1
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
2
|
Chen G, Yu Y, Zhu Y, Nagashimada M, Wang Y, Nagata N, Xu L. Cenicriviroc Suppresses and Reverses Steatohepatitis by Regulating Macrophage Infiltration and M2 Polarization in Mice. Endocrinology 2024; 165:bqae069. [PMID: 38862137 DOI: 10.1210/endocr/bqae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
The inhibition of hepatic macrophage and Kupfer cell recruitment and activation is a potential strategy for treating insulin resistance and nonalcoholic steatohepatitis (NASH). Cenicriviroc (CVC), a dual C-C chemokine receptor 2 (CCR2) and CCR5 antagonist, has shown antifibrotic activity in murine models of NASH and has been evaluated in clinical trials on patients with NASH. This study investigated the effects of CVC on macrophage infiltration and polarization in a lipotoxic model of NASH. C57BL/6 mice were fed a high-cholesterol, high-fat (CL) diet or a CL diet containing 0.015% CVC (CL + CVC) for 12 weeks. Macrophage recruitment and activation were assayed by immunohistochemistry and flow cytometry. CVC supplementation attenuated excessive hepatic lipid accumulation and peroxidation and alleviated glucose intolerance and hyperinsulinemia in the mice that were fed the CL diet. Flow cytometry analysis revealed that compared with the CL group, mice fed the CL + CVC diet had fewer M1-like macrophages, more M2-like macrophages, and fewer T cell counts, indicating that CVC caused an M2-dominant shift of macrophages in the liver. Similarly, CVC decreased lipopolysaccharide-stimulated M1-like macrophage activation, whereas it increased interleukin-4-induced M2-type macrophage polarization in vitro. In addition, CVC attenuated hepatic fibrosis by repressing hepatic stellate cell activation. Lastly, CVC reversed insulin resistance as well as steatosis, inflammation, and fibrosis of the liver in mice with pre-existing NASH. In conclusion, CVC prevented and reversed hepatic steatosis, insulin resistance, inflammation, and fibrogenesis in the liver of NASH mice via M2 macrophage polarization.
Collapse
Affiliation(s)
- Guanliang Chen
- Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Ishikawa, Japan
- Jiangsu Carephar Pharmaceutical Co. Ltd., No.6 Xuzhuang Road, Xuanwu District, Nanjing 210014, Jiangsu, China
| | - Yanwen Yu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuqin Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Mayumi Nagashimada
- Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Ishikawa, Japan
| | - Yajiao Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Naoto Nagata
- Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Ishikawa, Japan
| | - Liang Xu
- Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Ishikawa, Japan
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| |
Collapse
|
3
|
Hegazi OE, Alalalmeh SO, Shahwan M, Jairoun AA, Alourfi MM, Bokhari GA, Alkhattabi A, Alsharif S, Aljehani MA, Alsabban AM, Almtrafi M, Zakri YA, AlMahmoud A, Alghamdi KM, Ashour AM, Alorfi NM. Exploring Promising Therapies for Non-Alcoholic Fatty Liver Disease: A ClinicalTrials.gov Analysis. Diabetes Metab Syndr Obes 2024; 17:545-561. [PMID: 38327733 PMCID: PMC10847589 DOI: 10.2147/dmso.s448476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common disease and has been increasing in recent years. To date, no FDA-approved drug specifically targets NAFLD. Methods The terms "Non-alcoholic Fatty Liver Disease" and "NAFLD" were used in a search of ClinicalTrials.gov on August 24, 2023. Two evaluators independently examined the trials using predetermined eligibility criteria. Studies had to be interventional, NAFLD focused, in Phase IV, and completed to be eligible for this review. Results The ClinicalTrials.gov database was searched for trials examining pharmacotherapeutics in NAFLD. The search revealed 1364 trials, with 31 meeting the inclusion criteria. Out of these, 19 were finalized for evaluation. The dominant intervention model was Parallel. The most prevalent studies were in Korea (26.3%) and China (21.1%). The most common intervention was metformin (12.1%), with others like Exenatide and Pioglitazone accounting for 9.1%. Conclusion Therapeutics used to manage NAFLD are limited. However, various medications offer potential benefits. Further investigations are definitely warranted.
Collapse
Affiliation(s)
- Omar E Hegazi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Samer O Alalalmeh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai, United Arab Emirates
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mansour M Alourfi
- Internal medicine Department, King Faisal Medical City for Southern Region, Abha, Saudi Arabia
- Department of gastroenterology, East Jeddah hospital, Jeddah, Saudi Arabia
| | | | | | - Saeed Alsharif
- Gastroenterology Department, Armed force Hospital of southern region, Khamis Mushait, Saudi Arabia
| | - Mohannad Abdulrahman Aljehani
- Division of Gastroenterology, Department of Medicine, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | | | - Mohammad Almtrafi
- Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Ysear Abdulaziz Zakri
- Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Abdullah AlMahmoud
- Gastroenterology Section, Internal Medicine Department, King Fahad Hospital, Jeddah, Saudi Arabia
| | - Khalid Mohammed Alghamdi
- Gastroenterology Section, Internal Medicine Department, King Fahad Hospital, Jeddah, Saudi Arabia
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
Wang J, Wang L, Zhang XJ, Zhang P, Cai J, She ZG, Li H. Recent updates on targeting the molecular mediators of NAFLD. J Mol Med (Berl) 2023; 101:101-124. [PMID: 36792729 DOI: 10.1007/s00109-022-02282-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common disease worldwide in an era of rapid economic growth. NAFLD is a multifactorial disease, involving multiple genetic, metabolic, and environmental factors, and is closely associated with metabolic syndrome, obesity, and cardiovascular disease. NAFLD can be classified into nonalcoholic fatty liver disease (NAFL) and nonalcoholic steatohepatitis (NASH), which can both progress to cirrhosis and even hepatocellular carcinoma (HCC). Due to the enormous burden of NAFLD and its complications, no FDA-approved drugs for the treatment of NAFLD are on the market, and therapeutic targets and drug therapies are being actively investigated. In view of the various pathological mechanisms of NAFLD, numbers of preclinical studies and clinical trials have made rapid progress. This review mainly summarizes the most recently characterized mechanisms and therapeutic targets in each mechanism of NAFLD, focusing on the mechanism and application potential.
Collapse
Affiliation(s)
- Jia Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Translation Medicine Research Center, Yangtze University, Huanggang, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China.
- Institute of Model Animal, Wuhan University, Wuhan, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China.
- Institute of Model Animal, Wuhan University, Wuhan, China.
- Translation Medicine Research Center, Yangtze University, Huanggang, China.
| |
Collapse
|
5
|
Fang T, Wang H, Pan X, Little PJ, Xu S, Weng J. Mouse models of nonalcoholic fatty liver disease (NAFLD): pathomechanisms and pharmacotherapies. Int J Biol Sci 2022; 18:5681-5697. [PMID: 36263163 PMCID: PMC9576517 DOI: 10.7150/ijbs.65044] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/29/2022] [Indexed: 01/12/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) increases year by year, and as a consequence, NAFLD has become one of the most prevalent liver diseases worldwide. Unfortunately, no pharmacotherapies for NAFLD have been approved by the United States Food and Drug Administration despite promising pre-clinical benefits; this situation highlights the urgent need to explore new therapeutic targets for NAFLD and for the discovery of effective therapeutic drugs. The mouse is one of the most commonly used models to study human disease and develop novel pharmacotherapies due to its small size, low-cost and ease in genetic engineering. Different mouse models are used to simulate various stages of NAFLD induced by dietary and/or genetic intervention. In this review, we summarize the newly described patho-mechanisms of NAFLD and review the preclinical mouse models of NAFLD (based on the method of induction) and appraises the use of these models in anti-NAFLD drug discovery. This article will provide a useful resource for researchers to select the appropriate model for research based on the research question being addressed.
Collapse
Affiliation(s)
- Tingyu Fang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA
| | - Peter J. Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, 4102 Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
6
|
Han E, Huh JH, Lee EY, Bae JC, Chun SW, Yu SH, Kwak SH, Park KS, Lee BW. Efficacy and safety of evogliptin in patients with type 2 diabetes and non-alcoholic fatty liver disease: A multicentre, double-blind, randomized, comparative trial. Diabetes Obes Metab 2022; 24:752-756. [PMID: 34918436 DOI: 10.1111/dom.14623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Eugene Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Ji Hye Huh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Eun Y Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji C Bae
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Sung W Chun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Sung H Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, South Korea
| | - Soo H Kwak
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University, Seoul, South Korea
| | - Kyong S Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University, Seoul, South Korea
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Prikhodko VA, Bezborodkina NN, Okovityi SV. Pharmacotherapy for Non-Alcoholic Fatty Liver Disease: Emerging Targets and Drug Candidates. Biomedicines 2022; 10:274. [PMID: 35203484 PMCID: PMC8869100 DOI: 10.3390/biomedicines10020274] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), or metabolic (dysfunction)-associated fatty liver disease (MAFLD), is characterized by high global incidence and prevalence, a tight association with common metabolic comorbidities, and a substantial risk of progression and associated mortality. Despite the increasingly high medical and socioeconomic burden of NAFLD, the lack of approved pharmacotherapy regimens remains an unsolved issue. In this paper, we aimed to provide an update on the rapidly changing therapeutic landscape and highlight the major novel approaches to the treatment of this disease. In addition to describing the biomolecules and pathways identified as upcoming pharmacological targets for NAFLD, we reviewed the current status of drug discovery and development pipeline with a special focus on recent evidence from clinical trials.
Collapse
Affiliation(s)
- Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 14A Prof. Popov Str., 197022 St. Petersburg, Russia;
| | - Natalia N. Bezborodkina
- Zoological Institute, Russian Academy of Sciences, 1 Universitetskaya emb., 199034 St. Petersburg, Russia;
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 14A Prof. Popov Str., 197022 St. Petersburg, Russia;
- Scientific, Clinical and Educational Center of Gastroenterology and Hepatology, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| |
Collapse
|
8
|
Ferguson D, Finck BN. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat Rev Endocrinol 2021; 17:484-495. [PMID: 34131333 PMCID: PMC8570106 DOI: 10.1038/s41574-021-00507-z] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent liver disease in the world, yet there are still no approved pharmacological therapies to prevent or treat this condition. NAFLD encompasses a spectrum of severity, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Although NASH is linked to an increased risk of hepatocellular carcinoma and cirrhosis and has now become the leading cause of liver failure-related transplantation, the majority of patients with NASH will ultimately die as a result of complications of type 2 diabetes mellitus (T2DM) and cardiometabolic diseases. Importantly, NAFLD is closely linked to obesity and tightly interrelated with insulin resistance and T2DM. Thus, targeting these interconnected conditions and taking a holistic attitude to the treatment of metabolic disease could prove to be a very beneficial approach. This Review will explore the latest relevant literature and discuss the ongoing therapeutic options for NAFLD focused on targeting intermediary metabolism, insulin resistance and T2DM to remedy the global health burden of these diseases.
Collapse
Affiliation(s)
- Daniel Ferguson
- Division of Geriatrics and Nutritional Sciences, Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Brian N Finck
- Division of Geriatrics and Nutritional Sciences, Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
9
|
Sanz-García C, Fernández-Iglesias A, Gracia-Sancho J, Arráez-Aybar LA, Nevzorova YA, Cubero FJ. The Space of Disse: The Liver Hub in Health and Disease. LIVERS 2021; 1:3-26. [DOI: 10.3390/livers1010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Since it was first described by the German anatomist and histologist, Joseph Hugo Vincenz Disse, the structure and functions of the space of Disse, a thin perisinusoidal area between the endothelial cells and hepatocytes filled with blood plasma, have acquired great importance in liver disease. The space of Disse is home for the hepatic stellate cells (HSCs), the major fibrogenic players in the liver. Quiescent HSCs (qHSCs) store vitamin A, and upon activation they lose their retinol reservoir and become activated. Activated HSCs (aHSCs) are responsible for secretion of extracellular matrix (ECM) into the space of Disse. This early event in hepatic injury is accompanied by loss of the pores—known as fenestrations—of the endothelial cells, triggering loss of balance between the blood flow and the hepatocyte, and underlies the link between fibrosis and organ dysfunction. If the imbalance persists, the expansion of the fibrotic scar followed by the vascularized septae leads to cirrhosis and/or end-stage hepatocellular carcinoma (HCC). Thus, researchers have been focused on finding therapeutic targets that reduce fibrosis. The space of Disse provides the perfect microenvironment for the stem cells niche in the liver and the interchange of nutrients between cells. In the present review article, we focused on the space of Disse, its components and its leading role in liver disease development.
Collapse
Affiliation(s)
- Carlos Sanz-García
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, IDIBAPS, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, IDIBAPS, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Hepatology, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| | - Luis Alfonso Arráez-Aybar
- Department of Anatomy and Embriology, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
- 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain
| |
Collapse
|
10
|
Yoon H, Cho SH, Seo YR, Yu KS, Park SS, Song MJ. Optimization and validation of a fluorogenic dipeptidyl peptidase 4 enzymatic assay in human plasma. Anal Biochem 2020; 612:113952. [PMID: 32926865 DOI: 10.1016/j.ab.2020.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
During the development of a specific dipeptidyl peptidase 4 (DPP4) inhibitor to treat type 2 diabetes, a fluorogenic kinetic analysis for DPP4 enzymatic activity using Gly-Pro-Aminomethylcoumarin (AMC) as a substrate was optimized and validated for recombinant DPP4 and human plasma samples. The sensitivity, calibration curve, detection range, accuracy, precision, recovery efficiency, Km constant, short/long-term stability, and stability after freezing-thawing cycles were analyzed. DPP4 enzymatic activity (mU/min) was measured as the initial velocity (Vo) of the enzymatic reaction over time. The sensitivity of the Vo value was 14,488 mU/min for recombinant DPP4 and 17,995 mU/min for human plasma samples. The dynamic ranges of the calibration curve were linear and reliable between 1.11 × 104-1.86 × 106 mU/min of the mean Vo value and in the DPP4 concentration range of 23.4-3,000 ng/mL. The assay's accuracy and precision met acceptance criteria for all samples. Plasma DPP4 was stable under various storage temperatures, even after three freeze-thaw cycles. Our optimized, validated bioanalytic method for measuring DPP4 activity in plasma samples was successfully employed to evaluate the effect of evogliptin (DA-1229) tartrate, which irreversibly and dose-dependently inhibits DPP4 enzymatic activity, without the dilution effect of human plasma samples and irrespective of the co-treated metformin.
Collapse
Affiliation(s)
- Hyunyee Yoon
- Protein Immunology Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Su Hee Cho
- Protein Immunology Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, Republic of Korea
| | - Yu Rim Seo
- Protein Immunology Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Moon Jung Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Dutta D, Bhattacharya S, Krishnamurthy A, Sharma LK, Sharma M. Efficacy and Safety of Novel Dipeptidyl-Peptidase-4 Inhibitor Evogliptin in the Management of Type 2 Diabetes Mellitus: A Meta-Analysis. Indian J Endocrinol Metab 2020; 24:434-445. [PMID: 33489850 PMCID: PMC7810058 DOI: 10.4103/ijem.ijem_418_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
AIMS No meta-analysis is available which has summarized and holistically analyzed the efficacy and safety of evogliptin. We undertook this meta-analysis to address this gap in knowledge. METHODS Electronic databases were searched for RCTs involving diabetes patients receiving evogliptin in intervention arm and placebo/active comparator in control arm. Primary outcome was to evaluate changes in HbA1c. Secondary outcomes were to evaluate alterations in fasting glucose, postprandial glucose, lipids, insulin resistance, patients achieving glycemic targets of HbA1c <7% and <6.5%, and adverse events. RESULTS From initially screened 57 articles, data from six RCTs involving 887 patients was analyzed [three having sitagliptin/linagliptin as active comparator; three having placebo in control group]. Evogliptin was noninferior to sitagliptin/linagliptin regarding HbA1c reduction at 12 weeks [mean difference (MD) -0.06%; 95%CI: -0.23-0.11%; P = 0.48] and 24 weeks (MD 0.04%; 95%CI: -0.11-0.19%; P = 0.60) follow-up. Evogliptin was superior to placebo regarding HbA1c reduction at 12-weeks (MD -0.57%; 95%CI: -0.62- -0.52%; P < 0.001) and 24 weeks (MD -0.28%; 95%CI: -0.47 - -0.09%; P = 0.004). Evogliptin was noninferior to sitagliptin/linagliptin regarding patients achieving HbA1c <7% and <6.5% at 12 weeks and 24 weeks follow-up. Total adverse events [Risk ratio (RR) 0.98; 95% CI: 0.72-1.32; P = 0.89] and severe adverse events (RR 0.65; 95% CI: 0.25-1.67; P = 0.37) were not significantly different among groups. Patients receiving evogliptin did not have increased symptomatic (RR 0.46; 95% CI: 0.10-2.16; P = 0.32) and asymptomatic (RR 1.09; 95% CI: 0.61-1.97; P = 0.77) hypoglycaemia. CONCLUSION Evogliptin is well tolerated and has good glycemic efficacy over 6 months use for T2DM management.
Collapse
Affiliation(s)
- Deep Dutta
- Department of Endocrinology, Center for Endocrinology, Diabetes, Arthritis and Rheumatism (CEDAR) Super-speciality Clinics, Dwarka, India
| | | | | | - Lokesh Kumar Sharma
- Department of Biochemistry, Dr Ram Manohar Lohia (RML) Hospital, Dwarka, New Delhi, India
| | - Meha Sharma
- Department of Rheumatology, CEDAR Superspeciality Clinics, Dwarka, New Delhi, India
| |
Collapse
|
12
|
Xu F, Guo M, Huang W, Feng L, Zhu J, Luo K, Gao J, Zheng B, Kong LD, Pang T, Wu X, Xu Q. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol 2020; 36:101634. [PMID: 32863213 PMCID: PMC7369618 DOI: 10.1016/j.redox.2020.101634] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH), the progressive form of nonalcoholic fatty liver disease (NAFLD), is becoming a common chronic liver disease with the characteristics of steatosis, inflammation and fibrosis. Macrophage plays an important role in the development of NASH. In this study, Annexin A5 (Anx A5) is identified with the special effect on hepatic macrophage phenotype shift from M1 to M2. And it is further demonstrated that Anx A5 significantly switches metabolic reprogramming from glycolysis to oxidative phosphorylation in activated macrophages. Mechanistically, the main target of Anx A5 in energy metabolism is confirmed to be pyruvate kinase M2 (PKM2). And we following reveal that Anx A5 directly interacts with PKM2 at ASP101, LEU104 and ARG106, inhibits phosphorylation of Y105, and promotes PKM2 tetramer formation. In addition, based on the results of PKM2 inhibitor (compound 3k) and the phosphorylated mutation (PKM2 (Y105E)), it is proved that Anx A5 exhibits the function in macrophage polarization dependently on PKM2 activity. In vivo studies also show that Anx A5 improves steatosis, inflammation and fibrosis in NASH mice due to specially regulating hepatic macrophages via interaction with PKM2. Therefore, we have revealed a novel function of Anx A5 in hepatic macrophage polarization and HFD-induced NASH, providing important insights into the metabolic reprogramming, which is important for NASH therapy.
Collapse
Affiliation(s)
- Fang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Mengmeng Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lili Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jiazhen Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Kangkang Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Bingfeng Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|