3
|
Vairappan B, Sundhar M, Srinivas BH. Resveratrol Restores Neuronal Tight Junction Proteins Through Correction of Ammonia and Inflammation in CCl 4-Induced Cirrhotic Mice. Mol Neurobiol 2019; 56:4718-4729. [PMID: 30377987 DOI: 10.1007/s12035-018-1389-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
Abstract
Systemic inflammation and ammonia (hyperammonemia) act synergistically in the pathogenesis of hepatic encephalopathy (HE), the neurobehavioral sequelae of advanced liver disease. In cirrhotic patients, we have recently observed elevated levels of circulating neuronal tight junction (TJ) protein, zonula occludens 1 (ZO-1), reflective of a change to blood-brain barrier (BBB) integrity. Moreover, ZO-1 levels positively correlated with hyperammonemia, although any potential relationship remains unclear. Using a carbon tetrachloride (CCl4)-induced mouse model of cirrhosis, we primarily looked to explore the relationship between neuronal TJ protein expression and hyperammonemia. Secondarily, we assessed the potential role of a natural antioxidant, resveratrol, on neuronal TJ protein expression and hyperammonemia. Over 12 weeks, male Swiss mice were randomized (n = 8/group) to either naïve controls or induced cirrhosis, using two doses of intraperitoneal CCl4 (0.5 ml/kg/week). After 12 weeks, naïve and cirrhotic mice were randomized to receive either 2 weeks of par-oral resveratrol (10 mg/kg). Plasma samples were analyzed for ammonia, liver biochemistry (ALT, AST, albumin, and bilirubin), and pro-inflammatory cytokines (TNF-α and IL-1β), and brain tissue for brain water content, TJ protein expression (e.g., ZO-1, claudin 5, and occludin), and tissue oxidative stress and inflammatory markers (NF-κB and iNOS) using western blotting. Compared to naïve mice, cirrhosis significantly increased circulating ammonia, brain water, ALT, AST, TNF-α, IL-1β, 4HNE, NF-κB, and iNOS levels, with a concomitant reduction in all TJ proteins (P < 0.05, respectively). In cirrhotic mice, resveratrol treatment ameliorated these changes significantly (P < 0.05, respectively). Our findings provide evidence for a causal association between hyperammonemia and inflammation in cirrhosis linked to TJ protein alterations, BBB disruption, and HE predilection. Moreover, this is the first report of a potential role for resveratrol as a novel therapeutic approach to managing neurological sequelae complicating cirrhosis.
Collapse
Affiliation(s)
- Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantari Nagar, Pondicherry, 605 006, India.
| | - M Sundhar
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantari Nagar, Pondicherry, 605 006, India
| | - B H Srinivas
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| |
Collapse
|
4
|
Iwata S, Imai T, Shimazawa M, Ishibashi T, Hayashi M, Hara H, Nakamura S. Protective effects of the astaxanthin derivative, adonixanthin, on brain hemorrhagic injury. Brain Res 2018; 1698:130-138. [PMID: 30092231 DOI: 10.1016/j.brainres.2018.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 11/17/2022]
Abstract
Astaxanthin is beneficial for human health and is used as a dietary supplement. The present study was performed in order to examine the protective effects of the astaxanthin derivative, adonixanthin, against cell death caused by hemoglobin, collagenase, lipopolysaccharide, and hydrogen peroxide, which are associated with hemorrhagic brain injury. In an in vitro study, adonixanthin exerted cytoprotective effects against each type of damage, and its effects were stronger than those of astaxanthin. The increased production of reactive oxygen species in human brain endothelial cells in the hemoglobin treatment group was inhibited by adonixanthin. Moreover, adonixanthin suppressed cell death in SH-SY5Y cells. In an in vivo study, the oral administration of adonixanthin improved blood-brain barrier hyper-permeability in an autologous blood ICH model. We herein demonstrated for the first time that adonixanthin exerted protective effects against hemorrhagic brain damage by activating antioxidant defenses, and has potential as a protectant against intracerebral hemorrhage.
Collapse
Affiliation(s)
- Sena Iwata
- Molecular Phamacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Takahiko Imai
- Molecular Phamacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Phamacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Takashi Ishibashi
- Biotechnology Business Group, Biotechnology Business Unit, High Performance Materials Company, JXTG Nippon Oil & Energy Corporation, Tokyo, Japan
| | - Masahiro Hayashi
- Biotechnology Business Group, Biotechnology Business Unit, High Performance Materials Company, JXTG Nippon Oil & Energy Corporation, Tokyo, Japan
| | - Hideaki Hara
- Molecular Phamacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Phamacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
7
|
Velagapudi R, El-Bakoush A, Lepiarz I, Ogunrinade F, Olajide OA. AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Mol Cell Biochem 2017; 435:149-162. [PMID: 28551846 PMCID: PMC5632349 DOI: 10.1007/s11010-017-3064-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 05/05/2017] [Indexed: 12/26/2022]
Abstract
Thymoquinone is a known inhibitor of neuroinflammation. However, the mechanism(s) involved in its action remain largely unknown. In this study, we investigated the roles of cellular reactive oxygen species (ROS), 5' AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) in the anti-neuroinflammatory activity of thymoquinone. We investigated effects of the compound on ROS generation in LPS-activated microglia using the fluorescent 2',7'-dichlorofluorescin diacetate (DCFDA)-cellular ROS detection. Immunoblotting was used to detect protein levels of p40phox, gp91phox, AMPK, LKB1 and SIRT1. Additionally, ELISA and immunofluorescence were used to detect nuclear accumulation of SIRT1. NAD+/NADH assay was also performed. The roles of AMPK and SIRT1 in anti-inflammatory activity of thymoquinone were investigated using RNAi and pharmacological inhibition. Our results show that thymoquinone reduced cellular ROS generation, possibly through inhibition of p40phox and gp91phox protein. Treatment of BV2 microglia with thymoquinone also resulted in elevation in the levels of LKB1 and phospho-AMPK proteins. We further observed that thymoquinone reduced cytoplasmic levels and increased nuclear accumulation of SIRT1 protein and increased levels of NAD+. Results also show that the anti-inflammatory activity of thymoquinone was abolished when the expressions of AMPK and SIRT1 were suppressed by RNAi or pharmacological antagonists. Pharmacological antagonism of AMPK reversed thymoquinone-induced increase in SIRT1. Taken together, we propose that thymoquinone inhibits cellular ROS generation in LPS-activated BV2 microglia. It is also suggested that activation of both AMPK and NAD+/SIRT1 may contribute to the anti-inflammatory, but not antioxidant activity of the compound in BV2 microglia.
Collapse
Affiliation(s)
- Ravikanth Velagapudi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Abdelmeneim El-Bakoush
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Izabela Lepiarz
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Folashade Ogunrinade
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK.
| |
Collapse
|
9
|
Brown JA, Codreanu SG, Shi M, Sherrod SD, Markov DA, Neely MD, Britt CM, Hoilett OS, Reiserer RS, Samson PC, McCawley LJ, Webb DJ, Bowman AB, McLean JA, Wikswo JP. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. J Neuroinflammation 2016; 13:306. [PMID: 27955696 PMCID: PMC5153753 DOI: 10.1186/s12974-016-0760-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/07/2016] [Indexed: 11/24/2022] Open
Abstract
Background Understanding blood-brain barrier responses to inflammatory stimulation (such as lipopolysaccharide mimicking a systemic infection or a cytokine cocktail that could be the result of local or systemic inflammation) is essential to understanding the effect of inflammatory stimulation on the brain. It is through the filter of the blood-brain barrier that the brain responds to outside influences, and the blood-brain barrier is a critical point of failure in neuroinflammation. It is important to note that this interaction is not a static response, but one that evolves over time. While current models have provided invaluable information regarding the interaction between cytokine stimulation, the blood-brain barrier, and the brain, these approaches—whether in vivo or in vitro—have often been only snapshots of this complex web of interactions. Methods We utilize new advances in microfluidics, organs-on-chips, and metabolomics to examine the complex relationship of inflammation and its effects on blood-brain barrier function ex vivo and the metabolic consequences of these responses and repair mechanisms. In this study, we pair a novel dual-chamber, organ-on-chip microfluidic device, the NeuroVascular Unit, with small-volume cytokine detection and mass spectrometry analysis to investigate how the blood-brain barrier responds to two different but overlapping drivers of neuroinflammation, lipopolysaccharide and a cytokine cocktail of IL-1β, TNF-α, and MCP1,2. Results In this study, we show that (1) during initial exposure to lipopolysaccharide, the blood-brain barrier is compromised as expected, with increased diffusion and reduced presence of tight junctions, but that over time, the barrier is capable of at least partial recovery; (2) a cytokine cocktail also contributes to a loss of barrier function; (3) from this time-dependent cytokine activation, metabolic signature profiles can be obtained for both the brain and vascular sides of the blood-brain barrier model; and (4) collectively, we can use metabolite analysis to identify critical pathways in inflammatory response. Conclusions Taken together, these findings present new data that allow us to study the initial effects of inflammatory stimulation on blood-brain barrier disruption, cytokine activation, and metabolic pathway changes that drive the response and recovery of the barrier during continued inflammatory exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0760-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacquelyn A Brown
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Mingjian Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stacy D Sherrod
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dmitry A Markov
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - M Diana Neely
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Clayton M Britt
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Orlando S Hoilett
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Ronald S Reiserer
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Philip C Samson
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Lisa J McCawley
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Donna J Webb
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Aaron B Bowman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - John A McLean
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - John P Wikswo
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA. .,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA. .,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|