1
|
Sun A, Yang H, Li T, Luo J, Zhou L, Chen R, Han L, Lin Y. Molecular mechanisms, targets and clinical potential of berberine in regulating metabolism: a review focussing on databases and molecular docking studies. Front Pharmacol 2024; 15:1368950. [PMID: 38957396 PMCID: PMC11217548 DOI: 10.3389/fphar.2024.1368950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background: Metabolic imbalance is the common basis of many diseases. As natural isoquinoline alkaloid, berberine (BBR) has shown great promise in regulating glucose and lipids metabolism and treating metabolic disorders. However, the related mechanism still lacks systematic research. Aim: To discuss the role of BBR in the whole body's systemic metabolic regulation and further explore its therapeutic potential and targets. Method: Based on animal and cell experiments, the mechanism of BBR regulating systemic metabolic processes is reviewed. Potential metabolism-related targets were summarized using Therapeutic Target Database (TTD), DrugBank, GeneCards, and cutting-edge literature. Molecular modeling was applied to explore BBR binding to the potential targets. Results: BBR regulates the whole-body metabolic response including digestive, circulatory, immune, endocrine, and motor systems through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), sirtuin (SIRT)1/forkhead box O (FOXO)1/sterol regulatory element-binding protein (SREBP)2, nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1, and other signaling pathways. Through these reactions, BBR exerts hypoglycemic, lipid-regulating, anti-inflammatory, anti-oxidation, and immune regulation. Molecular docking results showed that BBR could regulate metabolism targeting FOXO3, Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (Gpx) 4 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). Evaluating the target clinical effects, we found that BBR has the therapeutic potential of anti-aging, anti-cancer, relieving kidney disease, regulating the nervous system, and alleviating other chronic diseases. Conclusion: This review elucidates the interaction between potential targets and small molecular metabolites by exploring the mechanism of BBR regulating metabolism. That will help pharmacologists to identify new promising metabolites interacting with these targets.
Collapse
Affiliation(s)
- Aru Sun
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinli Luo
- China Traditional Chinese Medicine Holdings Co. Limited, Guangdong e-fong Pharmaceutical Co., Ltd., Foshan, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Chen
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqun Lin
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Zheng Z, Song X, Shi Y, Long X, Li J, Zhang M. Recent Advances in Biologically Active Ingredients from Natural Drugs for Sepsis Treatment. Comb Chem High Throughput Screen 2024; 27:688-700. [PMID: 37254548 DOI: 10.2174/1386207326666230529101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Sepsis refers to the dysregulated host response to infection; its incidence and mortality rates are high. It is a worldwide medical problem but there is no specific drug for it. In recent years, clinical and experimental studies have found that many monomer components of traditional Chinese medicine have certain effects on the treatment of sepsis. This paper reviews the advances in research on the active ingredients of traditional Chinese medicine involved in the treatment of sepsis in recent years according to their chemical structure; it could provide ideas and references for further research and development in Chinese materia medica for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Xiayinan Song
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofeng Long
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jie Li
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Min Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
3
|
Li X, Bai Y, Ma Y, Li Y. Ameliorating effects of berberine on sepsis-associated lung inflammation induced by lipopolysaccharide: molecular mechanisms and preclinical evidence. Pharmacol Rep 2023:10.1007/s43440-023-00492-2. [PMID: 37184743 DOI: 10.1007/s43440-023-00492-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
As a life-threatening disorder, sepsis-associated lung injury is a dysregulated inflammatory response to microbial infection, characterized by the infiltration of inflammatory cells into lung tissues and excessive production of pro-inflammatory mediators. Therefore, immunomodulatory/anti-inflammatory agents are a potential treatment for sepsis-associated lung injury. Berberine, one of the well-studied medicinal plant-derived compounds, has shown promising anti-inflammatory potential in inflammatory conditions, through modulating excessive immune responses induced by various immune cells. A systematic literature search in electronic databases indicated several publications that studied the effect of berberine on lipopolysaccharide (LPS)-induced sepsis in preclinical investigations. The current review article aims to provide evidence on the effects of berberine against LPS-induced acute lung injury (ALI), together with underlying molecular mechanisms. The findings reveal that berberine through inhibiting the excessive production of multiple pro-inflammatory cytokines, suppressing the infiltration of immune cells into lung tissues, as well as preventing pulmonary edema and coagulation, can relieve pulmonary histopathological changes from LPS-mediated inflammation, thereby attenuating sepsis-associated lung injury and lethality in the experimental models. In conclusion, berberine shows great potential as a preventing and therapeutic agent for sepsis-associated lung injury, however, further proof-of-concept studies and clinical investigations are warranted for translating these preclinical findings into clinical practices.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Yi Bai
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Yulong Ma
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Yan Li
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China.
| |
Collapse
|
4
|
Wang Y, Ren K, Tan J, Mao Y. Alginate oligosaccharide alleviates aging-related intestinal mucosal barrier dysfunction by blocking FGF1-mediated TLR4/NF-κB p65 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154806. [PMID: 37236046 DOI: 10.1016/j.phymed.2023.154806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Alginate oligosaccharide (AOS) has been reported to exert a crucial role in maintaining the intestinal mucosal barrier (IMB) function. The current study aimed at ascertaining the protective effects of AOS on aging-induced IMB dysfunction and to elucidate the underlying molecular mechanisms. METHODS An aging mouse model and a senescent NCM460 cell model were established using d-galactose. AOS was administered to aging mice and senescent cells, and IMB permeability, inflammatory response and tight junction proteins were assessed. In silico analysis was conducted to identify factors regulated by AOS. Using gain- and loss-of-function approaches, we evaluated the roles of FGF1, TLR4 and NF-κB p65 in the aging-induced IMB dysfunction and NCM460 cell senescence. RESULTS AOS protected the IMB function of aging mice and NCM460 cells by reducing permeability and increasing tight junction proteins. In addition, AOS up-regulated FGF1, which blocked the TLR4/NF-κB p65 pathway, and identified as the mechanism responsible for the protective effect of AOS. CONCLUSION AOS blocks the TLR4/NF-κB p65 pathway via inducing FGF1, ultimately reducing the risk of IMB dysfunction in aging mice. This study highlights the potential of AOS as a protective agent against aging-induced IMB disorder and provides insight into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yanting Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Keyu Ren
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Junying Tan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
5
|
Berberine in Sepsis: Effects, Mechanisms, and Therapeutic Strategies. J Immunol Res 2023; 2023:4452414. [PMID: 36741234 PMCID: PMC9891819 DOI: 10.1155/2023/4452414] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 01/26/2023] Open
Abstract
Sepsis is defined as a dysregulated immune response to infection that leads to multiple organ dysfunction. To date, though a growing body of knowledge has gained insight into the clinical risk factors, pathobiology, treatment response, and recovery methods, sepsis remains a significant concern and clinical burden. Therefore, further study is urgently needed to alleviate the acute and chronic outcomes. Berberine (BBR), a traditional Chinese medicine with multiple actions and mechanisms, has been investigated in cellular and rodent animal models of sepsis mainly based on its anti-inflammatory effect. However, the practical application of BBR in sepsis is still lacking, and it is imperative to systematically summarize the study of BBR in sepsis. This review summarized its pharmacological activities and mechanisms in septic-related organ injuries and the potential BBR-based therapeutic strategies for sepsis, which will provide comprehensive references for scientific research and clinical application.
Collapse
|
6
|
Chen L, Liu X, Wang X, Lu Z, Ye Y. Berberine Alleviates Acute Lung Injury in Septic Mice by Modulating Treg/Th17 Homeostasis and Downregulating NF-κB Signaling. Drug Des Devel Ther 2023; 17:1139-1151. [PMID: 37077411 PMCID: PMC10108910 DOI: 10.2147/dddt.s401293] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Purpose A common complication of sepsis is acute lung injury (ALI), which is associated with an acute onset, rapid disease changes, and high mortality. Regulatory T (Treg) and T helper 17 (Th17) cells comprise CD4+ T cell subsets, which strongly influence inflammation during ALI. In this study, we investigated the effect of berberine (BBR), an antioxidant, anti-inflammatory, and immunomodulatory drug, on the inflammatory response and immune state in mice with sepsis. Methods A mouse model of cecal ligation and puncture (CLP) was established. The mice were intragastrically administered 50 mg/kg BBR. We used histological techniques to evaluate inflammatory tissue injury and flow cytometry for analyzing Treg/Th17 levels. We also assessed NF-κB signaling pathways by Western blotting assays and immunofluorescence staining. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the content of cytokines. Results Treatment with BBR considerably mitigated lung injury while improving survival, post-cecal ligation, and puncture (CLP). Treatment with BBR ameliorated pulmonary edema and hypoxemia in septic mice and inhibited the NF-κB signaling pathway. BBR also increased Treg cells and decreased Th17 proportions in the spleen and lung tissue of CLP-treated mice. Blocking Treg cells weakened the protective effect of BBR on sepsis-associated lung injury. Conclusion Overall, these results suggested that BBR is a potential therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Longwang Chen
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xinyong Liu
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, People’s Republic of China
| | - Xuetao Wang
- Department of Intensive Care Unit, Wenzhou Longwan District First People’s Hospital, Wenzhou, Zhejiang, People’s Republic of China
| | - Zhongqiu Lu
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yumei Ye
- Department of Ultrasound Imaging, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Correspondence: Yumei Ye, Department of Ultrasound Imaging, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China, Tel +860577-5557-9410, Email
| |
Collapse
|
7
|
Izadparast F, Riahi-Zajani B, Yarmohammadi F, Hayes AW, Karimi G. Protective effect of berberine against LPS-induced injury in the intestine: a review. Cell Cycle 2022; 21:2365-2378. [PMID: 35852392 PMCID: PMC9645259 DOI: 10.1080/15384101.2022.2100682] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a systemic inflammatory condition caused by an unbalanced immunological response to infection, which affects numerous organs, including the intestines. Lipopolysaccharide (LPS; also known as endotoxin), a substance found in Gram-negative bacteria, plays a major role in sepsis and is mostly responsible for the disease's morbidity and mortality. Berberine is an isoquinoline alkaloid found in a variety of plant species that has anti-inflammatory properties. For many years, berberine has been used to treat intestinal inflammation and infection. Berberine has been reported to reduce LPS-induced intestinal damage. The potential pathways through which berberine protects against LPS-induced intestinal damage by inhibiting NF-κB, suppressing MAPK, modulating ApoM/S1P pathway, inhibiting COX-2, modulating Wnt/Beta-Catenin signaling pathway, and/or increasing ZIP14 expression are reviewed.Abbreviations: LPS, lipopolysaccharide; TLR, Toll-like receptor; MD-2, myeloid differentiation factor 2; CD14, cluster of differentiation 14; LBP, lipopolysaccharide-binding protein; MYD88, myeloid differentiation primary response 88; NF-κB, nuclear factor kappa light-chain enhancer of activated B cells; MAPK, mitogen-activated protein kinase; IL, interleukin; TNFα, tumor necrosis factor-alpha; Caco-2, cyanocobalamin uptake by human colon adenocarcinoma cell line; MLCK, myosin light-chain kinase; TJ, tight junction; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; IBS, irritable bowel syndrome; ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase (JNK; GVB, gut-vascular barrier; ApoM, apolipoprotein M; S1P, sphingosine-1-phosphate; VE-cadherin, vascular endothelial cadherin; AJ, adherens junction; PV1, plasmalemma vesicle-associated protein-1; HDL, high-density lipoprotein; Wnt, wingless-related integration site; Fzd, 7-span transmembrane protein Frizzled; LRP, low-density lipoprotein receptor-related protein; TEER, transendothelial/transepithelial electrical resistance; COX-2, cyclooxygenase-2; iNOS, inducible nitric oxide synthase; IGF, insulin-like growth factor; IGFBP, insulin-like growth factor-binding protein; ZIP, Zrt-Irt-like protein; PPAR, peroxisome proliferator-activated receptors; p-PPAR, phosphorylated-peroxisome proliferator-activated receptors; ATF, activating transcription factors; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; SARA, subacute ruminal acidosis; IPEC-J2, porcine intestinal epithelial cells; ALI, acute lung injury; ARDS, acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Faezeh Izadparast
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi-Zajani
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A. Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Khanmohammadi S, Kuchay MS. Toll-like receptors and metabolic (dysfunction)-associated fatty liver disease. Pharmacol Res 2022; 185:106507. [DOI: 10.1016/j.phrs.2022.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
9
|
Yao W, Zhang Y, Zhang W, Wen Y, Yang R, Dong J, Zhang X, Hua Y, Ji P, Wei Y. Pathological mechanism of intestinal mucosal barrier injury of large intestine dampness-heat syndrome rats and the protective effect of Yujin powder. Res Vet Sci 2022; 152:485-496. [PMID: 36156378 DOI: 10.1016/j.rvsc.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/12/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Large intestine dampness-heat syndrome (LIDHS) is frequently-occurring in the inflammatory intestinal disease of animals and human. Yujin powder (YJP) is a classical prescription for treating LIDHS. To explore the pathological mechanism of intestinal mucosal barrier injury of LIDHS and the protection of YJP, the LIDHS rat model was established through imitating the inducing conditions of LIDHS and treated with YJP. The integrity of ileal and colonic mucosa was detected through histopathological examination. The serum DAO, D-LA and ET levels were detected by ELISA. The mRNA and protein expression levels of Occludin, ZO-1 and MUC2 in ileum and colon were detected using RT-PCR and immunohistochemistry methods, respectively. The results showed that the ileal and colonic epithelium of LIDHS rats were destroyed; the serum DAO, D-LA and ET levels were significantly increased; the mRNA and protein expression levels of Occludin, ZO-1 and MUC2 in ileum and colon were all abnormally expressed. After treatment with YJP, the mucosal integrity was restored; the levels of serum DAO, D-LA and ET, mRNA and protein levels of Occludin and ZO-1 in ileum and colon and MUC2 in ileum were back-regulated; however, MUC2 level in colon was further increased. The results demonstrated that the intestinal mucosal barrier was damaged in LIDHS rats and Occludin, ZO-1 and MUC2 were abnormally expressed, and YJP could repair the intestinal mucosal barrier through up-regulating the expression of Occludin and ZO-1 in ileum and colon as well as MUC2 in colon and down-regulating MUC2 in ileum.
Collapse
Affiliation(s)
- Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yahui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yanqiao Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Rong Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Jiaqi Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Xiaosong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China.
| |
Collapse
|
10
|
Wang XH, Xu DQ, Chen YY, Yue SJ, Fu RJ, Huang L, Tang YP. Traditional Chinese Medicine: A promising strategy to regulate inflammation, intestinal disorders and impaired immune function due to sepsis. Front Pharmacol 2022; 13:952938. [PMID: 36188532 PMCID: PMC9523403 DOI: 10.3389/fphar.2022.952938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis is described as a dysregulation of the immune response to infection, which leads to life-threatening organ dysfunction. The interaction between intestinal microbiota and sepsis can't be ignored. Furthermore, the intestinal microbiota may regulate the progress of sepsis and attenuate organ damage. Thus, maintaining or restoring microbiota may be a new way to treat sepsis. Traditional Chinese medicine (TCM) assumes a significant part in the treatment of sepsis through multi-component, multi-pathway, and multi-targeting abilities. Moreover, TCM can prevent the progress of sepsis and improve the prognosis of patients with sepsis by improving the imbalance of intestinal microbiota, improving immunity and reducing the damage to the intestinal barrier. This paper expounds the interaction between intestinal microbiota and sepsis, then reviews the current research on the treatment of sepsis with TCM, to provide a theoretical basis for its clinical application.
Collapse
Affiliation(s)
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, China
| | | | | | | | | | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, China
| |
Collapse
|
11
|
Lan Y, Wang H, Wu J, Meng X. Cytokine storm-calming property of the isoquinoline alkaloids in Coptis chinensis Franch. Front Pharmacol 2022; 13:973587. [PMID: 36147356 PMCID: PMC9485943 DOI: 10.3389/fphar.2022.973587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Coronavirus disease (COVID-19) has spread worldwide and its effects have been more devastating than any other infectious disease. Importantly, patients with severe COVID-19 show conspicuous increases in cytokines, including interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, IL-8, tumor necrosis factor (TNF)-α, IL-1, IL-18, and IL-17, with characteristics of the cytokine storm (CS). Although recently studied cytokine inhibitors are considered as potent and targeted approaches, once an immunological complication like CS happens, anti-viral or anti-inflammation based monotherapy alone is not enough. Interestingly, certain isoquinoline alkaloids in Coptis chinensis Franch. (CCFIAs) exerted a multitude of biological activities such as anti-inflammatory, antioxidant, antibacterial, and immunomodulatory etc, revealing a great potential for calming CS. Therefore, in this timeline review, we report and compare the effects of CCFIAs to attenuate the exacerbation of inflammatory responses by modulating signaling pathways like NF-ĸB, mitogen-activated protein kinase, JAK/STAT, and NLRP3. In addition, we also discuss the role of berberine (BBR) in two different triggers of CS, namely sepsis and viral infections, as well as its clinical applications. These evidence provide a rationale for considering CCFIAs as therapeutic agents against inflammatory CS and this suggestion requires further validation with clinical studies.
Collapse
Affiliation(s)
- Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiasi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jiasi Wu, ; Xianli Meng,
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jiasi Wu, ; Xianli Meng,
| |
Collapse
|
12
|
Wang YF, Li JW, Wang DP, Jin K, Hui JJ, Xu HY. Anti-Hyperglycemic Agents in the Adjuvant Treatment of Sepsis: Improving Intestinal Barrier Function. Drug Des Devel Ther 2022; 16:1697-1711. [PMID: 35693534 PMCID: PMC9176233 DOI: 10.2147/dddt.s360348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/28/2022] [Indexed: 12/19/2022] Open
Abstract
Intestinal barrier injury and hyperglycemia are common in patients with sepsis. Bacteria translocation and systemic inflammatory response caused by intestinal barrier injury play a significant role in sepsis occurrence and deterioration, while hyperglycemia is linked to adverse outcomes in sepsis. Previous studies have shown that hyperglycemia is an independent risk factor for intestinal barrier injury. Concurrently, increasing evidence has indicated that some anti-hyperglycemic agents not only improve intestinal barrier function but are also beneficial in managing sepsis-induced organ dysfunction. Therefore, we assume that these agents can block or reduce the severity of sepsis by improving intestinal barrier function. Accordingly, we explicated the connection between sepsis, intestinal barrier, and hyperglycemia, overviewed the evidence on improving intestinal barrier function and alleviating sepsis-induced organ dysfunction by anti-hyperglycemic agents (eg, metformin, peroxisome proliferators activated receptor-γ agonists, berberine, and curcumin), and summarized some common characteristics of these agents to provide a new perspective in the adjuvant treatment of sepsis.
Collapse
Affiliation(s)
- Yi-Feng Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Jia-Wei Li
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Da-Peng Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Ke Jin
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Jiao-Jie Hui
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Hong-Yang Xu
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Huang Z, Zhang X, Zhu Q, Cao F, Liu W, Shi P, Yang X. Effect of berberine on copper and zinc levels in chickens infected with Eimeria tenella. Mol Biochem Parasitol 2022; 249:111478. [PMID: 35561873 DOI: 10.1016/j.molbiopara.2022.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Berberine, a traditional Chinese medicine, was found to exhibit anticoccidial activity. However, its mechanism is unclear. Trace metals such as copper and zinc are extremely low (less than 0.01% of the total weight of the body) but play a vital role in organisms. In the present study, we investigated the effect of berberine on copper and zinc levels in chickens infected with Eimeria tenella. Firstly, our data confirmed that infected chickens with E. tenella exhibited classic impairment on the 8th day of post infection, such as weight loss and increased feed conversion. Further study showed that E. tenella infection decreased the contents of copper and zinc in the liver and serum of chickens. Berberine was similar to amprolium and significantly improved the pathogenic conditions. Berberine could restore copper and zinc imbalance caused by E. tenella in chickens to a large extent. Studies on the development of cecum lesions demonstrated that the protective effect of berberine on the intestinal cecum was similar to that of the Cu/Zn mixture. Additionally, the mRNA expression of several metal transport related genes of the chick small intestine, including zinc transporter 1, copper transporter 1 and divalent metal ion transporter 1, was elevated by the treatment with berberine. Taken together, we speculate that the anticoccidial activity of berberine may be related to the maintenance of certain metals (Cu/Zn) homeostasis by affecting mRNA expression of their transport genes. However, the mode of action of BBR on these vital metals in the chicks infected with E. tenella still needs to be further studied.
Collapse
Affiliation(s)
- Zhiwei Huang
- Key Lab of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, China.
| | - Xianyuan Zhang
- Key Lab of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Qian Zhu
- Key Lab of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Fangqi Cao
- Shanghai Key Laboratory of Crime Science Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Science Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xueming Yang
- Key Lab of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| |
Collapse
|
14
|
Shi J, Xu H, Cavagnaro MJ, Li X, Fang J. Blocking HMGB1/RAGE Signaling by Berberine Alleviates A1 Astrocyte and Attenuates Sepsis-Associated Encephalopathy. Front Pharmacol 2021; 12:760186. [PMID: 34867376 PMCID: PMC8634440 DOI: 10.3389/fphar.2021.760186] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
As a life-threatening multiple organ dysfunction attributable to maladjusted host immune responses to infection, sepsis is usually the common pathway to serious prognosis and death for numerous infectious diseases all over the world. Sepsis-associated encephalopathy (SAE) is frequently complicated by septic conditions, and is one of the most important reasons for increased mortality and poor outcomes in septic patients which is still an urgent clinical problem need to be solved. In this research, a conspicuously discovery of treatment-related translational use for berberine was elaborated. The results revealed that berberine treatment significantly restored cognitive impairment in sepsis mice. Reduced expression levels of TNF-α, IL-1α, and C1qA were exhibited in the hippocampus of the berberine treatment group, and attenuated effect of declining neo-neuron, activation of microglia and astrocytes in the hippocampus of mice with sepsis were also found. Moreover, berberine inhibits microglia-stressed A1 astrocytes by inhibiting HMGB1 signaling was revealed, then the molecular mechanism of HMGB1/RAGE signaling inhibition leads to the better outcome of SAE was elucidated. To summarize, this research indicated that berberine targets HMGB1/RAGE signaling to inhibit microglia-stressed A1 astrocyte and neo-neuron decline, which consequently alleviates sepsis-induced cognitive impairment. Collectively, berberine may serve as potential therapeutic drug and HMGB1/RAGE signaling would be a novel target for medicine development for treating SAE.
Collapse
Affiliation(s)
- Jian Shi
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huan Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Xingmei Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, China
| | - Jia Fang
- The Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Yuan L, Li M, Qiao Y, Wang H, Cui L, Wang M. The Impact of Berberine on Intestinal Morphology, Microbes, and Immune Function of Broilers in Response to Necrotic Enteritis Challenge. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1877075. [PMID: 34712727 PMCID: PMC8548107 DOI: 10.1155/2021/1877075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
The objective of this study was to explore the therapeutic effects of berberine on necrotic enteritis (NE) in broilers caused by Clostridium perfringens. A total of 240 1-day-old Arbor Acres chicks were divided into four groups, as negative controls (NC), positive controls (PC), berberine- (BER-) treated, or lincomycin- (LMY-) treated groups. Broilers were challenged with C. perfringens at 15-21 days of age, followed by BER or LMY supplied in drinking water for 7 days. Experimental results showed that C. perfringens infection significantly decreased growth performance and increased intestinal necrosis index and the number of C. perfringens present to 6.45 Log10CFU/g (P < 0.001). Proinflammatory cytokines in the ileum were significantly increased, but the expression of ileal tight junction proteins occludin and claudin-1 was significantly reduced. Both BER and LMY ameliorated some of these observations. Compared with the PC group, the number of C. perfringens in the cecum was significantly decreased following treatment (P < 0.001), and growth performance and small intestine morphology were similar to those of the NC group (P > 0.05). IL-1β, IL-6, and TNF-α levels as well as occludin and claudin-1 expression were also significantly improved (P < 0.05). BER has the potential to replace antibiotics for NE caused by C. perfringens.
Collapse
Affiliation(s)
- Lin Yuan
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450003, China
| | - Mengjie Li
- Bureau of Agriculture and Rural Affairs of Longting District, Kaifeng 475000, China
| | - Yingying Qiao
- Sumy National Agrarian University, Faculty of Biology and Technology, Kiev 03115, Ukraine
| | - Haoyu Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450003, China
| | - Litong Cui
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450003, China
| | - Mingfa Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450003, China
| |
Collapse
|
16
|
Cheng C, Yu X. Research Progress in Chinese Herbal Medicines for Treatment of Sepsis: Pharmacological Action, Phytochemistry, and Pharmacokinetics. Int J Mol Sci 2021; 22:11078. [PMID: 34681737 PMCID: PMC8540716 DOI: 10.3390/ijms222011078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection; the pathophysiology of sepsis is complex. The incidence of sepsis is steadily increasing, with worldwide mortality ranging between 30% and 50%. Current treatment approaches mainly rely on the timely and appropriate administration of antimicrobials and supportive therapies, but the search for pharmacotherapies modulating the host response has been unsuccessful. Chinese herbal medicines, i.e., Chinese patent medicines, Chinese herbal prescriptions, and single Chinese herbs, play an important role in the treatment of sepsis through multicomponent, multipathway, and multitargeting abilities and have been officially recommended for the management of COVID-19. Chinese herbal medicines have therapeutic actions promising for the treatment of sepsis; basic scientific research on these medicines is increasing. However, the material bases of most Chinese herbal medicines and their underlying mechanisms of action have not yet been fully elucidated. This review summarizes the current studies of Chinese herbal medicines used for the treatment of sepsis in terms of clinical efficacy and safety, pharmacological activity, phytochemistry, bioactive constituents, mechanisms of action, and pharmacokinetics, to provide an important foundation for clarifying the pathogenesis of sepsis and developing novel antisepsis drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China;
| | | |
Collapse
|
17
|
Duan Q, Liu T, Huang C, Shao Q, Ma Y, Wang W, Liu T, Sun J, Fang J, Huang G, Chen Z. The Chinese Herbal Prescription JieZe-1 Inhibits Membrane Fusion and the Toll-like Receptor Signaling Pathway in a Genital Herpes Mouse Model. Front Pharmacol 2021; 12:707695. [PMID: 34630083 PMCID: PMC8497740 DOI: 10.3389/fphar.2021.707695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Chinese herbal prescription JieZe-1 is effective for genital herpes with no visible adverse effects clinically. It showed an excellent anti-HSV-2 effect in vitro. However, its mechanism of anti-HSV-2 effect in vivo remains unclear. This study was designed to evaluate the anti-HSV-2 effect of JieZe-1 and berberine in a genital herpes mouse model and explore the underlying mechanism. The fingerprint of JieZe-1 was determined by high-performance liquid chromatography. First, we optimized a mouse model of genital herpes. Next, the weight, symptom score, morphological changes, viral load, membrane fusion proteins, critical proteins of the Toll-like receptor signaling pathway, cytokines, and immune cells of vaginal tissue in mice at different time points were measured. Finally, we treated the genital herpes mouse model with JieZe-1 gel (2.5, 1.5, and 0.5 g/ml) and tested the above experimental indexes at 12 h and on the 9th day after modeling. JieZe-1 improved the symptoms, weight, and histopathological damage of genital herpes mice, promoted the keratin repair of tissues, and protected organelles to maintain the typical morphology of cells. It downregulated the expression of membrane fusion proteins, critical proteins of the Toll-like receptor signaling pathway, cytokines, and immune cells. The vaginal, vulvar, and spinal cord viral load and vaginal virus shedding were also significantly reduced. In summary, JieZe-1 shows significant anti-HSV-2 efficacy in vivo. The mechanism is related to the inhibition of membrane fusion, the Toll-like receptor signaling pathway, inflammatory cytokines, and cellular immunity. However, berberine, the main component of JieZe-1 monarch medicine, showed no efficacy at a concentration of 891.8 μM (0.3 mg/ml).
Collapse
Affiliation(s)
- Qianni Duan
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Liu
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Huang
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Shao
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggui Ma
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjia Wang
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianli Liu
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Sun
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo Fang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangying Huang
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Chen
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Cao YY, Wang ZH, Xu QC, Chen Q, Wang Z, Lu WH. Sepsis induces variation of intestinal barrier function in different phase through nuclear factor kappa B signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:375-383. [PMID: 34187954 PMCID: PMC8255122 DOI: 10.4196/kjpp.2021.25.4.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/15/2022]
Abstract
The intestinal barrier function disrupted in sepsis, while little is known about the variation in different phases of sepsis. In this study, mouse models of sepsis were established by caecal ligation and puncture (CLP). The H&E staining of sections and serum diamine oxidase concentration were evaluated at different timepoint after CLP. TUNEL assay and EdU staining were performed to evaluate the apoptosis and proliferation of intestinal epithelium. Relative protein expression was assessed by Western blotting and serum concentrations of pro-inflammatory cytokines was measured by ELISA. The disruption of intestinal barrier worsened in the first 24 h after the onset of sepsis and gradually recovered over the next 24 h. The percentage of apoptotic cell increased in the first 24 h and dropped at 48 h, accompanied with the proliferative rate of intestinal epithelium inhibited in the first 6 h and regained in the later period. Furthermore, the activity of nuclear factor kappa B (NF-κB) presented similar trend with the intestinal barrier function, shared positive correction with apoptosis of intestinal epithelium. These findings reveal the conversion process of intestinal barrier function in sepsis and this process is closely correlated with the activity of NF-κB signaling.
Collapse
Affiliation(s)
- Ying-Ya Cao
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Zhong-Han Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Qian-Cheng Xu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Qun Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Zhen Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Wei-Hua Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
19
|
Zhou HC, Guo CA, Yu WW, Yan XY, Long JP, Liu ZC, Liang XQ, Liu HB. Zizyphus jujuba cv. Muzao polysaccharides enhance intestinal barrier function and improve the survival of septic mice. J Food Biochem 2021; 45:e13722. [PMID: 33855723 DOI: 10.1111/jfbc.13722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to examine the role of Zizyphus jujuba cv. Muzao polysaccharides (ZJPs) in protecting intestinal barrier function and the survival of septic mice. The sepsis mouse model was generated through cecal ligation and puncture (CLP) to observe the effect of ZJPs on the function of the intestinal barrier in the context of sepsis. We observed the clinical symptoms and survival time of the mice and evaluated serum inflammatory cytokines, intestinal pathological changes and intestinal permeability. Moreover, tight junction (TJ) proteins and apoptosis-associated proteins in intestinal tissue were examined. Finally, TLR4/NF-κB pathway-related proteins were measured in all groups. The results showed that pretreatment with ZJPs improved clinical and histological scores and reduced intestinal barrier permeability, and the levels of proinflammatory factors were decreased. Pretreatment with ZJPs also upregulated the levels of TJ proteins and downregulated the expression of proapoptotic proteins. Moreover, the activation of TLR4/NF-κB signaling was partly inhibited in septic mice by ZJPs pretreatment. The current study provides evidence that ZJPs have the potential to protect intestinal barrier function and improve the survival of septic mice via the attenuation of TLR4/NF-κB inflammatory signaling. PRACTICAL APPLICATIONS: This study reports the potential protective effect of ZJPs against cecal ligation and puncture (CLP)-induced sepsis. Our data reveal that CLP induced damage to the gut mucosal barrier, inflammation, and apoptosis in intestinal tissues. However, pretreatment with ZJPs improved clinical and histological scores, reduced intestinal barrier permeability, and decreased the levels of proinflammatory factors in mice. Pretreatment with ZJPs also upregulated the levels of TJ proteins and downregulated the expression of proapoptotic proteins. Moreover, the activation of TLR4/NF-κB signaling was partly inhibited in septic mice after ZJPs pretreatment. These findings provide evidence that pretreatment with ZJPs has the potential to attenuate CLP-induced gut damage in mice by restraining inflammation and apoptosis via the attenuation of NF-κB signaling. It provides a basis for further study of ZJPs in sepsis.
Collapse
Affiliation(s)
- Hai-Cun Zhou
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Chang-An Guo
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Wen-Wen Yu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Xin-Yan Yan
- Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China
| | - Jian-Ping Long
- Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China
| | - Zhi-Chang Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Xiao-Qin Liang
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,Pathology Department, Gansu Province People Hospital, Lanzhou, P.R. China
| | - Hong-Bin Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,Clinical Medical College, Northwest Minzu University, Lanzhou, P.R. China
| |
Collapse
|
20
|
Alikiaii B, Bagherniya M, Askari G, Johnston TP, Sahebkar A. The role of phytochemicals in sepsis: A mechanistic and therapeutic perspective. Biofactors 2021; 47:19-40. [PMID: 33217777 DOI: 10.1002/biof.1694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Sepsis and septic shock are still a leading cause of mortality and morbidity in intensive care units worldwide. Sepsis is an uncontrolled and excessive response of the innate immune system toward the invading infectious microbes, characterized by the hyper-production of pro-inflammatory mediators such as interleukin (IL)-1β, IL-6, tumor-necrosis factor (TNF)-α, and high-mobility group box 1 (HMGB1). In severe sepsis, the overwhelming production of pro-inflammatory cytokines and reactive oxygen species may compromise organ function and lead to the induction of abnormal apoptosis in different organs, resulting in multiple organ dysfunction syndrome and death. Hence, compounds that are able to attenuate inflammatory responses may have therapeutic potential for sepsis treatment. Understanding the pathophysiology and underlying molecular mechanisms of sepsis may provide useful insights in the discovery and development of new effective therapeutics. Therefore, numerous studies have invested much effort into elucidating the mechanisms involved with the onset and development of sepsis. The present review mainly focuses on the molecules and signaling pathways involved in the pathogenicity of sepsis. Additionally, several well-known natural bioactive herbal compounds and phytochemicals, which have shown protective and therapeutic effects with regard to sepsis, as well as their mechanisms of action, are presented. This review suggests that these phytochemicals are able to attenuate the overwhelming inflammatory responses developed during sepsis by modulating different signaling pathways. Moreover, the anti-inflammatory and cytoprotective activities of phytochemicals make them potent compounds to be included as complementary therapeutic agents in the diets of patients suffering from sepsis in an effort to alleviate sepsis and its life-threatening complications, such as multi-organ failure.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Halal Research Center of IRI, FDA, Tehran, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
21
|
A New Co-Crystal of Synthetic Drug Rosiglitazone with Natural Medicine Berberine: Preparation, Crystal Structures, and Dissolution. Molecules 2020; 25:molecules25184288. [PMID: 32962058 PMCID: PMC7570454 DOI: 10.3390/molecules25184288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
A co-crystal of rosiglitazone (Rsg) with berberine (Bbr), Rsg-Bbr, was prepared by the solvent evaporation method and characterized. The results showed that the electrostatic attraction existed between the nitrogen anion of rosiglitazone and the quaternary ammonium cation of berberine, and C-H···O hydrogen bonds were formed between Rsg and Bbr. In the crystal structure, rosiglitazone molecules stack into a supramolecular layer through π-π interactions while π-π interactions between berberine cations also result in a similar layer. The co-crystal presented a low moisture adsorption curve in the range of 0−95% relative humidity values at 25 °C. The improved dissolution rate of rosiglitazone in pH = 6.8 buffer solution could be achieved after forming co-crystal.
Collapse
|
22
|
Abstract
Plants are a rich source of new antiviral, pharmacologically active agents. The naturally occurring plant alkaloid berberine (BBR) is one of the phytochemicals with a broad range of biological activity, including anticancer, anti-inflammatory and antiviral activity. BBR targets different steps in the viral life cycle and is thus a good candidate for use in novel antiviral drugs and therapies. It has been shown that BBR reduces virus replication and targets specific interactions between the virus and its host. BBR intercalates into DNA and inhibits DNA synthesis and reverse transcriptase activity. It inhibits replication of herpes simplex virus (HSV), human cytomegalovirus (HCMV), human papillomavirus (HPV), and human immunodeficiency virus (HIV). This isoquinoline alkaloid has the ability to regulate the MEK-ERK, AMPK/mTOR, and NF-κB signaling pathways, which are necessary for viral replication. Furthermore, it has been reported that BBR supports the host immune response, thus leading to viral clearance. In this short review, we focus on the most recent studies on the antiviral properties of berberine and its derivatives, which might be promising agents to be considered in future studies in the fight against the current pandemic SARS-CoV-2, the virus that causes COVID-19.
Collapse
|
23
|
Chen CY, Kao CL, Liu CM. The Cancer Prevention, Anti-Inflammatory and Anti-Oxidation of Bioactive Phytochemicals Targeting the TLR4 Signaling Pathway. Int J Mol Sci 2018; 19:ijms19092729. [PMID: 30213077 PMCID: PMC6164406 DOI: 10.3390/ijms19092729] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors (TLRs) are a well-known family of pattern recognition receptors that play an important role in a host immune system. TLR triggering leads to the induction of pro-inflammatory cytokines and chemokines, driving the activation of both innate and adaptive immunity. Recently, an increasing number studies have shown the link between TLRs and cancer. Among them, the toll-like receptor 4 (TLR4) signaling pathway is associated with inflammatory response and cancer progression. Dietary phytochemicals are potential modulators of immunological status with various pharmacological properties including anti-cancer, anti-oxidant and anti-inflammatory. Curcumin, 6-gingerol, 6-shogaol, 1-dehydro-10-gingerdione, epigallocatechin gallate (EGCG), luteolin, quercetin, resveratrol, caffeic acid phenethyl ester, xanthohumol, genistein, berberine, and sulforaphane can inhibit TLR4 activation. The aim of the present review is to describe the role of the TLR4 signaling pathway between inflammatory response and cancer progression. We further introduce bioactive phytochemicals with potential anti-inflammation and chemoprevention by inhibiting TLR activation.
Collapse
Affiliation(s)
- Chung-Yi Chen
- School of Medical and Health Sciences, Fooyin University, Ta-Liao District, Kaohsiung 83102, Taiwan.
| | - Chiu-Li Kao
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung County 92641, Taiwan.
| | - Chi-Ming Liu
- School of Medicine, Yichun University, Yuanzhou District, Yichun 336000, China.
| |
Collapse
|
24
|
Park HJ, Kang H, Jo J, Chung E, Kim S. Planar coil-based contact-mode magnetic stimulation: synaptic responses in hippocampal slices and thermal considerations. Sci Rep 2018; 8:13423. [PMID: 30194395 PMCID: PMC6128857 DOI: 10.1038/s41598-018-31536-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022] Open
Abstract
Implantable magnetic stimulation is an emerging type of neuromodulation using coils that are small enough to be implanted in the brain. A major advantage of this method is that stimulation performance could be sustained even though the coil is encapsulated by gliosis due to foreign body reactions. Magnetic fields can induce indirect electric fields and currents in neurons. Compared to transcranial magnetic stimulation, the coil size used in implantable magnetic stimulation can be greatly reduced. However, the size reduction is accompanied by an increase in coil resistance. Hence, the coil could potentially damage neurons from the excess heat generated. Therefore, it is necessary to study the stimulation performance and possible thermal damage by implantable magnetic stimulation. Here, we devised contact-mode magnetic stimulation (CMS), wherein magnetic stimulation was applied to hippocampal slices through a customized planar-type coil underneath the slice in the contact mode. With acute hippocampal slices, we investigated the synaptic responses to examine the field excitatory postsynaptic responses of CMS and the temperature rise during CMS. A long-lasting synaptic depression was exhibited in the CA1 stratum radiatum after CMS, while the temperature remained in a safe range so as not to seriously affect the neural responses.
Collapse
Affiliation(s)
- Hee-Jin Park
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Heekyung Kang
- Department of Biomedical Science and Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jihoon Jo
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Euiheon Chung
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
25
|
He Y, Yuan X, Zhou G, Feng A. Activation of IGF-1/IGFBP-3 signaling by berberine improves intestinal mucosal barrier of rats with acute endotoxemia. Fitoterapia 2018; 124:200-205. [DOI: 10.1016/j.fitote.2017.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
|
26
|
Hu M, Liu B. Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:325-32. [PMID: 27382348 PMCID: PMC4930900 DOI: 10.4196/kjpp.2016.20.4.325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 07/08/2015] [Accepted: 01/03/2016] [Indexed: 01/11/2023]
Abstract
Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS (1 µg/ml) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs.
Collapse
Affiliation(s)
- Min Hu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Bo Liu
- Deapartment of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
27
|
Wouters MM, Vicario M, Santos J. The role of mast cells in functional GI disorders. Gut 2016; 65:155-68. [PMID: 26194403 DOI: 10.1136/gutjnl-2015-309151] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Functional gastrointestinal disorders (FGIDs) are characterized by chronic complaints arising from disorganized brain-gut interactions leading to dysmotility and hypersensitivity. The two most prevalent FGIDs, affecting up to 16-26% of worldwide population, are functional dyspepsia and irritable bowel syndrome. Their etiopathogenic mechanisms remain unclear, however, recent observations reveal low-grade mucosal inflammation and immune activation, in association with impaired epithelial barrier function and aberrant neuronal sensitivity. These findings come to challenge the traditional view of FGIDs as pure functional disorders, and relate the origin to a tangible organic substrate. The mucosal inflammatory infiltrate is dominated by mast cells, eosinophils and intraepithelial lymphocytes in the intestine of FGIDs. It is well established that mast cell activation can generate epithelial and neuro-muscular dysfunction and promote visceral hypersensitivity and altered motility patterns in FGIDs, postoperative ileus, food allergy and inflammatory bowel disease. This review will discuss the role of mucosal mast cells in the gastrointestinal tract with a specific focus on recent advances in disease mechanisms and clinical management in irritable bowel syndrome and functional dyspepsia.
Collapse
Affiliation(s)
- Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, Leuven, Belgium
| | - Maria Vicario
- Neuro-immuno-gastroenterology Laboratory, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Javier Santos
- Neuro-immuno-gastroenterology Laboratory, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
28
|
Zhang B, Wang B, Cao S, Wang Y. Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:491-7. [PMID: 26557015 PMCID: PMC4637351 DOI: 10.4196/kjpp.2015.19.6.491] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/12/2015] [Accepted: 05/01/2015] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of p47phox translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress.
Collapse
Affiliation(s)
- Bo Zhang
- Intensive Care Unit, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300060, PR China. ; Intensive Care Unit, Tianjin First Center Hospital, Tianjin Institute of Emergency Medicine, Tianjin 300192, PR China
| | - Bing Wang
- Intensive Care Unit, Tianjin First Center Hospital, Tianjin Institute of Emergency Medicine, Tianjin 300192, PR China
| | - Shuhua Cao
- Intensive Care Unit, Tianjin First Center Hospital, Tianjin Institute of Emergency Medicine, Tianjin 300192, PR China
| | - Yongqiang Wang
- Intensive Care Unit, Tianjin First Center Hospital, Tianjin Institute of Emergency Medicine, Tianjin 300192, PR China
| |
Collapse
|