of Veterinary Medicine, Department of Clinical Sciences, Basseterre, Saint Kitts and Nevis
| | - John J Callanan
- Ross University School of Veterinary Medicine, Department of Clinical Sciences, Basseterre, Saint Kitts and Nevis
| | - Jonas Grossmann
- Functional Genomics Centre of Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Laura Kunz
- Functional Genomics Centre of Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | | | - Kieran G Meade
- Animal and Bioscience Research Centre, Teagasc, Grange, Ireland
| | - Aspinas Chapwanya
- Ross University School of Veterinary Medicine, Department of Clinical Sciences, Basseterre, Saint Kitts and Nevis.
| |
Collapse
|
6
|
Fortes MRS, Zacchi LF, Nguyen LT, Raidan F, Weller MMDCA, Choo JJY, Reverter A, Rego JPA, Boe-Hansen GB, Porto-Neto LR, Lehnert SA, Cánovas A, Schulz BL, Islas-Trejo A, Medrano JF, Thomas MG, Moore SS. Pre- and post-puberty expression of genes and proteins in the uterus of Bos indicus heifers: the luteal phase effect post-puberty. Anim Genet 2018; 49:539-549. [PMID: 30192028 DOI: 10.1111/age.12721] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
Progesterone signaling and uterine function are crucial in terms of pregnancy establishment. To investigate how the uterine tissue and its secretion changes in relation to puberty, we sampled tissue and uterine fluid from six pre- and six post-pubertal Brahman heifers. Post-pubertal heifers were sampled in the luteal phase. Gene expression of the uterine tissue was investigated with RNA-sequencing, whereas the uterine fluid was used for protein profiling with mass spectrometry. A total of 4034 genes were differentially expressed (DE) at a nominal P-value of 0.05, and 26 genes were significantly DE after Bonferroni correction (P < 3.1 × 10-6 ). We also identified 79 proteins (out of 230 proteins) that were DE (P < 1 × 10-5 ) in the uterine fluid. When we compared proteomics and transcriptome results, four DE proteins were identified as being encoded by DE genes: OVGP1, GRP, CAP1 and HBA. Except for CAP1, the other three had lower expression post-puberty. The function of these four genes hypothetically related to preparation of the uterus for a potential pregnancy is discussed in the context of puberty. All DE genes and proteins were also used in pathway and ontology enrichment analyses to investigate overall function. The DE genes were enriched for terms related to ribosomal activity. Transcription factors that were deemed key regulators of DE genes are also reported. Transcription factors ZNF567, ZNF775, RELA, PIAS2, LHX4, SOX2, MEF2C, ZNF354C, HMG20A, TCF7L2, ZNF420, HIC1, GTF3A and two novel genes had the highest regulatory impact factor scores. These data can help to understand how puberty influences uterine function.
Collapse
Affiliation(s)
- M R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - L F Zacchi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - L T Nguyen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.,Faculty of Biotechnology, Vietnam National University of Agriculture, Gialam, Hanoi, Vietnam
| | - F Raidan
- Animal Science Department, Universidade Federal de Viçosa, Vicosa, Minas Gerais, 36570-900, Brazil
| | - M M D C A Weller
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Brisbane, QLD 4072, Australia
| | - J J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - A Reverter
- Animal Science Department, Universidade Federal de Viçosa, Vicosa, Minas Gerais, 36570-900, Brazil
| | - J P A Rego
- Instituto Federal de Educação, Ciência e Tecnologia do Ceara, Fortaleza, Ceará, 62930-000, Brazil
| | - G B Boe-Hansen
- School of Veterinary Sciences, The University of Queensland, Gatton, QLD 4343, Australia
| | - L R Porto-Neto
- Animal Science Department, Universidade Federal de Viçosa, Vicosa, Minas Gerais, 36570-900, Brazil
| | - S A Lehnert
- Animal Science Department, Universidade Federal de Viçosa, Vicosa, Minas Gerais, 36570-900, Brazil
| | - A Cánovas
- Department of Animal Biosciences, Centre of Genetic Improvement for Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - B L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - A Islas-Trejo
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - J F Medrano
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - M G Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - S S Moore
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Zhang SD, Dong SW, Wang DS, Oguejiofor CF, Fouladi-Nashta AA, Yang ZQ, Yan ZT. Differential proteomic profiling of endometrium and plasma indicate the importance of hydrolysis in bovine endometritis. J Dairy Sci 2017; 100:9324-9337. [DOI: 10.3168/jds.2016-12365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 05/29/2017] [Indexed: 12/13/2022]
|
8
|
Ceciliani F, Lecchi C, Urh C, Sauerwein H. Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows. J Proteomics 2017; 178:92-106. [PMID: 29055723 DOI: 10.1016/j.jprot.2017.10.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 01/15/2023]
Abstract
The transition from late pregnancy to early lactation is a critical period in a dairy cow's life due to the rapidly increasing drain of nutrients from the maternal organism towards the foetus and into colostrum and milk. In order to cope with the challenges of parturition and lactation, comprehensive adaptive reactions comprising the endocrine and the immune system need to be accomplished. There is high variation in this coping ability and both metabolic and infectious diseases, summarized as "production diseases", such as hypocalcaemia (milk fever), fatty liver syndrome, laminitis and ketosis, may occur and impact welfare, productive lifespan and economic outcomes. Proteomics and metabolomics have emerged as valuable techniques to characterize proteins and metabolite assets from tissue and biological fluids, such as milk, blood and urine. In this review we provide an overview on metabolic status and physiological changes during the transition period and the related production diseases in dairy cows, and summarize the state of art on proteomics and metabolomics of biological fluids and tissues involved in metabolic stress during the peripartum period. We also provide a current and prospective view of the application of the recent achievements generated by omics for biomarker discovery and their potential in diagnosis. BIOLOGICAL SIGNIFICANCE For high-yielding dairy cows there are several "occupational diseases" that occur mainly during the metabolic challenges related to the transition from pregnancy to lactation. Such diseases and their sequelae form a major concern for dairy production, and often lead to early culling of animals. Beside the economical perspective, metabolic stress may severely influence animal welfare. There is a multitude of studies about the metabolic backgrounds of such so called production diseases like ketosis, fatty liver, or hypocalcaemia, although the investigations aiming to assess the complexity of the pathophysiological reactions are largely focused on gene expression, i.e. transcriptomics. For extending the knowledge towards the proteome and the metabolome, the respective technologies are of increasing importance and can provide an overall view of how dairy cows react to metabolic stress, which is needed for an in-depth understanding of the molecular mechanisms of the related diseases. We herein review the current findings from studies applying proteomics and metabolomics to transition-related diseases, including fatty liver, ketosis, endometritis, hypocalcaemia and laminitis. For each disease, a brief overview of the up to date knowledge about its pathogenesis is provided, followed by an insight into the most recent achievements on the proteome and metabolome of tissues and biological fluids, such as blood serum and urine, highlighting potential biomarkers. We believe that this review would help readers to be become more familiar with the recent progresses of molecular background of transition-related diseases thus encouraging research in this field.
Collapse
Affiliation(s)
- Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy.
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| | - Christiane Urh
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Piras C, Guo Y, Soggiu A, Chanrot M, Greco V, Urbani A, Charpigny G, Bonizzi L, Roncada P, Humblot P. Changes in protein expression profiles in bovine endometrial epithelial cells exposed to E. coli LPS challenge. MOLECULAR BIOSYSTEMS 2017; 13:392-405. [PMID: 28070584 DOI: 10.1039/c6mb00723f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
E. coli is one of the most frequently involved bacteria in uterine diseases. Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria involved in pathogenic processes leading to post-partum metritis and endometritis in cattle. It also causes inflammation of the endometrium. The increase of cell proliferation by LPS is part of the inflammatory process. The aim of this study was to investigate possible changes in protein expression in relation to the proliferative response of bEECs after challenge with E. coli-LPS. In vitro culture of bEECs was performed from cow genital tracts collected at a slaughterhouse. In passage 5, bEECs from each of 9 cows (3 series of 3 cows) were exposed to 0, 8, and 16 μg ml-1 LPS for 72 h. At time 0 and 72 h later, attached cells/living cells were counted and for each time and LPS dosage, cells were frozen for proteomic analyses. All samples from the 3 series were analyzed by 2-D gel electrophoresis coupled to MALDI-TOF/TOF mass spectrometry. The samples from the first series were subjected to shotgun nLC-MS/MS analysis. From the whole differential proteomics analysis, 38 proteins were differentially expressed (p < 0.05 to p < 0.001) following exposure to LPS. Among them, twenty-eight were found to be up-regulated in the LPS groups in comparison to control groups and ten were down-regulated. Differentially expressed proteins were associated with cell proliferation and apoptosis, transcription, destabilization of cell structure, oxidative stress, regulation of histones, allergy and general cell metabolism pathways. The de-regulations induced by LPS were consistent with the proliferative phenotype and indicated strong alterations of several cell functions. In addition, some of the differentially expressed proteins relates to pathways activated at the time of implantation. The specific changes induced through those signals may have negative consequences for the establishment of pregnancy.
Collapse
Affiliation(s)
- Cristian Piras
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy
| | - Yongzhi Guo
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, Sweden
| | - Alessio Soggiu
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy
| | - Metasu Chanrot
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, Sweden and Rajamangala University of Srivijaya (RMUTSV), Thungyai, Thailand
| | - Viviana Greco
- Proteomics and Metabonomics Unit Fondazione Santa Lucia - IRCCS, Rome, Italy
| | - Andrea Urbani
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, Roma, Italy
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, 78350, Jouy en Josas, France
| | - Luigi Bonizzi
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy
| | - Paola Roncada
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy and Istituto Sperimentale Italiano L. Spallanzani, Milano and TechnologieS srl, via Celoria 10, 20133 Milano, Italy.
| | - Patrice Humblot
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, Sweden
| |
Collapse
|
10
|
Kankofer M, Wawrzykowski J, Hoedemaker M. Profile of bovine proteins in retained and normally expelled placenta in dairy cows. Reprod Domest Anim 2013; 49:270-4. [PMID: 24325199 DOI: 10.1111/rda.12266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/10/2013] [Indexed: 12/29/2022]
Abstract
Tissue-specific protein profile is determined by its function, structure, intensity of metabolism and usefulness. This profile remains under hormonal control. Any disturbance in the general metabolism may be reflected in changes in both protein quantity and quality. These changes can be of low or high specificity, and some can be used as clinical markers of pathological conditions. The aim of this study was to describe and to compare the protein profile of caruncle and foetal villi of bovine placenta that was either properly released or retained. Placental tissues were collected from healthy cows, divided into releasing and retaining foetal membranes, homogenized and subjected to 1D and 2D electrophoresis. Computer-aided analysis of gel images showed essential qualitative and quantitative alterations in protein profile between tissues that were properly released and retained. Alterations concerned both the number of fractions and spots as well as the intensity of staining. This preliminary study provides a general overview of the differences in the protein profile between released and retained foetal membranes. It may allow for selecting the group of proteins or single molecules, which should be further analysed in detail as possible markers differentiating the retention of foetal membranes in cows from placentas that were released spontaneously. The continuation of the study for the identification of particular spots detected in 2D gels is necessary.
Collapse
Affiliation(s)
- M Kankofer
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | | | | |
Collapse
|
11
|
Faulkner S, Elia G, Mullen MP, O'Boyle P, Dunn MJ, Morris D. A comparison of the bovine uterine and plasma proteome using iTRAQ proteomics. Proteomics 2012; 12:2014-23. [PMID: 22623423 DOI: 10.1002/pmic.201100609] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Early embryo loss is a key factor affecting fertility in dairy and beef herds. Prior to implantation, the bovine embryo spends around 16 days free-floating in the uterine environment and is dependent on the composition of uterine fluid for normal growth and development. However, there is a lack of information regarding the protein composition of the bovine uterus and how it relates to plasma. In this study, uterine flushings (UF) (n = 6) and blood plasma (n = 4) were collected from beef heifers on day 7 of the oestrous cycle, albumin depleted and compared using iTRAQ proteomics. A total of 35 proteins were higher and 18 were lower in UF including metabolic enzymes, proteins with anti-oxidant activity and those involved in modulation of the immune response. This study confirms the dynamic nature of the bovine uterine proteome and that it differs from plasma. Factors affecting the uterine proteome and how it impacts on embryo survival warrant further study.
Collapse
Affiliation(s)
- Simon Faulkner
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| | | | | | | | | | | |
Collapse
|