1
|
Xu Y, Wan Y, Liu F, Chen J, Tan T, Guo L. Simultaneous determination of seven anthraquinones in Cassiae semen by natural deep eutectic solvent extraction. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1246-1256. [PMID: 36191586 DOI: 10.1002/pca.3176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Anthraquinones are considered to be an important class of bioactive substances in Cassiae semen, and the content of anthraquinones is an essential indicator of the quality of Cassiae semen raw herbal materials. OBJECTIVES The present study aimed to propose a novel, efficient and effective ultra-high-performance liquid chromatography (UHPLC) method for the simultaneous determination of aurantio-obtusin, aloe-emodin, rhein, obtusin, emodin, chrysophanol and physcion, with the help of natural deep eutectic solvents (NADESs) as extraction solvents. METHODOLOGY NADESs were introduced to the simultaneous extraction of anthraquinones from Cassiae semen samples. Several NADESs were designed by menthol, choline chloride, d-glucose as hydrogen bond acceptors, with nine different acids and appropriate water as hydrogen bond donors. The parameters affecting the extraction efficiency of seven anthraquinones were demonstrated in detail. RESULTS Among the obtained NADESs, the highest extraction efficiency was demonstrated by a solution consisting of d-glucose, lactic acid and water with a molar ratio of 1:5:4. The seven anthraquinones were separated on an ACQUITY UPLC® BEH C18 column (2.1 mm × 100 mm, 1.8 μm) and detected within 12 min by a photodiode array (PDA) detector at 254 and 284 nm. The limits of detection and quantitation were from 1.00 to 7.26 μg/l and 3.29 to 24.22 μg/l, respectively. And Cassiae semen sample-based recoveries ranged from 81.13% to 113.78% with the relative standard deviation (RSD) (n = 6) of 1.4% to 10.1%. CONCLUSION The developed method demonstrated that NADESs were applied successfully to analyse the anthraquinones in Cassiae semen samples collected from different regions in China.
Collapse
Affiliation(s)
- Ying Xu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yiqun Wan
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, P. R. China
- Center of Analysis and Testing, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Fan Liu
- Center of Analysis and Testing, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Jinping Chen
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Ting Tan
- Center of Analysis and Testing, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Lan Guo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, P. R. China
- Center of Analysis and Testing, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
2
|
Chen C, Shi Y, Ma J, Chen Z, Zhang M, Zhao Y. Trigonelline reverses high glucose-induced proliferation, fibrosis of mesangial cells via modulation of Wnt signaling pathway. Diabetol Metab Syndr 2022; 14:28. [PMID: 35139912 PMCID: PMC8827266 DOI: 10.1186/s13098-022-00798-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of the end-stage renal disease (ESRD). The proliferation and apoptosis of mesangial cells induced by the activated Wnt/β-catenin pathway is crucial in DN. Trigonelline (TRL) is an alkaloid that has been shown to decrease proteinuria and protect the renal function in DN. However, the effect of TRL on the Wnt/β-catenin pathway of mesangial cells is unclear. METHODS As a cellular DN model, human mesangial cells (HMCs) were treated with high-glucose (HG). β-Catenin plasmid and control knockdown plasmids were transfected into HG-treated HMCs as β-catenin pcDNA and β-catenin siRNA groups, respectively. Cell viability was measured by MTT assay. Flow cytometry was used to detect the cell cycle. Cell apoptosis was evaluated by flow cytometry and terminal dUTP transferase nick end labeling (TUNEL) assay. mRNA expression of Wnt1, Wnt3a, Wnt4, Wnt5a, β-catenin, TCF4, Cyclin D1, and CDK4 were detected by qRT-PCR. Protein expression of Wnt4, Wnt5a, nucleus-β-catenin, TCF4, Cyclin D1, and CDK4 were detected by western blotting. RESULTS TRL significantly inhibited HG-induced HMCs viability over three-time points measured (24, 48, and 72 h). In addition, TRL suppressed the levels of fibronectin (FN) and collagen IV (Col IV) in HG-stimulated HMCs. Furthermore, TRL efficiently inhibited the activation of the Wnt/β-catenin signaling pathway in HG-stimulated HMCs. Taken together, these data indicated that TRL inhibited HG-induced HMCs proliferation and ECM expression via the modulation of the Wnt signaling pathway. CONCLUSIONS TRL reduces HG-induced cell injury by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chen Chen
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Yan Shi
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Jiulong Ma
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Zhen Chen
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Ming Zhang
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Yan Zhao
- Physical Examination Center, Jilin University Second Hospital, Street No. 218, Changchun, Ziqiang, People's Republic of China.
| |
Collapse
|
3
|
Li XZ, Jiang H, Xu L, Liu YQ, Tang JW, Shi JS, Yu XJ, Wang X, Du L, Lu Q, Li CL, Liu YW, Yin XX. Sarsasapogenin restores podocyte autophagy in diabetic nephropathy by targeting GSK3β signaling pathway. Biochem Pharmacol 2021; 192:114675. [PMID: 34252407 DOI: 10.1016/j.bcp.2021.114675] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
Podocyte injury following abnormal podocyte autophagy plays an indispensable role in diabetic nephropathy (DN), therefore, restoration of podocyte autophagy is considered as a feasible strategy for the treatment of DN. Here, we investigated the preventive effects of sarsasapogenin (Sar), the main active ingredient in Anemarrhena asphodeloides Bunge, on the podocyte injury in diabetic rats, and tried to illustrate the mechanisms underlying the effects in high glucose (HG, 40 mM)-treated podocytes (MPs). Diabetes model was established in rats with single streptozocin (60 mg· kg-1) intraperitoneal administration. The rats were then treated with Sar (20, 60 mg· kg-1· d-1, i.g.) or a positive control drug insulin (INS) (40 U· kg-1· d-1, i.h.) for 10 weeks. Our results showed that both Sar and insulin precluded the decreases of autophagy-related proteins (ATG5, Beclin1 and LC3B) and podocyte marker proteins (podocin, nephrin and synaptopodin) in the diabetic kidney. Furthermore, network pharmacology was utilized to assess GSK3β as the potential target involved in the action of Sar on DN and were substantiated by significant changes of GSK3β signaling in the diabetic kidney. The underlying protection mechanisms of Sar were explored in HG-treated MPs. Sar (20, 40 μM) or insulin (50 mU/L) significantly increased the expression of autophagy- related proteins and podocyte marker proteins in HG-treated MPs. Furthermore, Sar or insulin treatment efficiently regulatedphosphorylation at activation and inhibition sites of GSK3β. To sum up, this study certifies that Sar meliorates experimental DN through targeting GSK3β signaling pathway and restoring podocyte autophagy.
Collapse
Affiliation(s)
- Xi-Zhi Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Hong Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Liu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yi-Qi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Jia-Wei Tang
- School of Medical Information and Engineering, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Jia-Sen Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xiu-Juan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xue Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Cheng-Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
4
|
Insulin exacerbated high glucose-induced epithelial-mesenchymal transition in prostatic epithelial cells BPH-1 and prostate cancer cells PC-3 via MEK/ERK signaling pathway. Exp Cell Res 2020; 394:112145. [PMID: 32561286 DOI: 10.1016/j.yexcr.2020.112145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
As two most common progressive diseases of aging, type 2 diabetes mellitus (T2DM) and benign prostatic hyperplasia (BPH) were all characterized by endocrine and metabolic disorders. Here, our clinical study showed that there were significant differences in fasting blood glucose (FBG), fasting insulin (FINS), insulin resistance index (HOMA-IR) and prostate volume (PV) between simple BPH patients and BPH complicated with T2DM patients. Further analysis showed that HOMA-IR was positively correlated with PV in BPH complicated with T2DM patients. The in vitro experiment results showed that high glucose (HG) promoted EMT process in a glucose-dependent manner in human prostate hyperplasia cells (BPH-1) and prostate cancer cells (PC-3), and this pathological process was exacerbated by co-culture with insulin. Mechanistically, insulin-induced exacerbation of EMT was depended on the activation of MEK/ERK signaling pathway, and we suggested that insulin and its analogs should be used very carefully for the clinical antihyperglycemic treatment of BPH complicated with T2DM patients.
Collapse
|
5
|
Zeng X, Cai G, Liang T, Li Q, Yang Y, Zhong X, Zou X, Qin M, Mi Z. Rhubarb and Astragalus Capsule Attenuates Renal Interstitial Fibrosis in Rats with Unilateral Ureteral Obstruction by Alleviating Apoptosis through Regulating Transforming Growth Factor beta1 (TGF-β1)/p38 Mitogen-Activated Protein Kinases (p38 MAPK) Pathway. Med Sci Monit 2020; 26:e920720. [PMID: 32205836 PMCID: PMC7111584 DOI: 10.12659/msm.920720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rhubarb and astragalus capsule (RAC) has been used in the clinical treatment of chronic kidney disease for decades. However, the mechanism of RAC has not been fully elucidated. This study aimed to investigate the protective effect and mechanisms of RAC on unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis. MATERIAL AND METHODS The main components of RAC are detected by high-performance liquid phase (HPLC). A rat model of UUO was established, and a subset of rats underwent treatment with RAC. Renal function and renal pathology were examined at 14 days and 21 days after the UUO operation. Renal cell apoptosis was detected by TUNEL staining. The levels of Bcl-2 and Bax in the kidney were examined by western blotting, and the levels of collagen I, alpha-SMA, transforming growth factor (TGF)-ß1, and p38 MAPK in the kidneys were detected by immunohistochemistry. RESULTS High-performance liquid phase chromatography showed that RAC contained 1.12 mg/g aloe-emodin, 2.25 mg/g rhein, 1.75 mg/g emodin, and 4.50 mg/g chrysophanol. Administration of RAC significantly decreased the levels of urinary N-acetyl-ß-D-glucosaminidase (NAG), serum blood urea nitrogen (BUN), and creatinine (Scr) and also reduced renal tissue damages and interstitial fibrosis induced by UUO in rats. Moreover, the increased levels of collagen I, alpha-SMA, TGF-ß1, p38 MAPK, and the Bax/Bcl-2 ratio, as well as cell apoptosis in the kidney, were induced by UUO, and were all found deceased by RAC treatment. CONCLUSIONS RAC can improve the renal interstitial fibrosis induced by UUO, and the mechanism may be related to inhibition of renal tubular cell apoptosis via TGF-ß1/p38 MAPK pathway.
Collapse
Affiliation(s)
- Xian Zeng
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Guozhen Cai
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Taolin Liang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qingqing Li
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaobin Zhong
- Regenerative Medicine Research Center, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaoqin Zou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Mengyuan Qin
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Zhengcheng Mi
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
6
|
Li Y, Li Y, Zheng S. Inhibition of NADPH Oxidase 5 (NOX5) Suppresses High Glucose-Induced Oxidative Stress, Inflammation and Extracellular Matrix Accumulation in Human Glomerular Mesangial Cells. Med Sci Monit 2020; 26:e919399. [PMID: 32012145 PMCID: PMC7020764 DOI: 10.12659/msm.919399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The aim of this study was to explore the effects of NADPH oxidase 5 (NOX5) in high glucose-stimulated human glomerular mesangial cells (HMCs). Material/Methods Cells were cultured under normal glucose (NG) or high glucose (HG) conditions. Then, NOX5 siRNA was transfected into HG-treated HMCs. A Cell Counting Kit-8 assay, colony formation assay and 5-ethynyl-20-deoxyuridine (EDU) incorporation assay were applied to measure cell proliferative ability. In addition, the levels of oxidative stress factors including reactive oxygen species (ROS), malonaldehyde (MDA), NADPH, superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX), inflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, and monocyte chemoattractant protein-1 (MCP-1) in HMCs were detected by kits. Moreover, the expression of TLR4/NF-κB signaling and extracellular matrix (ECM) associated genes were evaluated by western blotting. Results The results revealed that the NOX5 was overexpressed in HG-treated HMCs. Silencing of NOX5 decreased proliferation of HMCs induced by HG. And NOX5 silencing alleviated the production of MDA and NADPH accompanied by an increase of SOD and GSH-PX levels. Additionally, the contents of TNF-α, IL-6, IL-1β, and MCP-1 were reduced after transfection with NOX5 siRNA. Furthermore, silencing of NOX5 deceased the expression of collagen I, collagen IV, TGF-β1, and fibronectin induced by HG stimulation. TLR4, MyD88, and phospho-NF-κB p65 expression were downregulated notably in NOX5 silencing group. Conclusions Taken together, these findings demonstrated that inhibition of NOX5 attenuated HG-induced HMCs oxidative stress, inflammation, and ECM accumulation, suggesting that NOX5 may serve as a potential therapeutic target for diabetic nephropathy (DN) treatment.
Collapse
Affiliation(s)
- Yingxin Li
- Department of Endocrinology, Second Clinical Medical College, Inner Mongolia University for Nationalities (Inner Mongolia Forestry General Hospital), Tongliao, Inner Mongolia, China (mainland)
| | - Yarong Li
- Department of Endocrinology, The Centre Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Shouhao Zheng
- Department of Nephrology, Taizhou First People's Hospital, Taizhou, Zhejiang, China (mainland)
| |
Collapse
|
7
|
Dai C, Li Y, Pan W, Wang G, Huang R, Bu Y, Liao X, Guo K, Gao F. Three-Dimensional High-Porosity Chitosan/Honeycomb Porous Carbon/Hydroxyapatite Scaffold with Enhanced Osteoinductivity for Bone Regeneration. ACS Biomater Sci Eng 2019; 6:575-586. [PMID: 33463242 DOI: 10.1021/acsbiomaterials.9b01381] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional honeycomb porous carbon (HPC) has attracted increasing attention in bioengineering due to excellent mechanical properties and a high surface-to-volume ratio. In this paper, a three-dimensional chitosan (CS)/honeycomb porous carbon/hydroxyapatite composite was prepared by nano-sized hydroxyapatite (nHA) on the HPC surface in situ deposition, dissolved in chitosan solution, and vacuum freeze-dried. The structure and composition of CS/HPC/nHA were characterized by scanning electron microscopy, transmission electron miscroscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy, and the porosity, swelling ratio, and mechanical properties of the scaffold were also tested. The as-prepared scaffolds possess hierarchical pores and organic-inorganic components, which are similar in composition and structure to bone tissues. The synthesized composite scaffold has high porosity and a certain mechanical strength. By culturing mouse bone marrow mesenchymal stem cells on the surface of the scaffold, it was confirmed that the scaffold facilitated its growth and promoted its differentiation into the osteogenesis direction. In vivo experiments further demonstrate that the CS/HPC/nHA composite scaffold has a significant advantage in promoting bone formation in the bone defect area. All the results suggested that the CS/HPC/nHA scaffolds have great application prospect in bone tissue engineering.
Collapse
Affiliation(s)
- Chengbai Dai
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China.,Pizhou City Hospital affiliated to Xuzhou Medical University, 221300 Pizhou, China
| | - Yang Li
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China
| | - Wenzhen Pan
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China
| | - Guoqiang Wang
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China
| | - Ruqi Huang
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China
| | - Yeyang Bu
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China
| | - Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Kaijin Guo
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002 Xuzhou, China
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| |
Collapse
|
8
|
Novel biphenyl diester derivative AB-38b inhibits NLRP3 inflammasome through Nrf2 activation in diabetic nephropathy. Cell Biol Toxicol 2019; 36:243-260. [PMID: 31768838 DOI: 10.1007/s10565-019-09501-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Inflammation reaction mediated by NLRP3 inflammasome and Nrf2-related oxidative stress are vital participants in the development of diabetic nephropathy (DN) and closely associated to kidney fibrosis. Nrf2, a known antioxidative transcription factor, has been reported to activate NLRP3 inflammasome through its downstream factors (HO-1, NQO1, etc.) recently. AB38b is a newly synthesized biphenyl diester derivative with a Nrf2 activation property. This research aims to evaluate the renal protective effects of AB-38b and to elucidate the anti-inflammation mechanisms involved. Type 2 diabetic mice induced by high fat diet with streptozocin (STZ) and high glucose-cultured mouse glomerular mesangial cells (GMCs) were used in current study. Results showed that administration of AB-38b improved the kidney function while attenuated renal fibrosis progression in diabetic mice together with reducing the extracellular matrix (ECM) accumulation of GMCs cultured in high glucose. Mechanistically, treatment with AB-38b significantly decreased the high level of NLRP3 inflammasome in diabetic condition by inhibiting the ROS/TXNIP/NLRP3 signaling pathway. And meanwhile, AB-38b treatment effectively improved Nrf2 signaling during diabetic condition. Furthermore, knocking down the gene expression of Nrf2 by siRNA in GMCs abolished the inhibition effect of AB-38b on NLRP3 inflammasome activation and ECM accumulation. Taken together, our data suggest that AB-38b was able to improve the renal function of diabetic mice, and the NLRP3 inflammasome inhibition effect of AB-38b was responsible for the renal protective effect. Further exploration indicate that Nrf2 plays pivotal role in AB-38b's attenuation of DN progression through inhibiting NLRP3 inflammasome activation.
Collapse
|
9
|
Zhou X, Chen C, Yin D, Zhao F, Bao Z, Zhao Y, Wang X, Li W, Wang T, Jin Y, Lv D, Lu Q, Yin X. A Variation in the ABCC8 Gene Is Associated with Type 2 Diabetes Mellitus and Repaglinide Efficacy in Chinese Type 2 Diabetes Mellitus Patients. Intern Med 2019; 58:2341-2347. [PMID: 31118371 PMCID: PMC6746626 DOI: 10.2169/internalmedicine.2133-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective Previous studies have suggested that variations in the ABCC8 gene may be closely associated with T2DM susceptibility and repaglinide response. However, these results have not been entirely consistent, and there are no related studies in a Chinese population, suggesting the need for further exploration. The current study investigated the associations of the ABCC8 rs1801261 polymorphism with type 2 diabetes mellitus (T2DM) susceptibility and repaglinide therapeutic efficacy in Chinese Han T2DM patients. Methods A total of 234 T2DM patients and 105 healthy subjects were genotyped for ABCC8 rs1801261 polymorphism by a polymerase chain reaction-restriction fragment length polymorphism assay. A total of 70 patients with the same genotypes of CYP2C8*3 139Arg and OATP1B1 521TT were randomized to orally take 3 mg repaglinide per day (1 mg each time before meals) for 8 consecutive weeks. The pharmacodynamic parameters of repaglinide and biochemical indicators were then determined before and after repaglinide treatment. Results The frequency of ABCC8 rs1801261 allele was higher in T2DM patients than in the control subjects (22.6% vs.11.0%, p<0.01). After repaglinide treatment, T2DM patients carrying genotype CT showed a significantly attenuated efficacy on FPG (p<0.01) and HbA1c (p<0.01) compared with those with genotype CC. Conclusion These results suggested that the ABCC8 rs1801261 polymorphism might influence T2DM susceptibility and the therapeutic effect of repaglinide in Chinese Han T2DM patients. This study was registered in the Chinese Clinical Trial Register on May 14, 2013 (No. ChiCTR-CCC13003536).
Collapse
Affiliation(s)
- Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Chunxia Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Di Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Feng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Zejun Bao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Yun Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Xi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Wei Li
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, People's Republic of China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, People's Republic of China
| | - Yingliang Jin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Dongmei Lv
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, People's Republic of China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| |
Collapse
|
10
|
Influence of high glucose on mesangial cell-derived exosome composition, secretion and cell communication. Sci Rep 2019; 9:6270. [PMID: 31000742 PMCID: PMC6472340 DOI: 10.1038/s41598-019-42746-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023] Open
Abstract
Mesangial cells stimulated with high glucose (HG) exhibit increased intracellular angiotensin II (AngII) synthesis that is correlated with the upregulation of AngII target genes, such as profibrotic cytokines. The intracrine effects of AngII can be mediated by several molecules transferred to other cells via exosomes (Exos), which play a key role in cellular communication under many physiological and pathological conditions. The aim of this study was to investigate the effects of exosomes derived from HG-stimulated human mesangial cells (HG-HMCs) on normal unstimulated HMCs. Exosomes from HMCs (C-Exos) and HG-HMCs (HG-Exos) were obtained from cell culture supernatants. HMCs were incubated with C-Exos or HG-Exos. HG stimulus induced a change in the amount but not the size of Exos. Both C-Exos and HG-Exos contained angiotensinogen and renin, but no angiotensin converting enzyme was detected. Compared with HMCs treated with C-Exos, HMCs treated with HG-Exos presented higher levels of fibronectin, angiotensinogen, renin, AT1 and AT2 receptors, indicating that HG-Exos modified the function of normal HMCs. These results suggest that the intercellular communication through Exos may have pathophysiological implications in the diabetic kidney.
Collapse
|
11
|
Chen F, Ma Y, Sun Z, Zhu X. Tangeretin inhibits high glucose-induced extracellular matrix accumulation in human glomerular mesangial cells. Biomed Pharmacother 2018; 102:1077-1083. [PMID: 29710524 DOI: 10.1016/j.biopha.2018.03.169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023] Open
Abstract
Tangeretin (5, 6, 7, 8, 4'-pentamethoxyflavone), a natural compound extracted from citrus plants, has been shown to possess a variety of pharmacological activities, including anti-oxidant, anti-tumor, cytostatic and anti-diabetic properties. However, the role of tangeretin in diabetic nephropathy (DN) has not yet been investigated. This study was undertaken to elucidate the effects of tangeretin on high glucose (HG)-induced oxidative stress and extracellular matrix (ECM) accumulation in human glomerular mesangial cells (MCs) and explore the underlying mechanisms. Our results showed that tangeretin significantly inhibited HG-induced the proliferation of MCs. In addition, tangeretin dramatically reduced the levels of reactive oxygen species (ROS) and malondialdhyde (MDA), and induced SOD activity, as well as inhibited the expression of fibronectin (FN) and collagen IV in HG-stimulated MCs. Furthermore, tangeretin efficiently prevented the activation of ERK signaling pathway in HG-stimulated MCs. Taken together, these data indicated that tangeretin inhibits HG-induced cell proliferation, oxidative stress and ECM expression in glomerular MCs, at least in part, through the inactivation of ERK signaling pathway. Therefore, tangeretin may be a potential agent in the treatment of DN.
Collapse
Affiliation(s)
- Fang Chen
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Yali Ma
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China.
| | - Zhiqiang Sun
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Xiaoguang Zhu
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| |
Collapse
|
12
|
Wu YC, Wu P, Li YB, Liu TC, Zhang L, Zhou YH. Natural deep eutectic solvents as new green solvents to extract anthraquinones from Rheum palmatum L. RSC Adv 2018; 8:15069-15077. [PMID: 35541349 PMCID: PMC9079993 DOI: 10.1039/c7ra13581e] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/16/2018] [Indexed: 01/20/2023] Open
Abstract
Natural deep eutectic solvents (NADESs) are efficient in extracting natural products. However, traditional organic solvents are toxic in the extraction of anthraquinones from Rheum palmatum L. To solve this problem, we applied natural deep eutectic solvent ultrasound-assisted extraction in this study for the extraction of total anthraquinones from R. palmatum L. Principal component analysis revealed that the selected NADES which consisted of lactic acid, glucose and water (LGH), was highly efficient in extracting anthraquinones from R. palmatum L. The ratio of lactic acid/glucose and the addition of water in LGH were investigated via a single-factor experiment. With a lactic acid/glucose ratio of 5 : 1 (mol/mol), and 10% of water (v/v), LGH had a high extraction yield to anthraquinones. Optimized by response surface methodology (RSM), the optimized extraction conditions of extraction time, extraction temperature and solvent-to-solid ratio of 1.5 h, 82 °C and 26 mL g−1, respectively. Under optimum conditions, the extraction yields of aloe-emodin, rhein, emodin, chrysophanol, physcion and total anthraquinones were 2.60 ± 0.01, 5.78 ± 0.02, 2.21 ± 0.02, 5.87 ± 0.02, 8.81 ± 0.01 and 25.27 ± 0.07 mg g−1, respectively. The enrichment and separation of five anthraquinones in LGH extraction solution were efficiently achieved using DM130 macroporous resin, with purities of 90.98%, 96.67%, 92.37%, 95.80% and 91.61% as indicated by HPLC, and recovery yields of 84.08%, 79.51%, 84.96%, 81.83% and 78.35%, respectively. LGH was environmentally friendly and highly efficient in extracting anthraquinones from R. palmatum L., and NADESs showed potential for the extraction of effective components from natural products. Natural deep eutectic solvents ultrasound-assisted extraction (NADES-UAE) was applied to extract total anthraquinones from Rheum palmatum L.![]()
Collapse
Affiliation(s)
- Y. C. Wu
- College of Science
- Sichuan Agricultural University
- Ya'an
- China
| | - P. Wu
- College of Science
- Sichuan Agricultural University
- Ya'an
- China
| | - Y. B. Li
- College of Science
- Sichuan Agricultural University
- Ya'an
- China
- School of Tourism and Resource Environment
| | - T. C. Liu
- College of Science
- Sichuan Agricultural University
- Ya'an
- China
| | - L. Zhang
- College of Science
- Sichuan Agricultural University
- Ya'an
- China
| | - Y. H. Zhou
- Triticeae Research Institute
- Sichuan Agricultural University
- Chengdu
- P. R. China
| |
Collapse
|
13
|
Zhang GY, Wang DD, Cao Z, Wei T, Liu CX, Wei QL. Sitagliptin ameliorates high glucose-induced cell proliferation and expression of the extracellular matrix in glomerular mesangial cells. Exp Ther Med 2017; 14:3862-3867. [PMID: 29042993 DOI: 10.3892/etm.2017.5002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/17/2017] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most important causes that leads to end-stage renal disease and the efficacy of strategies currently available for the prevention of DN remains unsatisfactory. Sitagliptin (SIT), which is a dipeptidyl peptidase-4 inhibitor, exhibited a modest beneficial effect on glycated hemoglobin levels and is capable of ameliorating renal ischemia reperfusion injury. By determining the expression of transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), collagen type IV (ColIV) and fibronectin (FN) levels in high glucose-cultured glomerular mesangial cells (MCs), the present study aimed to assess the anti-proliferative and anti-fibrotic effects of SIT on the therapeutic potential for the prevention of DN and its mechanism. Specifically, cell proliferation was determined via cell counting kit-8 assay, and the expression levels of TGF-β1 and CTGF mRNA were detected by reverse transcription polymerase chain reaction analysis. Furthermore, the secretion of TGF-β1, CTGF, ColIV and FN proteins was measured via enzyme-linked immunosorbent assays. The results demonstrated that high glucose induced the proliferation of MCs and enhanced the expression of TGF-β1, CTGF, ColIV and FN. Furthermore, treatment with SIT inhibited cell proliferation and the expression of TGF-β1, CTGF, ColIV and FN induced by high glucose. In conclusion, SIT inhibits cell proliferation and the expression of the major extracellular matrix proteins induced by high glucose, indicating its value for treating or relieving DN.
Collapse
Affiliation(s)
- Guan-Ying Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.,Office of Academic Affairs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zheng Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Tong Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chen-Xu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Qun-Li Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|