1
|
Banerjee A, Narasimhulu CA, Singla DK. Immune interactions in pembrolizumab (PD-1 inhibitor) cancer therapy and cardiovascular complications. Am J Physiol Heart Circ Physiol 2023; 325:H751-H767. [PMID: 37594487 PMCID: PMC10659324 DOI: 10.1152/ajpheart.00378.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The use of immunotherapies like pembrolizumab (PEM) is increasingly common for the management of numerous cancer types. The use of PEM to bolster T-cell response against tumor growth is well documented. However, the interactions PEM has on other immune cells to facilitate tumor regression and clearance is unknown and warrants further investigation. In this review, we present literature findings that have reported the interactions of PEM in stimulating innate and adaptive immune cells, which enhance cytotoxic phenotypes. This triggers secretion of cytokines and chemokines, which have both beneficial and detrimental effects. We also describe how this leads to the development of rare but underreported occurrence of PEM-induced immune-related cardiovascular complications that arise suddenly and progress rapidly to debilitating and fatal consequences. This review encourages further research and investigation of PEM-induced cardiovascular complications and other immune cell interactions in patients with cancer. As PEM therapy in treating cancer types is expanding, we expect that this review will inform health care professionals of diverse specializations of medicine like dermatology (melanoma skin cancers), ophthalmology (eye cancers), and pathology (hematological malignancies) about PEM-induced cardiac complications.
Collapse
Affiliation(s)
- Abha Banerjee
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
2
|
Effects of CNS Injury-Induced Immunosuppression on Pulmonary Immunity. Life (Basel) 2021; 11:life11060576. [PMID: 34207063 PMCID: PMC8235795 DOI: 10.3390/life11060576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Patients suffering from stroke, traumatic brain injury, or other forms of central nervous system (CNS) injury have an increased risk of nosocomial infections due to CNS injury-induced immunosuppression (CIDS). Immediately after CNS-injury, the response in the brain is pro-inflammatory; however, subsequently, local and systemic immunity is suppressed due to the compensatory release of immunomodulatory neurotransmitters. CIDS makes patients susceptible to contracting infections, among which pneumonia is very common and often lethal. Ventilator-acquired pneumonia has a mortality of 20–50% and poses a significant risk to vulnerable patients such as stroke survivors. The mechanisms involved in CIDS are not well understood. In this review, we consolidate the evidence for cellular processes underlying the pathogenesis of CIDS, the emerging treatments, and speculate further on the immune elements at play.
Collapse
|
3
|
Marcucci F, Rumio C. Depleting Tumor Cells Expressing Immune Checkpoint Ligands-A New Approach to Combat Cancer. Cells 2021; 10:872. [PMID: 33921301 PMCID: PMC8069236 DOI: 10.3390/cells10040872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Antibodies against inhibitory immune checkpoint molecules (ICPMs), referred to as immune checkpoint inhibitors (ICIs), have gained a prominent place in cancer therapy. Several ICIs in clinical use have been engineered to be devoid of effector functions because of the fear that ICIs with preserved effector functions could deplete immune cells, thereby curtailing antitumor immune responses. ICPM ligands (ICPMLs), however, are often overexpressed on a sizeable fraction of tumor cells of many tumor types and these tumor cells display an aggressive phenotype with changes typical of tumor cells undergoing an epithelial-mesenchymal transition. Moreover, immune cells expressing ICPMLs are often endowed with immunosuppressive or immune-deviated functionalities. Taken together, these observations suggest that compounds with the potential of depleting cells expressing ICPMLs may become useful tools for tumor therapy. In this article, we summarize the current state of the art of these compounds, including avelumab, which is the only ICI targeting an ICPML with preserved effector functions that has gained approval so far. We also discuss approaches allowing to obtain compounds with enhanced tumor cell-depleting potential compared to native antibodies. Eventually, we propose treatment protocols that may be applied in order to optimize the therapeutic efficacy of compounds that deplete cells expressing ICPMLs.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy;
| | | |
Collapse
|
4
|
Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun 2020; 11:931. [PMID: 32071302 PMCID: PMC7028933 DOI: 10.1038/s41467-020-14642-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Intrinsic malignant brain tumors, such as glioblastomas are frequently resistant to immune checkpoint blockade (ICB) with few hypermutated glioblastomas showing response. Modeling patient-individual resistance is challenging due to the lack of predictive biomarkers and limited accessibility of tissue for serial biopsies. Here, we investigate resistance mechanisms to anti-PD-1 and anti-CTLA-4 therapy in syngeneic hypermutated experimental gliomas and show a clear dichotomy and acquired immune heterogeneity in ICB-responder and non-responder tumors. We made use of this dichotomy to establish a radiomic signature predicting tumor regression after pseudoprogression induced by ICB therapy based on serial magnetic resonance imaging. We provide evidence that macrophage-driven ICB resistance is established by CD4 T cell suppression and Treg expansion in the tumor microenvironment via the PD-L1/PD-1/CD80 axis. These findings uncover an unexpected heterogeneity of response to ICB in strictly syngeneic tumors and provide a rationale for targeting PD-L1-expressing tumor-associated macrophages to overcome resistance to ICB. Modeling patient-individual resistance to immunotherapy is challenging. Here, the authors use a syngeneic experimental hypermutated orthotopic glioma model to define radiological and biological features that can predict or explain the mechanistic differences between responders and non-responders to immunotherapy.
Collapse
|
5
|
Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA, Wolfe SQ. Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. J Stroke 2020; 22:29-46. [PMID: 32027790 PMCID: PMC7005353 DOI: 10.5853/jos.2019.02236] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a catastrophic illness causing significant morbidity and mortality. Despite advances in surgical technique addressing primary brain injury caused by ICH, little progress has been made treating the subsequent inflammatory cascade. Pre-clinical studies have made advancements identifying components of neuroinflammation, including microglia, astrocytes, and T lymphocytes. After cerebral insult, inflammation is initially driven by the M1 microglia, secreting cytokines (e.g., interleukin-1β [IL-1β] and tumor necrosis factor-α) that are involved in the breakdown of the extracellular matrix, cellular integrity, and the blood brain barrier. Additionally, inflammatory factors recruit and induce differentiation of A1 reactive astrocytes and T helper 1 (Th1) cells, which contribute to the secretion of inflammatory cytokines, augmenting M1 polarization and potentiating inflammation. Within 7 days of ICH ictus, the M1 phenotype coverts to a M2 phenotype, key for hematoma removal, tissue healing, and overall resolution of inflammation. The secretion of anti-inflammatory cytokines (e.g., IL-4, IL-10) can drive Th2 cell differentiation. M2 polarization is maintained by the secretion of additional anti-inflammatory cytokines by the Th2 cells, suppressing M1 and Th1 phenotypes. Elucidating the timing and trigger of the anti-inflammatory phenotype may be integral in improving clinical outcomes. A challenge in current translational research is the absence of an equivalent disease animal model mirroring the patient population and comorbid pathophysiologic state. We review existing data and describe potential therapeutic targets around which we are creating a bench to bedside translational research model that better reflects the pathophysiology of ICH patients.
Collapse
Affiliation(s)
- Christine Tschoe
- Department of Neurological Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cheryl D Bushnell
- Department of Neurology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Pamela W Duncan
- Department of Neurology, Wake Forest Baptist Health, Winston-Salem, NC, USA.,Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Stacey Q Wolfe
- Department of Neurological Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
6
|
He H, Zhou Y, Zhou Y, Zhuang J, He X, Wang S, Lin W. Dexmedetomidine Mitigates Microglia-Mediated Neuroinflammation through Upregulation of Programmed Cell Death Protein 1 in a Rat Spinal Cord Injury Model. J Neurotrauma 2018; 35:2591-2603. [PMID: 29665726 DOI: 10.1089/neu.2017.5625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Hefan He
- Department of Anesthesiology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yingying Zhou
- Department of Anesthesiology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yilin Zhou
- Department of Anesthesiology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Jiayuan Zhuang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xu He
- Department of Spine Surgery, Shenzhen Pingle Orthopedic Hospital, Shenzhen, China
| | - Siyuan Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Wenping Lin
- Department of Spine Surgery, Shenzhen Pingle Orthopedic Hospital, Shenzhen, China
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| |
Collapse
|
7
|
Hartley GP, Chow L, Ammons DT, Wheat WH, Dow SW. Programmed Cell Death Ligand 1 (PD-L1) Signaling Regulates Macrophage Proliferation and Activation. Cancer Immunol Res 2018; 6:1260-1273. [PMID: 30012633 DOI: 10.1158/2326-6066.cir-17-0537] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/18/2018] [Accepted: 07/10/2018] [Indexed: 11/16/2022]
Abstract
Tumor-associated macrophages (TAMs) express programmed cell death ligand 1 (PD-L1) and contribute to the immune-suppressive tumor microenvironment. Although the role of the PD-L1 and PD-1 interaction to regulate T-cell suppression is established, less is known about PD-L1 signaling in macrophages and how these signals may affect the function of TAMs. We used in vitro and in vivo models to investigate PD-L1 signaling in macrophages and the effects of PD-L1 antibody treatment on TAM responses. Treatment of mouse and human macrophages with PD-L1 antibodies increased spontaneous macrophage proliferation, survival, and activation (costimulatory molecule expression, cytokine production). Similar changes were observed in macrophages incubated with soluble CD80 and soluble PD-1, and in PD-L1-/- macrophages. Macrophage treatment with PD-L1 antibodies upregulated mTOR pathway activity, and RNAseq analysis revealed upregulation of multiple macrophage inflammatory pathways. In vivo, treatment with PD-L1 antibody resulted in increased tumor infiltration with activated macrophages. In tumor-bearing RAG-/- mice, upregulated costimulatory molecule expression by TAMs and reduced tumor growth were observed. Combined PD-1/ PD-L1 antibody treatment of animals with established B16 melanomas cured half of the treated mice, whereas treatment with single antibodies had little therapeutic effect. These findings indicate that PD-L1 delivers a constitutive negative signal to macrophages, resulting in an immune-suppressive cell phenotype. Treatment with PD-L1 antibodies reverses this phenotype and triggers macrophage-mediated antitumor activity, suggesting a distinct effect of PD-L1, but not PD-1, antibody treatment. Cancer Immunol Res; 6(10); 1260-73. ©2018 AACR.
Collapse
Affiliation(s)
- Genevieve P Hartley
- Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado
| | - Lyndah Chow
- Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado
| | - Dylan T Ammons
- Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado
| | - William H Wheat
- Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado
| | - Steven W Dow
- Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado.
| |
Collapse
|
8
|
PD-L1 immunostaining scoring for non-small cell lung cancer based on immunosurveillance parameters. PLoS One 2018; 13:e0196464. [PMID: 29874226 PMCID: PMC5991369 DOI: 10.1371/journal.pone.0196464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) is the leading cause of cancer death globally, and new immunotherapies developed and under development targeting PD-1/PD-L1 checkpoint inhibition require accurate patient selection to assure good clinical outcome. PD-L1 immunohistochemistry is the current biomarker assay used for patient selection, but still imprecise in predicting therapy response. Exploring this issue, we performed computational tissue analysis of PD-L1 immunostaining in procured NSCLC tissues (n = 50) using the Merck KGaA anti-PD-L1 clone MKP1A07310. Staining patterns and PD-L1 cut-off points were interrogated using relevant cancer immune-surveillance biomarkers. Groups with high PD-L1 expression levels (above 25/50% staining cut-off points) were enriched for a biomarker profile in the tumor-nest and microenvironment indicating escape from host-immunity, as represented by increased numbers of cells positive for CD8 and Granzyme B (immune-effectors), FOXP3 (immune-suppressive), and CD68 (P < 0.05). Manual analysis of PD-L1 staining patterns identified tumors with an immune-induced reactive pattern relevant for immunotherapy that would ordinarily be excluded by the arbitrary 25% staining threshold (P < 0.05). Conversely, some cases with completely or predominantly immune-independent constitutive PD-L1 staining patterns that indicate insensitivity to immunotherapy may have been incorrectly selected using this staining cut-off point criterion. Therefore, we propose differentiation of reactive vs constitutive PD-L1 staining patterns to improve the accuracy of this biomarker assay in selecting NSCLC patients for PD-1/PD-L1 immunotherapy.
Collapse
|
9
|
Webber BR, O’Connor KT, McElmurry RT, Durgin EN, Eide C, Lees CJ, Riddle MJ, Mathews W, Frank NY, Kluth MA, Ganss C, Moriarity BS, Frank MH, Osborn MJ, Tolar J. Rapid generation of Col7a1 -/- mouse model of recessive dystrophic epidermolysis bullosa and partial rescue via immunosuppressive dermal mesenchymal stem cells. J Transl Med 2017; 97:1218-1224. [PMID: 28892093 PMCID: PMC5623156 DOI: 10.1038/labinvest.2017.85] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a debilitating and ultimately lethal blistering disease caused by mutations to the Col7a1 gene. Development of novel cell therapies for the treatment of RDEB would be fostered by having immunodeficient mouse models able to accept human cell grafts; however, immunodeficient models of many genodermatoses such as RDEB are lacking. To overcome this limitation, we combined the clustered regularly interspaced short palindromic repeats and associated nuclease (CRISPR/Cas9) system with microinjection into NOD/SCID IL2rγcnull (NSG) embryos to rapidly develop an immunodeficient Col7a1-/- mouse model of RDEB. Through dose optimization, we achieve F0 biallelic knockout efficiencies exceeding 80%, allowing us to quickly generate large numbers of RDEB NSG mice for experimental use. Using this strategy, we clearly demonstrate important strain-specific differences in RDEB pathology that could underlie discordant results observed between independent studies and establish the utility of this system in proof-of-concept human cellular transplantation experiments. Importantly, we uncover the ability of a recently identified skin resident immunomodulatory dermal mesenchymal stem cell marked by ABCB5 to reduce RDEB pathology and markedly extend the lifespan of RDEB NSG mice via reduced skin infiltration of inflammatory myeloid derivatives.
Collapse
Affiliation(s)
- Beau R. Webber
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kyle T. O’Connor
- Masonic Cancer Center at the University of Minnesota, Mouse Genetics Laboratory Shared Resource, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ron T. McElmurry
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Elise N. Durgin
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Christopher J. Lees
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan J. Riddle
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Wendy Mathews
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Natasha Y. Frank
- Department of Medicine, Boston VA Healthcare System, West Roxbury, Massachusetts, USA,Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Mark A. Kluth
- Rheacell GmbH & Co. KG, Heidelberg, Germany,Ticeba GmbH, Heidelberg, Germany
| | - Christoph Ganss
- Rheacell GmbH & Co. KG, Heidelberg, Germany,Ticeba GmbH, Heidelberg, Germany
| | - Branden S. Moriarity
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA,Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Markus H. Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA,Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA,School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Mark J. Osborn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA,Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA,Asan-Minnesota Institute for Innovating Transplantation, Seoul, Republic of Korea
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA,Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA,Asan-Minnesota Institute for Innovating Transplantation, Seoul, Republic of Korea,Correspondence to: Jakub Tolar, Pediatric BMT, 420 Delaware St SE, MMC 366, Minneapolis, MN 55455; 612-626-6723;
| |
Collapse
|
10
|
Jackaman C, Tomay F, Duong L, Abdol Razak NB, Pixley FJ, Metharom P, Nelson DJ. Aging and cancer: The role of macrophages and neutrophils. Ageing Res Rev 2017; 36:105-116. [PMID: 28390891 DOI: 10.1016/j.arr.2017.03.008] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/12/2022]
Abstract
Impaired immune function has been implicated in the declining health and higher incidence of cancer in the elderly. However, age-related changes to immunity are not completely understood. Neutrophils and macrophages represent the first line of defence yet their ability to phagocytose pathogens decrease with aging. Cytotoxic T lymphocytes are critical in eliminating tumors, but T cell function is also compromised with aging. T cell responses can be regulated by macrophages and may depend on the functional phenotype macrophages adopt in response to microenvironmental signals. This can range from pro-inflammatory, anti-tumorigenic M1 to anti-inflammatory, pro-tumorigenic M2 macrophages. Macrophages in healthy elderly adipose and hepatic tissue exhibit a more pro-inflammatory M1 phenotype compared to young hosts whilst immunosuppressive M2 macrophages increase in elderly lymphoid tissues, lung and muscle. These M2-like macrophages demonstrate altered responses to stimuli. Recent studies suggest that neutrophils also regulate T cell function and, like macrophages, neutrophil function is modulated with aging. It is possible that age-modified tissue-specific macrophages and neutrophils contribute to chronic low-grade inflammation that is associated with dysregulated macrophage-mediated immunosuppression, which together are responsible for development of multiple pathologies, including cancer. This review discusses recent advances in macrophage and neutrophil biology in healthy aging and cancer.
Collapse
Affiliation(s)
- Connie Jackaman
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, 6102, Australia.
| | - Federica Tomay
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Lelinh Duong
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Norbaini Bintu Abdol Razak
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Fiona J Pixley
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, 6009, Australia
| | - Pat Metharom
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Delia J Nelson
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| |
Collapse
|
11
|
Vilain RE, Menzies AM, Wilmott JS, Kakavand H, Madore J, Guminski A, Liniker E, Kong BY, Cooper AJ, Howle JR, Saw RP, Jakrot V, Lo S, Thompson JF, Carlino MS, Kefford RF, Long GV, Scolyer RA. Dynamic Changes in PD-L1 Expression and Immune Infiltrates Early During Treatment Predict Response to PD-1 Blockade in Melanoma. Clin Cancer Res 2017; 23:5024-5033. [DOI: 10.1158/1078-0432.ccr-16-0698] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 03/13/2017] [Accepted: 05/11/2017] [Indexed: 11/16/2022]
|
12
|
Bioanalytical qualification of clinical biomarker assays in plasma using a novel multi-analyte Simple Plex™ platform. Bioanalysis 2016; 8:2415-2428. [DOI: 10.4155/bio-2016-0196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Immune-checkpoint inhibitors are presumed to break down the tolerogenic state of immune cells by activating T-lymphocytes that release cytokines and enhance effector cell function for elimination of tumors. Measurement of cytokines is being pursued for better understanding of the mechanism of action of immune-checkpoint inhibitors, as well as to identify potential predictive biomarkers. Results: In this study, we show bioanalytical qualification of cytokine assays in plasma on a novel multi-analyte immunoassay platform, Simple Plex™. The qualified assays exhibited excellent sensitivity as evidenced by measurement of all samples within the quantifiable range. The accuracy and precision were 80–120% and 10%, respectively. Conclusion: The qualified assays will be useful in assessing mechanism of action cancer immunotherapies.
Collapse
|
13
|
Jia X, Li X, Shen Y, Miao J, Liu H, Li G, Wang Z. MiR-16 regulates mouse peritoneal macrophage polarization and affects T-cell activation. J Cell Mol Med 2016; 20:1898-907. [PMID: 27241533 PMCID: PMC5020626 DOI: 10.1111/jcmm.12882] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/08/2016] [Indexed: 12/21/2022] Open
Abstract
MiR‐16 is a tumour suppressor that is down‐regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR‐16 on macrophage polarization and subsequent T‐cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon‐γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)‐4. The identity of polarized macrophages was determined by profiling cell‐surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus‐expressing miR‐16 to assess the effects of miR‐16. Effects on macrophage–T cell interactions were analysed by co‐culturing purified CD4+ T cells with miR‐16‐expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR‐16 targets and understand its underlying mechanisms. MiR‐16‐induced M1 differentiation of mouse peritoneal macrophages from either the basal M0‐ or M2‐polarized state is indicated by the significant up‐regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin‐1, and increased secretion of M1 cytokine IL‐12 and nitric oxide. Consistently, miR‐16‐expressing macrophages stimulate the activation of purified CD4+ T cells. Mechanistically, miR‐16 significantly down‐regulates the expression of PD‐L1, a critical immune suppressor that controls macrophage–T cell interaction and T‐cell activation. MiR‐16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4+ T cells. This effect is potentially mediated through the down‐regulation of immune suppressor PD‐L1.
Collapse
Affiliation(s)
- Xiaoqin Jia
- Department of Pathology, Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaomin Li
- Department of Pathology, Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yating Shen
- Department of Pathology, Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Junjun Miao
- Department of Pathology, Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Liu
- Department of Pathology, Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Guoli Li
- Department of Pathology, Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhengbing Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
14
|
Zhao S, Li F, Leak RK, Chen J, Hu X. Regulation of Neuroinflammation through Programed Death-1/Programed Death Ligand Signaling in Neurological Disorders. Front Cell Neurosci 2014; 8:271. [PMID: 25232304 PMCID: PMC4153295 DOI: 10.3389/fncel.2014.00271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/20/2014] [Indexed: 01/22/2023] Open
Abstract
Immune responses in the central nervous system (CNS), which involve both resident glial cells and infiltrating peripheral immune cells, play critical roles in the progress of brain injuries and neurodegeneration. To avoid inflammatory damage to the compromised brain, the immune cell activities in the CNS are controlled by a plethora of chemical mediators and signal transduction cascades, such as inhibitory signaling through programed death-1 (PD-1) and programed death ligand (PD-L) interactions. An increasing number of recent studies have highlighted the importance of PD-1/PD-L pathway in immune regulation in CNS disorders such as ischemic stroke, multiple sclerosis, and Alzheimer’s disease. Here, we review the current knowledge of the impact of PD-1/PD-L signaling on brain injury and neurodegeneration. An improved understanding of the function of PD-1/PD-L in the cross-talk between peripheral immune cells, CNS glial cells, and non-immune CNS cells is expected to shed further light on immunomodulation and help develop effective and safe immunotherapies for CNS disorders.
Collapse
Affiliation(s)
- Shangfeng Zhao
- Department of Neurology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA ; Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University , Beijing , China
| | - Fengwu Li
- Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University , Pittsburgh, PA , USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA ; Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| |
Collapse
|