1
|
Ren J, Feng X, Guo Y, Kong D, Wang Y, Xiao J, Jiang W, Feng X, Liu X, Li A, Sun C, He M, Li B, Wang J, Jiang Y, Zheng C. GSK-3β/β-catenin pathway plays crucial roles in the regulation of NK cell cytotoxicity against myeloma cells. FASEB J 2023; 37:e22821. [PMID: 36794671 DOI: 10.1096/fj.202201658rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
The plasma cell malignancy, multiple myeloma (MM), has significantly improved by the application of new drugs and autologous hematopoietic stem cell transplantation. However, MM remains incurable. A number of studies have revealed an anti-MM effect of natural killer (NK) cells; however, their clinical efficacy is limited. Furthermore, glycogen synthase kinase (GSK)-3β inhibitors show an antitumor function. In this study, we aimed to evaluate the potential roles of a GSK-3β inhibitor (TWS119) in the regulation of NK cell cytotoxicity against MM. Our results showed that, in the presence of TWS119, the NK cell line, NK-92, and in vitro-expanded primary NK cells exhibited a significantly higher degranulation activity, expression of activating receptors, cellular cytotoxicity, and cytokine secretion when they were exposed to MM cells. Mechanistic studies indicated that TWS119 treatment markedly upregulated RAB27A expression, a key molecule for NK cell degranulation, and induced the colocalization of β-catenin with NF-κB in the nucleus of NK cells. More importantly, GSK-3β inhibition combined with the adoptive transfer of TWS119-treated NK-92 cells significantly reduced tumor volume and prolonged the survival time of myeloma-bearing mice. In summary, our novel findings suggest that targeting GSK-3β through the activation of β-catenin/NF-κB pathway may be an important approach to improve therapeutic efficacy of NK cell transfusion for MM.
Collapse
Affiliation(s)
- Jing Ren
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China.,Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Xiumei Feng
- Department of Hematology, The Fourth People's Hospital of Jinan City, Jinan, Shandong, China
| | - Yanan Guo
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China.,Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Dexiao Kong
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China.,Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Yongjing Wang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China.,Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Juan Xiao
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China.,Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Wen Jiang
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoli Feng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China.,Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Ai Li
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China.,Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Congcong Sun
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China.,Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Mingming He
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China.,Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Bingen Li
- R&D Department, Weihai Zhengsheng Biotechnology Co., Ltd, Weihai, China
| | - Juandong Wang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China.,Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Yang Jiang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China.,Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China.,Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Chen Y, Chen M, Deng K. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 2022; 62:24. [PMID: 36579676 PMCID: PMC9854240 DOI: 10.3892/ijo.2022.5472] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/β‑catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have β‑catenin gene mutations. Therefore, targeting the Wnt/β‑catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in‑depth research on the Wnt/β‑catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/β‑catenin signaling pathway in CRC is summarized, the research status on Wnt/β‑catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.
Collapse
Affiliation(s)
- Yuxiang Chen
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mo Chen
- Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Department of Gerontology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, P.R. China,Professor Mo Chen, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, 20 Ximianqiao Cross Street, Chengdu, Sichuan 610041, P.R. China, E-mail:
| | - Kai Deng
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Kai Deng, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
3
|
Zheng Z, Park JK, Kwon OW, Ahn SH, Kwon YJ, Jiang L, Zhu S, Park BH. The Risk of Gastrointestinal Cancer on Daily Intake of Low-Dose BaP in C57BL/6 for 60 Days. J Korean Med Sci 2022; 37:e235. [PMID: 35916047 PMCID: PMC9344036 DOI: 10.3346/jkms.2022.37.e235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Benzo(a)pyrene (BaP) is a carcinogenic compound in contaminated foodstuffs. The effect of oral intake of the environmental carcinogen BaP under low doses and frequent exposure on a digestive system has not been thoroughly verified. METHODS In this regard, this study was conducted to prove the toxicity effects of BaP on the stomach and colon tissue after exposure to C57BL/6 mouse (3 and 6 µg/kg) following daily oral administration for 60 days. This study investigated acute gastric mucosal injury, severe gastric edema, cell infiltration, and mononuclear cells, multifocal cells, and tumoral inflammatory cells. RESULTS The results of ELISA showed that the expression of serum interleukin (IL)-6 and tumor necrosis factor-α in the BaP exposure group were significantly increased, and a high level of DNA adduct distribution in their stomach and colon. Moreover, this study has confirmed the expression of early carcinogenesis markers: nuclear factor (NF)-κB, p53, IL-6, superoxide dismutase 1 (SOD1), mucin (MUC1 and MUC2), and β-catenin in the stomach and colon, and showed that there was a significant increase in IL-6, NF-κB, SOD1, β-catenin, and MUC1 (P < 0.05). At the same time, there was a significant decrease in MUC2 and p53 (P < 0.05). Thus, even in low doses, oral intake of BaP can induce DNA damage, increasing the potential risk of gastrointestinal cancer. CONCLUSION This study will provide a scientific basis for researching environmental contaminated food and intestinal health following daily oral administration of BaP.
Collapse
Affiliation(s)
- Zhi Zheng
- School of Public Health, Xinxiang Medical University, Henan, China
| | - Jung Kuk Park
- Department of Environmental Technology, Food Technology, and Molecular Technology, Ghent University Global Campus, Incheon, Korea
| | | | - Sung Hoon Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - Young Joo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Linjuan Jiang
- School of Public Health, Xinxiang Medical University, Henan, China
| | - Shaohui Zhu
- The First Affiliated Hospital of Xinxiang Medical College, Henan, China
| | - Byoung Hee Park
- Raphagen Co., Ltd. Seoul, Korea
- HealingBio Co., Ltd. Cheongju, Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
| |
Collapse
|