1
|
Lebedev E, Smutin D, Timkin P, Kotelnikov D, Taldaev A, Panushev N, Adonin L. The eusocial non-code: Unveiling the impact of noncoding RNAs on Hymenoptera eusocial evolution. Noncoding RNA Res 2025; 11:48-59. [PMID: 39736856 PMCID: PMC11683303 DOI: 10.1016/j.ncrna.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 01/01/2025] Open
Abstract
Eusociality, characterized by reproductive division of labor, cooperative brood care, and multi-generational cohabitation, represents a pinnacle of complex social evolution, most notably manifested within the Hymenoptera order including bees, ants, and wasps. The molecular underpinnings underlying these sophisticated social structures remain an enigma, with noncoding RNAs (ncRNAs) emerging as crucial regulatory players. This article delves into the roles of ncRNAs in exerting epigenetic control during the development and maintenance of Hymenopteran eusociality. We consolidate current findings on various classes of ncRNAs, underscoring their influence on gene expression regulation pertinent to caste differentiation, developmental plasticity, and behavioral modulation. Evidence is explored supporting the hypothesis that ncRNAs contribute to epigenetic landscapes fostering eusocial traits through genomic regulation. They are likely to play an important role in eusociality "point of no return". Critical analysis is provided on the functional insights garnered from ncRNA profiles correlated with caste-specific phenotypes, specifical for phylogenetic branches and transitional sociality models, drawing from comparative genomics and transcriptomics studies. Overall, ncRNA provides a missed understanding of both "genetic toolkit" and "unique genes" hypotheses of eusociality development. Moreover, it points to gaps in current knowledge, advocating for integrative approaches combining genomics, proteomics, and epigenetics to decipher the complexity of eusociality. Understanding the ncRNA contributions offers not only a window into the molecular intricacies of Hymenoptera sociality but also extends our comprehension of how complex biological systems evolve and function.
Collapse
Affiliation(s)
- Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003, Tyumen, Russia
| | - Daniil Smutin
- Faculty of Information Technology and Programming, ITMO University, St.-Petersburg, 197101, Russia
| | - Pavel Timkin
- All-russian Research Institute of Soybean, 675027, Blagoveschensk, Russia
| | - Danil Kotelnikov
- All-russian Research Institute of Soybean, 675027, Blagoveschensk, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Amir Taldaev
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Nick Panushev
- Bioinformatics Institute, 197342, St.-Petersburg, Russia
| | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003, Tyumen, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Federal State Budget-Financed Educational Institution of Higher Education The Bonch-Bruevich Saint Petersburg State University of Telecommunications, Saint-Petersburg, 193232, Russia
| |
Collapse
|
2
|
Expression Patterns and Regulation of Non-Coding RNAs during Synthesis of Cellulose in Eucalyptus grandis Hill. FORESTS 2021. [DOI: 10.3390/f12111565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellulose, an essential structural component in the plant cell wall and a renewable biomass resource, plays a significant role in nature. Eucalyptus’s excellent timber tree species (including Eucalyptus grandis Hill) provide many raw materials for the paper and wood industries. The synthesis of cellulose is a very complex process involving multiple genes and regulated by various biological networks. However, research on regulating associated genes and non-coding RNAs during cellulose synthesis in E. grandis remains lacking. In this study, the wood anatomical characteristics and chemical indexes of E. grandis were analyzed by taking three different parts (diameter at breast height (DBH), middle and upper part of the trunk) from the main stem of E. grandis as raw materials. The role of non-coding RNAs (Long non-coding RNA, lncRNA; Micro RNA, miRNA; Circle RNA, circRNA) on regulating candidate genes was presented, and the network map of ceRNA (Competing endogenous RNA) regulation during wood cellulose biosynthesis of E. grandis was constructed. The transcriptome sequencing of nine samples obtained from the trunk of the immature xylem in E. grandis at DBH, middle and upper parts had a 95.81 G clean reading, 57,480 transcripts, 7365 lncRNAs, and 5180 circRNAs. Each sample had 172–306 known miRNAs and 1644–3508 new miRNAs. A total of 190 DE-lncRNAs (Differentially expressed long non-coding RNAs), 174 DE-miRNAs (Differentially expressed micro RNAs), and 270 DE-circRNAs (Differentially expressed circle RNAs) were obtained by comparing transcript expression levels. Four lncRNAs and nine miRNAs were screened out, and the ceRNA regulatory network was constructed. LncRNA1 and lncRNA4 regulated the genes responsible for cellulose synthesis in E. grandis, which were overexpressed in 84K (Populus Alba × Populus glandulosa) poplar. The cellulose and lignin content in lncRNA4-oe were significantly higher than wild type 84K poplar and lncRNA1-oe. The average plant height, middle and basal part of the stem diameter in lncRNA4-oe were significantly higher than the wild type. However, there was no significant difference between the growth of lncRNA1-oe and the wild type. Further studies are warranted to explore the molecular regulatory mechanism of cellulose biosynthesis in Eucalyptus species.
Collapse
|
3
|
seekCRIT: Detecting and characterizing differentially expressed circular RNAs using high-throughput sequencing data. PLoS Comput Biol 2020; 16:e1008338. [PMID: 33079938 PMCID: PMC7598922 DOI: 10.1371/journal.pcbi.1008338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/30/2020] [Accepted: 09/13/2020] [Indexed: 11/19/2022] Open
Abstract
Over the past two decades, researchers have discovered a special form of alternative splicing that produces a circular form of RNA. Although these circular RNAs (circRNAs) have garnered considerable attention in the scientific community for their biogenesis and functions, the focus of current studies has been on the tissue-specific circRNAs that exist only in one tissue but not in other tissues or on the disease-specific circRNAs that exist in certain disease conditions, such as cancer, but not under normal conditions. This approach was conducted in the relative absence of methods that analyze a group of common circRNAs that exist in both conditions, but are more abundant in one condition relative to another (differentially expressed). Studies of differentially expressed circRNAs (DECs) between two conditions would serve as a significant first step in filling this void. Here, we introduce a novel computational tool, seekCRIT (seek for differentially expressed CircRNAs In Transcriptome), that identifies the DECs between two conditions from high-throughput sequencing data. Using rat retina RNA-seq data from ischemic and normal conditions, we show that over 74% of identifiable circRNAs are expressed in both conditions and over 40 circRNAs are differentially expressed between two conditions. We also obtain a high qPCR validation rate of 90% for DECs with a FDR of < 5%. Our results demonstrate that seekCRIT is a novel and efficient approach to detect DECs using rRNA depleted RNA-seq data. seekCRIT is freely downloadable at https://github.com/UofLBioinformatics/seekCRIT. The source code is licensed under the MIT License. seekCRIT is developed and tested on Linux CentOS-7. The focus of circRNA studies has been on condition-specific circRNAs, however, there are situations in which circRNAs exist in both conditions with different abundance. Here, we introduce a new and robust analytic software, seekCRIT (seek for differentially expressed CircRNAs In Transcriptome), that identifies the differentially expressed circRNAs (DECs) between two conditions from high-throughput sequencing data. seekCRIT provides a straightforward normalized quantification of circRNAs and statistical measures by adapting a junction-count-based estimation approach. Using publicly available ribosomal RNA depleted RNA-seq data and our own rat retina RNA-seq data, we show that seekCRIT can efficiently detect circRNAs and identify DECs. We also obtain a high qPCR validation rate of 90% for DECs with a FDR of < 5%. Our results demonstrate that seekCRIT is a novel and efficient software to detect DECs using rRNA depleted RNA-seq data.
Collapse
|
4
|
Chi SI, Dahl M, Emblem Å, Johansen SD. Giant group I intron in a mitochondrial genome is removed by RNA back-splicing. BMC Mol Biol 2019; 20:16. [PMID: 31153363 PMCID: PMC6545197 DOI: 10.1186/s12867-019-0134-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 05/23/2019] [Indexed: 01/29/2023] Open
Abstract
Background The mitochondrial genomes of mushroom corals (Corallimorpharia) are remarkable for harboring two complex group I introns; ND5-717 and COI-884. How these autocatalytic RNA elements interfere with mitochondrial RNA processing is currently not known. Here, we report experimental support for unconventional processing events of ND5-717 containing RNA. Results We obtained the complete mitochondrial genome sequences and corresponding mitochondrial transcriptomes of the two distantly related corallimorpharian species Ricordea yuma and Amplexidiscus fenestrafer. All mitochondrial genes were found to be expressed at the RNA-level. Both introns were perfectly removed by autocatalytic splicing, but COI-884 excision appeared more efficient than ND5-717. ND5-717 was organized into giant group I intron elements of 18.1 kb and 19.3 kb in A. fenestrafer and R. yuma, respectively. The intron harbored almost the entire mitochondrial genome embedded within the P8 peripheral segment. Conclusion ND5-717 was removed by group I intron splicing from a small primary transcript that contained a permutated intron–exon arrangement. The splicing pathway involved a circular exon-containing RNA intermediate, which is a hallmark of RNA back-splicing. ND5-717 represents the first reported natural group I intron that becomes excised by back-splicing from a permuted precursor RNA. Back-splicing may explain why Corallimorpharia mitochondrial genomes tolerate giant group I introns. Electronic supplementary material The online version of this article (10.1186/s12867-019-0134-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvia Ighem Chi
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Mikael Dahl
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Åse Emblem
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Steinar D Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway. .,Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| |
Collapse
|
5
|
Guo R, Chen D, Chen H, Xiong C, Zheng Y, Hou C, Du Y, Geng S, Wang H, Dingding Z, Yilong G. Genome-Wide Identification of Circular RNAs in Fungal Parasite Nosema ceranae. Curr Microbiol 2018; 75:1655-1660. [PMID: 30269253 DOI: 10.1007/s00284-018-1576-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/26/2018] [Indexed: 01/30/2023]
Abstract
Circular RNAs (circRNAs) are newly discovered endogenous non-coding RNAs (ncRNAs) that play key roles in microRNA function and transcriptional regulation. Though a large number of circRNAs had been identified in animals and plants, however, little is known regarding circRNAs in Nosema ceranae, a widespread fungal parasite of honeybee. In this study, using deep sequencing technology and bioinformatic analysis, we predicted 204 circRNAs from N. ceranae spore samples, including 174 exonic circRNAs and 30 intergenic circRNAs. In addition, the expression of seven N. ceranae circRNAs was confirmed by RT-PCR assay. Furthermore, regulation networks of circRNAs were constructed, and 15 circRNAs were found to act as sponges of the corresponding three miRNAs. GO categorization and pathway enrichment analysis suggested that the circRNAs are likely to play significant roles in N. ceranae spore. This is the first report of circRNAs generated by a microsporidia species. Our results provide novel insights into understanding the basic biology of N. ceranae.
Collapse
Affiliation(s)
- Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dafu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Huazhi Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cuiling Xiong
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanzhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yu Du
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sihai Geng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haipeng Wang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhou Dingding
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guo Yilong
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
6
|
Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae. Gene 2018; 678:17-22. [PMID: 30077766 DOI: 10.1016/j.gene.2018.07.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
Ascosphaera apis is a widespread fungal pathogen of honeybee larvae, which causes heavy losses in apiculture. To date, knowledge about non-coding RNA (ncRNA) including circular RNA (circRNA) in A. apis is lacking. In this study, A. apis mycelia and spores were sequenced using RNA-seq technology. A total of 551 circRNAs were predicted on the basis of bioinformatic analyses, and most of the circRNAs were 200-600 bp in length, which were different from animal and plant circRNAs. In addition, the expression of six circRNAs in A. apis were confirmed using divergent and convergent PCR. Moreover, circRNA-microRNA regulation networks in A. apis were constructed, and further investigation showed that A. apis circRNAs could regulate gene expression by competitively binding miRNAs. GO and KEGG pathway enrichment analyses of the miRNAs target genes of circRNAs demonstrated that these A. apis circRNAs are likely to play key roles in metabolism, environmental response and gene expression.
Collapse
|
7
|
Belousova EA, Filipenko ML, Kushlinskii NE. Circular RNA: New Regulatory Molecules. Bull Exp Biol Med 2018; 164:803-815. [PMID: 29658072 DOI: 10.1007/s10517-018-4084-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Indexed: 12/14/2022]
Abstract
Circular RNA are a family of covalently closed circular RNA molecules, formed from pre-mRNA of coding genes by means of splicing (canonical and alternative noncanonical splicing). Maturation of circular RNA is regulated by cis- and trans-elements. Complete list of biological functions of these RNA is not yet compiled; however, their capacity to interact with specific microRNA and play a role of a depot attracts the greatest interest. This property makes circular RNA active regulatory transcription factors. Circular RNA have many advantages over their linear analogs: synthesis of these molecules is conservative, they are universal, characterized by clearly determined specificity, and are resistant to exonucleases. In addition, the level of their expression is often higher than that of their linear forms. It should be noted that expression of circular RNA is tissue-specific. Moreover, some correlations between changes in the repertoire and intensity of expression of circular RNA and the development of some pathologies have been detected. Circular RNA have certain advantages and can serve as new biomarkers for the diagnosis, prognosis, and evaluation of response to therapy.
Collapse
Affiliation(s)
- E A Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M L Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N E Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
8
|
Xiang L, Cai C, Cheng J, Wang L, Wu C, Shi Y, Luo J, He L, Deng Y, Zhang X, Yuan Y, Cai Y. Identification of circularRNAs and their targets in Gossypium under Verticillium wilt stress based on RNA-seq. PeerJ 2018; 6:e4500. [PMID: 29576969 PMCID: PMC5858604 DOI: 10.7717/peerj.4500] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs), a class of recently discovered non-coding RNAs, play a role in biological and developmental processes. A recent study showed that circRNAs exist in plants and play a role in their environmental stress responses. However, cotton circRNAs and their role in Verticillium wilt response have not been identified up to now. In this study, two CSSLs (chromosome segment substitution lines) of G.barbadense introgressed into G. hirsutum, CSSL-1 and CSSL-4 (a resistant line and a susceptible line to Verticillium wilt, respectively), were inoculated with V. dahliae for RNA-seq library construction and circRNA analysis. A total of 686 novel circRNAs were identified. CSSL-1 and CSSL-4 had similar numbers of circRNAs and shared many circRNAs in common. However, CSSL-4 differentially expressed approximately twice as many circRNAs as CSSL-1, and the differential expression levels of the common circRNAs were generally higher in CSSL-1 than in CSSL-4. Moreover, two C-RRI comparisons, C-RRI-vs-C-RRM and C-RRI-vs-C-RSI, possessed a large proportion (approximately 50%) of the commonly and differentially expressed circRNAs. These results indicate that the differentially expressed circRNAs may play roles in the Verticillium wilt response in cotton. A total of 280 differentially expressed circRNAs were identified. A Gene Ontology analysis showed that most of the ‘stimulus response’ term source genes were NBS family genes, of which most were the source genes from the differentially expressed circRNAs, indicating that NBS genes may play a role in Verticillium wilt resistance and might be regulated by circRNAs in the disease-resistance process in cotton.
Collapse
Affiliation(s)
- Liuxin Xiang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.,School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Chaowei Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Jieru Cheng
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Lu Wang
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Chaofeng Wu
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Jingzhi Luo
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Lin He
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yushan Deng
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiao Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| |
Collapse
|
9
|
Zhu Z, Li Y, Liu W, He J, Zhang L, Li H, Li P, Lv L. Comprehensive circRNA expression profile and construction of circRNA-associated ceRNA network in fur skin. Exp Dermatol 2018; 27:251-257. [DOI: 10.1111/exd.13502] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Zhiwei Zhu
- College of Life Sciences; Shanxi Agricultural University; Taigu China
| | - Yuan Li
- College of Life Sciences; Shanxi Agricultural University; Taigu China
| | - Wenyan Liu
- College of Life Sciences; Shanxi Agricultural University; Taigu China
| | - Junping He
- College of Animal Science and Technology; Shanxi Agricultural University; Taigu China
| | - Lihuan Zhang
- College of Life Sciences; Shanxi Agricultural University; Taigu China
| | - Huifeng Li
- College of Life Sciences; Shanxi Agricultural University; Taigu China
| | - Pengfei Li
- College of Life Sciences; Shanxi Agricultural University; Taigu China
| | - Lihua Lv
- College of Animal Science and Technology; Shanxi Agricultural University; Taigu China
| |
Collapse
|
10
|
Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W, Cao H. An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 2017; 8:73271-73281. [PMID: 29069868 PMCID: PMC5641211 DOI: 10.18632/oncotarget.19154] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/01/2017] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs), a novel class of long noncoding RNAs, are characterized by a covalently closed continuous loop without 5' or 3' polarities structure and have been widely found in thousands of lives including plants, animals and human beings. Utilizing the high-throughput RNA sequencing (RNA-seq) technology, recent findings have indicated thata great deal of circRNAs, which are endogenous, stable, widely expressed in mammalian cells, often exhibit cell type-specific, tissue-specific or developmental-stage-specific expression. Evidences are arising that some circRNAs might regulate microRNA (miRNA) function as microRNA sponges and play a significant role in transcriptional control. circRNAs associate with related miRNAs and the circRNA-miRNA axes are involved in a serious of disease pathways such as apoptosis, vascularization, invasion and metastasis. In this review, we generalize and analyse the aspects including synthesis, characteristics, classification, and several regulatory functions of circRNAs and highlight the association between circRNAs dysregulation by circRNA-miRNA-mRNA axis and sorts of diseases including cancer- related and non-cancer diseases."
Collapse
Affiliation(s)
- Dawei Rong
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Handong Sun
- Department of Oncology Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhouxiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuheng Liu
- Department of Neurosurgery, The First affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaoxi Dong
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Fu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
12
|
Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 2016; 238:42-51. [PMID: 27671698 DOI: 10.1016/j.jbiotec.2016.09.011] [Citation(s) in RCA: 597] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/18/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) that are involved in transcriptional and posttranscriptional gene expression regulation. The development of deep sequencing of ribosomal RNA (rRNA)-depleted RNA libraries, associated with improved computational tools, has provided the identification of several new circRNAs in all sorts of organisms, from protists, plants and fungi to animals. Recently, it was discovered that endogenous circRNAs can work as microRNA (miRNA) sponges. This means that the circRNAs bind to miRNAs and consequently repress their function, providing a new model of action for this class of ncRNA, as well as indicating another mechanism that regulates miRNA activity. As miRNAs control a large set of biological processes, circRNA sponge activity will also affect these pathways. Several studies have associated miRNA sponges with human diseases, including osteoarthritis, diabetes, neurodegenerative pathologies and several types of cancer. Additionally, high stability, abundance and tissue-specific expression patterns make circRNA sponges very attractive for clinical research. Herein, we review the biogenesis, properties and function of endogenous circRNA sponges, with a special focus on those related to human cancer. A list of web tools available for the study of circRNAs is also given. Additionally, we discuss the possibility of using circRNAs as molecular markers for the diagnosis of diseases.
Collapse
Affiliation(s)
- Franceli Rodrigues Kulcheski
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
| | | | - Rogerio Margis
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil.
| |
Collapse
|
13
|
Vidal AF, Sandoval GTV, Magalhães L, Santos SEB, Ribeiro-dos-Santos Â. Circular RNAs as a new field in gene regulation and their implications in translational research. Epigenomics 2016; 8:551-62. [PMID: 27035397 DOI: 10.2217/epi.16.3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs are a class of long noncoding RNA that were recently rediscovered as diverse, highly abundant, conserved and naturally occurring RNAs in eukaryotes. They are characterized by their 5' and 3' covalently joined ends. Some studies have attributed functions for circular RNAs, such as miRNAs sponges and transcriptional regulators, indicating that they may be largely biomarkers of both physiological and pathological processes. Circular RNAs have the potential to play important roles in transcription and post-transcription, giving rise to a whole complexity level to gene expression regulation. In this review, we discuss the biogenesis of circular RNAs, their properties and functions as well as different methods for their identification and their role in some diseases.
Collapse
Affiliation(s)
- Amanda F Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Gloria T V Sandoval
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Leandro Magalhães
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Sidney E B Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brazil.,Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
14
|
Darbani B, Noeparvar S, Borg S. Identification of Circular RNAs from the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley. FRONTIERS IN PLANT SCIENCE 2016; 7:776. [PMID: 27375638 PMCID: PMC4891351 DOI: 10.3389/fpls.2016.00776] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/17/2016] [Indexed: 05/19/2023]
Abstract
RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts.
Collapse
Affiliation(s)
- Behrooz Darbani
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus UniversitySlagelse, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- *Correspondence: Behrooz Darbani
| | - Shahin Noeparvar
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus UniversitySlagelse, Denmark
| | - Søren Borg
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus UniversitySlagelse, Denmark
- Søren Borg
| |
Collapse
|