1
|
Li W, Liu S, Wang S, Li Y, Kong D, Wang A. A single origin and high genetic diversity of cultivated medicinal herb Glehnia littoralis subsp. littoralis (Apiaceae) deciphered by SSR marker and phenotypic analysis. PLoS One 2024; 19:e0308369. [PMID: 39116119 PMCID: PMC11309482 DOI: 10.1371/journal.pone.0308369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Ten SSR markers based on transcriptome sequencing were employed to genotype 231 samples of G. littoralis subsp. littoralis (Apiaceae) from nine cultivated populations and seven wild populations, aiming to assess the genetic diversity and genetic structure, and elucidate the origin of the cultivated populations. Cultivated populations exhibited relatively high genetic diversity (h = 0.441, I = 0.877), slightly lower than that of their wild counterparts (h = 0.491, I = 0.930), likely due to recent domestication and ongoing gene flow between wild and cultivated germplasm. The primary cultivated population in Shandong have the crucial genetic status. A single origin of domestication was inferred through multiple analysis, and wild populations from Liaoning and Shandong are inferred to be potentially the ancestor source for the present cultivated populations. Phenotypic analysis revealed a relatively high heritability of root length across three growth periods (0.683, 0.284, 0.402), with significant correlations observed between root length and petiole length (Pearson correlation coefficient = 0.30, P<0.05), as well as between root diameter and leaf area (Pearson correlation coefficient = 0.36, P<0.01). These parameters can serve as valuable indicators for monitoring the developmental progress of medicinal plants during field management. In summary, this study can shed light on the intricate genetic landscape of G. littoralis subsp. littoralis, providing foundational insights crucial for conservation strategies, targeted breeding initiatives, and sustainable management practices in both agricultural and natural habitats.
Collapse
Affiliation(s)
- Weiwei Li
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Shuliang Liu
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Shimeng Wang
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Yihui Li
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Dongrui Kong
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Ailan Wang
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| |
Collapse
|
2
|
Opustilová K, Lapčíková B, Lapčík L, Gautam S, Valenta T, Li P. Physico-Chemical Study of Curcumin and Its Application in O/W/O Multiple Emulsion. Foods 2023; 12:foods12071394. [PMID: 37048218 PMCID: PMC10093390 DOI: 10.3390/foods12071394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Curcuma is a world-renowned herb known for its immense health benefits. In this study, physicochemical analyses were performed on the curcumin standard sample and curcumin multiple emulsions. The emulsions were analysed for thermal and structural stability for 21 days. Confocal laser microscopy (CLSM) was performed in order to observe the emulsion encapsulation. Modulated differential scanning calorimetry (MDSC) and HPLC methods revealed a variety of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin, and cyclocurcumin) in the investigated curcumin standard. In addition, the MDSC method was found to be suitable and comparable to HPLC for determining the curcuminoid substances. The analysis of the curcumin release revealed a value of 0.18 w.% after 14 days as the equilibrium value. Furthermore, an increase in the sizes of the emulsions was observed at the end of the 21-day study. The emulsion stability index (ESI) was used to measure the stability of multiple emulsions. The ESI reached 55.8% between 7 and 21 days later. Nano droplets of the oil phase loaded with dispersed curcumin particles captured inside the water-based carboxymethylcellulose micelles were clearly observed by CLSM.
Collapse
Affiliation(s)
- Kristýna Opustilová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Barbora Lapčíková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
- Correspondence: ; Tel.: +420-576-035-115
| | - Shweta Gautam
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Tomáš Valenta
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Peng Li
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| |
Collapse
|
3
|
Ghavimi MA, Shahi S, Maleki Dizaj S, Sharifi S, Noie Alamdari A, Jamei Khosroshahi AR, Khezri K. Antimicrobial effects of nanocurcumin gel on reducing the microbial count of gingival fluids of implant‒abutment interface: A clinical study. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2022; 14:114-118. [PMID: 36714080 PMCID: PMC9871187 DOI: 10.34172/japid.2022.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/14/2022] [Indexed: 01/09/2023]
Abstract
Background. This clinical study aimed to prepare and evaluate the effect of antimicrobial nanocurcumin gel on reducing the microbial counts of gingival fluids of the implant‒abutment interface in patients referred to the Tabriz Faculty of Dentistry for the placement of two dental implants. Methods. Fifteen patients applying for at least two dental implants were included in the study. During the uncovering session, nanocurcumin gel was placed in one implant, and no substance was placed in another (the control group). Then, in three sessions, implantation sessions (10 days after the repair abutment closure session), prosthesis delivery (15 days after the implantation session), and one month after prosthesis delivery, the patients' gingival fluid was sampled and cultured to determine bacterial counts in the gingival fluid by colony-forming units (CFU/mL). T-test was used for statistical analysis of data, and statistical significance was set at P<0.05. Results. This study showed that nanocurcumin gel significantly reduced the CFU/mL of gingival fluid in all three sampling stages compared to the control group. Conclusion. According to the results of this study, the application of antimicrobial nanocurcumin gel inside the implant fixture could reduce the microbial counts of gingival fluids.
Collapse
Affiliation(s)
- Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding authors: Solmaz Maleki Dizaj, E-mail: & Simin Sharifi, E-mail:
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding authors: Solmaz Maleki Dizaj, E-mail: & Simin Sharifi, E-mail:
| | - Ali Noie Alamdari
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Reza Jamei Khosroshahi
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran,Department of Nursing, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
4
|
Butnariu M, Quispe C, Koirala N, Khadka S, Salgado-Castillo CM, Akram M, Anum R, Yeskaliyeva B, Cruz-Martins N, Martorell M, Kumar M, Vasile Bagiu R, Abdull Razis AF, Sunusi U, Muhammad Kamal R, Sharifi-Rad J. Bioactive Effects of Curcumin in Human Immunodeficiency Virus Infection Along with the Most Effective Isolation Techniques and Type of Nanoformulations. Int J Nanomedicine 2022; 17:3619-3632. [PMID: 35996526 PMCID: PMC9391931 DOI: 10.2147/ijn.s364501] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus (HIV) is one of the leading causes of death worldwide, with African countries being the worst affected by this deadly virus. Curcumin (CUR) is a Curcuma longa-derived polyphenol that has attracted the attention of researchers due to its antimicrobial, anti-inflammatory, antioxidant, immunomodulatory and antiviral effects. CUR also demonstrates anti-HIV effects by acting as a possible inhibitor of gp120 binding, integrase, protease, and topoisomerase II activities, besides also exerting a protective action against HIV-associated diseases. However, its effectiveness is limited due to its poor water solubility, rapid metabolism, and systemic elimination. Nanoformulations have been shown to be useful to enhance curcumin's bioavailability and its effectiveness as an anti-HIV agent. In this sense, bioactive effects of CUR in HIV infection are carefully reviewed, along with the most effective isolation techniques and type of nanoformulations available.
Collapse
Affiliation(s)
- Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences “King Mihai I” from Timisoara, 300645, Calea Aradului 119, Timis, Romania
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, 1110939, Chile
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, 44600, Nepal
- Laboratory of Biotechnology, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, People’s Republic of China
| | - Sujan Khadka
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
- State Key Laboratory of Environmental Aquatic Chemistry” with “State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People’s Republic of China
| | | | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Anum
- SINA Health, Education and Welfare Trust, Karachi, Pakistan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra PRD, 4585-116, Portugal
- TOXRUN-Oxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, 4585-116, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, 4070386, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, 4070386, Chile
| | - Manoj Kumar
- Chemical and BioChemical Processing Division, ICAR – Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Department of Microbiology, Timisoara, Romania
- Preventive Medicine Study Center, Timisoara, Romania
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | | |
Collapse
|
5
|
Nguyen Thi KO, Do HG, Duong NT, Nguyen TD, Nguyen QT. Geographical Discrimination of Curcuma longa L. in Vietnam Based on LC-HRMS Metabolomics. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211045479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Curcuma longa L. has been used as a food, cosmetic, traditional medicine, and natural dye for a long time in tropical and subtropical regions such as India, China, and Vietnam. Curcuminoids are considered the main bioactive compounds in this plant. This study focuses on metabolites profiling of the rhizome methanolic extract of C longa samples collected in 6 different provinces in Vietnam using liquid chromatography coupled with high-resolution mass spectrometry. The partial least-squares discriminant analysis model was then established to discriminate its metabolomes and identify the chemomarkers that help to distinguish C longa from 6 geographical locations. Consequently, collected samples were segregated into 3 main groups: northern (Lang Son, with typical content of 2 terpenoids), center (Nghe An), and southern highland (Lam Dong, with distinctive profile of 3 curcuminoids). The absolute curcuminoids’ amount was also measured based on the calibration curve of reference standards. The differential metabolites including curcumin, demethoxycurcumin, and bisdemethoxycurcumin were found with the highest range in samples from Lang Son, indicating the excellent quality of turmeric cultivated in this area.
Collapse
Affiliation(s)
- Kieu-Oanh Nguyen Thi
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hoang-Giang Do
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Ngoc-Tu Duong
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tien Dat Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Quang-Trung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
6
|
Sheu SC, Wu YC, Lien YY, Lee MS. Specific, sensitive and rapid Curcuma longa turmeric powder authentication in commercial food using loop-mediated isothermal nucleic acid amplification. Saudi J Biol Sci 2021; 28:5931-5936. [PMID: 34588909 PMCID: PMC8459125 DOI: 10.1016/j.sjbs.2021.06.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/25/2022] Open
Abstract
Turmeric (Curcuma longa) is a rhizomatous plant of the ginger family Zingiberaceae that is usually dried and ground into powder for use as a seasoning. Because turmeric has become increasingly popular in the functional food market, adulteration of C. longa by other turmeric species is becoming an increasingly significant problem. In this study, loop-mediated isothermal amplification (LAMP) was developed for the detection of C. longa DNA for turmeric authentication. ITS2-26S rDNA was used for the LAMP primer designation. The results demonstrated that the specific primers exhibited high specificity, authenticated C. longa DNA within 30 min at 65 °C isothermally and had no cross-reaction with other adulterants. LAMP was sensitive to 0.1 ng of turmeric C. longa DNA, and only 0.01% of C. longa turmeric powder in the sample was required for DNA amplification. The sensitivity of LAMP was 10-fold higher than that of PCR (0.1%) from a previous report. Moreover, all the collected commercial turmeric products were positively detected by LAMP and RtF-LAMP (real-time fluorescence LAMP). The developed LAMP assay not only had higher specificity and rapidity than that of other methods but could also be applied to authenticate turmeric to prevent adulteration in food products.
Collapse
Affiliation(s)
- Shyang-Chwen Sheu
- National Pingtung University of Science and Technology, Department of Food Science, Pingtung, 91201, Taiwan
| | - Yi-Cheng Wu
- National Pingtung University of Science and Technology, Department of Food Science, Pingtung, 91201, Taiwan
| | - Yi-Yang Lien
- National Pingtung University of Science and Technology, Department of Veterinary Medicine, Pingtung, 91201, Taiwan
| | - Meng-Shiou Lee
- China Medical University, Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, Taichung, 40402, Taiwan
| |
Collapse
|
7
|
Sha AM, Garib BT, Azeez SH, Gul SS. Effects of curcumin gel on osteoclastogenic bone markers in experimental periodontitis and alveolar bone loss in wistar rats. J Dent Sci 2021; 16:905-914. [PMID: 34141104 PMCID: PMC8189873 DOI: 10.1016/j.jds.2020.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND/PURPOSE Curcumin has anti-inflammatory impacts and was suggested as an inflammatory disease therapy. This study aimed to investigate the implications of curcumin gel on experimental periodontitis (EPD) and alveolar bone loss in rats. MATERIALS AND METHODS In this study, twenty-four male Wistar rats were divided equally into four groups: negative control (with no EPD); positive control (EPD induced around lower centrals without treatment); control-treated group: EPD treated with chlorhexidine; and test EPD group treated with curcumin. After 30 days, the serum concentrations of RANKL and IL-1β were measured via ELISA. All animals were sacrificed, and mandibular central incisors with the periodontium were removed. The lingual probing depth and radiographical alveolar bone loss were measured, then samples processed for routine preparation of H&E stained sections and histologically assessed for counting inflammatory cells, osteoclasts, and PDL width. RESULTS A significant decrease in the inflammatory cells infiltration, probing depth, and osteoclast numbers with the improvement of PDL associated with a reduction in RANKL and IL-1β serum concentration were seen in both EPD treated groups. CONCLUSION Curcumin is as effective as chlorhexidine in treating experimental periodontitis in rats. It was demonstrated to stop bone destruction related to periodontitis by regulating the RANKL and IL-1β markers level in the blood.
Collapse
Affiliation(s)
- Aram Mohammed Sha
- Department of Periodontics, College of Dentistry, University of Sulaimani, Sulaimani- Kurdistan Region, Iraq
| | - Balkees Taha Garib
- Department of Oral Diagnosis, College of Dentistry, University of Sulaimani, Sulaimani- Kurdistan Region, Iraq
| | - Shokhan Hamaali Azeez
- Department of Dental Nursing, Sulaimani Technical Institute, Sulaimani Polytechnic University, Sulaimani- Kurdistan Region, Iraq
| | - Sarhang Sarwat Gul
- Department of Periodontics, College of Dentistry, University of Sulaimani, Sulaimani- Kurdistan Region, Iraq
| |
Collapse
|
8
|
Widjaja J, Diyatri I, Riawan W, Puteri A, Meizarini A. New insight into the role of a combination of zinc oxide and turmeric rhizome liquid extract in osteogenic marker expression. J Indian Prosthodont Soc 2021; 21:262-268. [PMID: 34380813 PMCID: PMC8425368 DOI: 10.4103/jips.jips_120_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
Aim This research was aimed to determine the potential for treating osteogenesis with a combination of zinc oxide and turmeric (ZOT) rhizome liquid extract. Setting and Design In vivo, post test-control group design. Material and Methods The mandibular incisors of Wistar rats were extracted and left untreated or received an application of zinc oxideeugenol (ZOE) 10% or ZOT rhizome liquid extract at various concentrations (10%, 20%, and 40%). The mandible was then subjected to immunohistochemical analysis to detect RUNX2 and alkaline phosphatase (ALP) activity. Statistical Analysis Used One-way ANOVA and Tukey HSD using SPSS software. Results All groups demonstrated increasing RUNX2 and ALP activity. ZOT 40% showed the highest activity in all groups on day 3 and day 7, although there were no significant differences with ZOE 10%. Conclusion A combination of ZOT rhizome liquid extract can induce the osteogenic process in postextraction sockets. The results highlight the need for further investigation of the potential osteogenesis of curcumin in humans.
Collapse
Affiliation(s)
- Jennifer Widjaja
- Department of Prosthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Indeswati Diyatri
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Biochemistry and Molecular Biology, Medical Faculty, Brawijaya University, Malang, Indonesia
| | - Astari Puteri
- Department of Oral and Maxillofacial Pathology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Asti Meizarini
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
9
|
Sultana S, Munir N, Mahmood Z, Riaz M, Akram M, Rebezov M, Kuderinova N, Moldabayeva Z, Shariati MA, Rauf A, Rengasamy KRR. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A Review. Biomed Pharmacother 2021; 135:111078. [PMID: 33433356 DOI: 10.1016/j.biopha.2020.111078] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Medicinal plants are being used for therapeutic purposes since the dawn of human civilization. The therapeutic efficacy of medicinal plants is due to the presence of wide range phytochemical constituents or secondary metabolites. The medicinal plants are traditionally used for several types of ailments. Even in those pathological conditions where other methods of treatment fail to work. Curcuma longa Linn is very common ingredient used as spice in foods as preservative and coloring material in different part of the world. It has been used as a home remedy for a variety of diseases. Curcuma longa and its isolated constituent curcumin are widely evaluated for anticancer activity. Curcumin possesses broad remedial potential due to its multi-targeting effect against many different carcinoma including leukemia, genitourinary cancers, gastrointestinal cancers and breast cancer etc. Hence, Curcumin has potential for the development of new medicine for the treatment of several diseases.
Collapse
Affiliation(s)
- Sabira Sultana
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Zahed Mahmood
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of RussianAcademy of Sciences, Moscow, Russian Federation; Prokhorov General Physics Institute, Russian Academy of Sciences,Moscow, Russian Federation; K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | | | | | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation; Shakarim State University of Semey, Semey, Kazakhstan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam; Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West Province, South Africa.
| |
Collapse
|
10
|
Ayer DK, Modha K, Parekh V, Patel R, Vadodariya G, Ramtekey V, Bhuriya A. Associating gene expressions with curcuminoid biosynthesis in turmeric. J Genet Eng Biotechnol 2020; 18:83. [PMID: 33315159 PMCID: PMC7736439 DOI: 10.1186/s43141-020-00101-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Biologically important curcuminoids viz curcumin, demethoxycurcumin, and bisdemethoxycurcumin in turmeric rhizome have several health benefits. Pharmaceutical industries synthesize curcuminoids manipulating gene expressions in vitro or in vivo because of their medicinal importance. In this experiment, we studied the gene expressions involved in the curcuminoid biosynthesis pathway in association with curcuminoid yield in turmeric rhizome to study the impact of individual gene expression on curcuminoid biosynthesis. RESULTS Gene expressions at the different growth stages of turmeric rhizome were association tested with respective curcuminoid contents. Gene expression patterns of diketide-CoA synthase (DCS) and multiple curcumin synthases (CURSs) viz curcumin synthase 1 (CURS1), curcumin synthase 2 (CURS2), and curcumin synthase 3 (CURS3) were differentially associated with different curcuminoid contents. Genotype and growth stages showed a significant effect on the gene expressions resulting in a significant impact on curcuminoid balance in turmeric rhizome. DCS and CURS3 expression patterns were similar but distinct from CURS1 and CURS2 expression patterns in turmeric rhizome. DCS expression had a significant positive and CURS3 expression had a significant negative association with curcumin, demethoxycurcumin, bisdemethoxycurcumin, and total curcuminoid in turmeric rhizome. CURS1 expression had a negative association with curcumin whereas CURS2 expression showed a positive association with demethoxycurcumin. CONCLUSIONS The effects of DCS and CURS expressions are not always positive with different curcuminoid contents in turmeric rhizome. DCS expression has a positive and CURS3 expression has a negative association with curcuminoids. CURS1 and CURS2 are also associated with curcumin and demethoxycurcumin synthesis. This mechanism of co-expression of diketide-CoA synthase and multiple curcumin synthases in turmeric rhizome has a significant effect on curcuminoid balance in different turmeric cultivars. Further experiment will explore more insights; however, association-based test results from this experiment can be useful in improving curcuminoid yield in turmeric rhizome or in vitro through the application of genetic engineering and biotechnology. Associating gene expressions with curcuminoid biosynthesis in turmeric.
Collapse
Affiliation(s)
- Dipendra Kumar Ayer
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396450, India.
| | - Kaushal Modha
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396450, India
| | - Vipulkumar Parekh
- Department of Basic Science and Humanity, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, Gujarat, 396450, India
| | - Ritesh Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396450, India
| | - Gopal Vadodariya
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396450, India
| | - Vinita Ramtekey
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396450, India
| | - Arpit Bhuriya
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396450, India
| |
Collapse
|
11
|
Cerveira MM, Vianna HS, Ferrer EMK, da Rosa BN, de Pereira CMP, Baldissera MD, Lopes LQS, Rech VC, Giongo JL, de Almeida Vaucher R. Bioprospection of novel synthetic monocurcuminoids: Antioxidant, antimicrobial, and in vitro cytotoxic activities. Biomed Pharmacother 2020; 133:111052. [PMID: 33378958 DOI: 10.1016/j.biopha.2020.111052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
The irrational use of medications has increased the incidence of microbial infections, which are a major threat to public health. Moreover, conventional therapeutic strategies are starting to become ineffective to treat these infections. Hence, there is a need to develop and characterize novel antimicrobial compounds. Phytochemicals are emerging as a safe and accessible alternative to conventional therapeutics for treating infectious diseases. Curcumin is extracted from the dried rhizome of the spice turmeric (Curcuma longa (Zingiberaceae)). However, the bioavailability of curcumin is low owing to its lipophilic property and thus has a low therapeutic efficacy in the host. A previous study synthesized structural variants of curcumin, which are called monocurcuminoids (CNs). CNs are synthesized based on the chemical structure of curcumin with only one methyl bridge. The biological activities of four previously synthesized CNs (CN59, CN63, CN67, and CN77), curcumin, and turmeric powder were examined in this study. Gas chromatography-tandem mass spectrometry analysis of curcumin and turmeric powder revealed similar peaks, which indicated the presence of curcumin in turmeric powder. The antioxidant activity of the test compounds was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays. The ABTS radical scavenging activities of the test compounds were similar to those of vitamin C. The minimum inhibitory concentration (MIC) values of the test compounds against seven microbial strains were in the range of 4.06-150 μg/mL. The MIC value was equal to minimum bactericidal concentration value for CN63 (150 μg/mL) and CN67 (120 μg/mL) against Staphylococcus aureus. The treatment combination of CN77 (8.75 or 4.37 μg/mL) and turmeric powder (9.37 or 4.68 μg/mL) exerted synergistic growth-inhibiting effects on Aeromonas hydrophila, Candida albicans, and Pseudomonas aeruginosa. Photodynamic therapy using 2X MIC of CN59 decreased the growth of Enterococcus faecalis by 4.18-fold compared to the control group and completely inhibited the growth of Escherichia coli. The results of the hemolytic assay revealed that the test compounds were not cytotoxic with half-maximal inhibitory concentration values ranging from 49.65-130.9 μM. The anticoagulant activity of most compounds was comparable to that of warfarin but higher than that of heparin. This indicated that these compounds target the intrinsic coagulation pathway. These results demonstrated that these CNs are a safe and promising alternative for curcumin.
Collapse
Affiliation(s)
- Milena Mattes Cerveira
- Laboratory of Biochemistry Research and Molecular Biology of Microorganisms (LaPeBBiOM), Universidade Federal de Pelotas, RS, Brazil
| | - Helena Silveira Vianna
- Laboratory of Biochemistry Research and Molecular Biology of Microorganisms (LaPeBBiOM), Universidade Federal de Pelotas, RS, Brazil
| | - Edila Maria Kickhofel Ferrer
- Laboratory of Biochemistry Research and Molecular Biology of Microorganisms (LaPeBBiOM), Universidade Federal de Pelotas, RS, Brazil
| | - Bruno Nunes da Rosa
- Lipidomics and Bio-organic Laboratory, Universidade Federal de Pelotas, RS, Brazil
| | | | | | | | - Virginia Cielo Rech
- Post graduate Program in Nanoscience, Universidade Franciscana, Santa Maria, RS, Brazil
| | - Janice Luehring Giongo
- Laboratory of Biochemistry Research and Molecular Biology of Microorganisms (LaPeBBiOM), Universidade Federal de Pelotas, RS, Brazil
| | - Rodrigo de Almeida Vaucher
- Laboratory of Biochemistry Research and Molecular Biology of Microorganisms (LaPeBBiOM), Universidade Federal de Pelotas, RS, Brazil.
| |
Collapse
|
12
|
Balada C, Castro M, Fassio C, Zamora A, Marchant MJ, Acevedo W, Guzmán L. Genetic diversity and biological activity of Curcuma longa ecotypes from Rapa Nui using molecular markers. Saudi J Biol Sci 2020; 28:707-716. [PMID: 33424358 PMCID: PMC7785433 DOI: 10.1016/j.sjbs.2020.10.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Curcuma Longa (CL) has been used for hundreds of years by native people from Rapa Nui for the treatment of different illness. Despite this plant was introduced from Polynesia or India, there is still scarce information about its origin. The objective of this study was to analyze the genetic variation of three CL ecotypes based on molecular phylogenetic and genotypification using internal transcribed spacer 2 (ITS2) and simple sequence repeats (SSR). Antioxidant and anti-inflammatory properties of rhizomes and leaves extracts of three CL plants were analyzed by spectrophotometric methods and cyclooxygenase 2 (COX-2) inhibition assay. Complementarily, we predicted the potential binding mode and binding energy of curcuminoids and nonsteroidals anti-inflammatory drugs (NSAIDs) into COX-2 via molecular docking. The ITS2 sequence shows two major clusters (I and II), group I consisted of Curcuma haritha and group II consisted of different species of Curcuma and Rapa Nui samples (MR-1, MR-2 and RK-2). Results of SSR markers show that genotype MR-2 was similar to MR-1 and RK-2 with 70.8 and 42.9% similarity, whereas genotype was similar to RK-2, MR-1 and MR-2 with 63.9, 43.2 and 42.9% similarity, respectively. MR-1 have better antioxidant and autoinflammatory activity than rest of CL samples due to its high concentration of polyphenols (33.68 mg/g) and curcumin (29.69 mg/g). Furthermore, docking results show that three curcuminoids of CL and selective NAIDs, as celecoxib, etodolac and meloxicam, share the same binding pocket into COX-2. However, three curcuminoids have a lower ΔGbinding than other COX-2 selective NAIDs as etodolac and meloxicam, except for Coxib family as valdecoxib, celecoxib and rofecoxib. Our findings suggest MR-1, MR-2 and MK-2 from Germplasm Bank (Mataveri Otai of CONAF) are closely related to Curcuma amada and Curcuma montana even though they have genetic variability.
Collapse
Affiliation(s)
- Cristóbal Balada
- Laboratorio de Química Biológica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Mónica Castro
- Laboratorio de Propagación, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Claudia Fassio
- Laboratorio de Propagación, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Agustín Zamora
- Laboratorio de Química Biológica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María José Marchant
- Laboratorio de Química Biológica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Laboratorio de Propagación, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Waldo Acevedo
- Laboratorio de Química Biológica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Leda Guzmán
- Laboratorio de Química Biológica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
13
|
Pérez-Pacheco CG, Fernandes NAR, Primo FL, Tedesco AC, Bellile E, Retamal-Valdes B, Feres M, Guimarães-Stabili MR, Rossa C. Local application of curcumin-loaded nanoparticles as an adjunct to scaling and root planing in periodontitis: Randomized, placebo-controlled, double-blind split-mouth clinical trial. Clin Oral Investig 2020; 25:3217-3227. [PMID: 33125518 DOI: 10.1007/s00784-020-03652-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Assess a single local application of curcumin-loaded nanoparticles as an adjunct to scaling and root planing (SRP) in nonsurgical periodontal treatment (NPT). MATERIALS AND METHODS Twenty healthy subjects with periodontitis received SRP+PLGA/PLA nanoparticles loaded with 50 μg of curcumin (N-Curc) or SRP+empty nanoparticles. Probing pocket depth (PPD), clinical attachment level (CAL), and bleeding on probing (BOP) were monitored at baseline, 30, 90, and 180 days. IL-1α, IL-6, TNFα, and IL-10 in the gingival crevicular fluid (GCF) were assessed by ELISA, and counts of 40 bacterial species were determined by DNA hybridization at baseline, 3, 7, and 15 days post-therapy. RESULTS PPD, CAL, and BOP were similarly and significantly improved in both experimental groups. There was no difference in GCF cytokine levels between experimental groups, although IL-6 was decreased at 3 days only in the N-Curc group. NPT reduced counts of red complex bacterial species in both groups. Veillonella Parvula counts increased significantly only in N-Curc group at 7 days, whereas Aggregatibacter actinomycetemcomitans counts increased significantly only in the control group from day 3 to day 15. CONCLUSION We conclude that a single local administration of nanoencapsulated curcumin in periodontally diseased sites had no additive benefits to NPT. CLINICAL RELEVANCE Our results showed that a single local application of curcumin-loaded nanoparticles associated with nonsurgical periodontal therapy did not improve clinical outcomes. Hence, our findings do not support the use of curcumin as an adjunct to nonsurgical periodontal therapy.
Collapse
Affiliation(s)
- Cindy Grace Pérez-Pacheco
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Natalie Ap Rodrigues Fernandes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Fernando Lucas Primo
- Department of Bioprocess and Biotechnology, Faculty of Pharmaceutical Sciences of Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Emily Bellile
- Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Belen Retamal-Valdes
- Department of Periodontology and Oral Implantology, Dental Research Division, Universidade de Guarulhos - UNG, Sao Paulo, SP, Brazil
| | - Magda Feres
- Department of Periodontology and Oral Implantology, Dental Research Division, Universidade de Guarulhos - UNG, Sao Paulo, SP, Brazil
| | | | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
14
|
Wu R, Wang L, Yin R, Hudlikar R, Li S, Kuo HCD, Peter R, Sargsyan D, Guo Y, Liu X, Kong AN. Epigenetics/epigenomics and prevention by curcumin of early stages of inflammatory-driven colon cancer. Mol Carcinog 2020; 59:227-236. [PMID: 31820492 PMCID: PMC6946865 DOI: 10.1002/mc.23146] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is associated with significant morbidity and mortality in the US and worldwide. CRC is the second most common cancer-related death in both men and women globally. Chronic inflammation has been identified as one of the major risk factors of CRC. It may drive genetic and epigenetic/epigenomic alterations, such as DNA methylation, histone modification, and non-coding RNA regulation. Current prevention modalities for CRC are limited and some treatment regimens such as use the nonsteroidal anti-inflammatory drug aspirin may have severe side effects, namely gastrointestinal ulceration and bleeding. Therefore, there is an urgent need of developing alternative strategies. Recently, increasing evidence suggests that several dietary cancer chemopreventive phytochemicals possess anti-inflammation and antioxidative stress activities, and may prevent cancers including CRC. Curcumin (CUR) is the yellow pigment that is found in the rhizomes of turmeric (Curcuma longa). Many studies have demonstrated that CUR exhibit strong anticancer, antioxidative stress, and anti-inflammatory activities by regulating signaling pathways, such as nuclear factor erythroid-2-related factor 2, nuclear factor-κB, and epigenetics/epigenomics pathways of histones modifications, and DNA methylation. In this review, we will discuss the latest evidence in epigenetics/epigenomics alterations by CUR in CRC and their potential contribution in the prevention of CRC.
Collapse
Affiliation(s)
- Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hsiao-Chen D Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Yue Guo
- Janssen Research & Development, Spring House, Pennsylvania
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - A N Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
15
|
Anthonydhason V, Gopal J, Chun S, Muthu M. Nanocarbon Effect of Smoking Biofilms for Effective Control. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1394-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Local administration of curcumin-loaded nanoparticles effectively inhibits inflammation and bone resorption associated with experimental periodontal disease. Sci Rep 2018; 8:6652. [PMID: 29703905 PMCID: PMC5923426 DOI: 10.1038/s41598-018-24866-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/13/2018] [Indexed: 01/17/2023] Open
Abstract
There is evidence indicating that curcumin has multiple biological activities, including anti-inflammatory properties. In vitro and in vivo studies demonstrate that curcumin may attenuate inflammation and the connective tissue destruction associated with periodontal disease. Most of these studies use systemic administration, and considering the site-specific nature of periodontal disease and also the poor pharmacodynamic properties of curcumin, we conducted this proof of principle study to assess the biological effect of the local administration of curcumin in a nanoparticle vehicle on experimental periodontal disease. We used 16 rats divided into two groups of 8 animals according to the induction of experimental periodontal disease by bilateral injections of LPS or of the vehicle control directly into the gingival tissues 3×/week for 4 weeks. The same volume of curcumin-loaded nanoparticles or of nanoparticle vehicle was injected into the same sites 2×/week. µCT analysis showed that local administration of curcumin resulted in a complete inhibition of inflammatory bone resorption and in a significant decrease of both osteoclast counts and of the inflammatory infiltrate; as well as a marked attenuation of p38 MAPK and NF-kB activation. We conclude that local administration of curcumin-loaded nanoparticles effectively inhibited inflammation and bone resorption associated with experimental periodontal disease.
Collapse
|
17
|
Duan Z, Song W, Chen K, Qiao X, Ye M. Assessment of Genetic and Chemical Variability in Curcumae Longae Rhizoma (Curcuma longa) Based on DNA Barcoding Markers and HPLC Fingerprints. Biol Pharm Bull 2017; 40:1638-1645. [PMID: 28747591 DOI: 10.1248/bpb.b17-00020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Curcumae Longae Rhizoma (Curcuma longa L.) is an important traditional Chinese medicine with multiple beneficial effects. To elucidate the genetic and chemical differences among Curcumae Longae Rhizoma samples, three DNA barcoding markers (rbcL, matK, and ITS-LSU D1/D3) and HPLC fingerprinting were employed in this study. The discriminatory power of rbcL and matK was low, as they only detected one sequence type that showed 100% similarity with more than 20 congeneric species in the Barcode of Life Data Systems (BOLD) database. In contrast, ITS-LSU D1/D3 showed sufficient discriminatory power to precisely identify all of the market samples as C. longa L. in a BLAST search as well as differentiate each sample based on 2-10 ITS-LSU D1/D3 haplotypes with intragenomic variability (mean p-distance: 0.7%, range: 0-2.6%; mean number of differences: 9.6 sites, range: 0-38 sites). HPLC fingerprinting of 13 commercial samples showed a similarity that ranged from 0.769 to 0.996, indicating that the sample quality varied. A cluster analysis based on 5 common peak areas from the HPLC chromatogram resulted in two groups. Group I included 9 samples with a relatively high chemical content, and group II contained 4 samples with a low chemical content. A Mantel test revealed a low correlation (r=0.1721, p=0.047) between genetic and chemical differences. Our findings suggest that the integrated approach of ITS-LSU D1/D3 DNA barcoding and HPLC fingerprinting provides a comprehensive, precise, and convenient method to clarify the genetic and chemical differences in Curcumae Longae Rhizoma.
Collapse
Affiliation(s)
- Zhonggang Duan
- School of Life Science, Huizhou University.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University
| | - Wei Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University
| |
Collapse
|
18
|
Wiggers H, Zaioncz S, Cheleski J, Mainardes R, Khalil N. Curcumin, a Multitarget Phytochemical. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00007-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Chun S, Muthu M, Gansukh E, Thalappil P, Gopal J. The ethanopharmacological aspect of carbon nanodots in turmeric smoke. Sci Rep 2016; 6:35586. [PMID: 27805007 PMCID: PMC5090208 DOI: 10.1038/srep35586] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/19/2016] [Indexed: 11/18/2022] Open
Abstract
Smoke manifested ever since our ancient's lit fire; today it has evolved to become an environmental concern. However, medicinal smoke is still part of man's natural remedies, religious and cultural practices too. The Asiatic household practice of burning turmeric rhizomes to relieve nose and chest congestion is a well known yet never scientifically authenticated or studied practice. For the first time we investigate the components of these turmeric smudges, validate their antimicrobial and anticancer properties and their cell compatibility. With smoke there is always nanoparticulate carbon and turmeric smoke is no exception. If so, what is the role of the nano carbon (NC) in the turmeric smudge effect? This study isolated, characterized and exposed these secret natural NC undercover agents in turmeric smoke. Their unequivocal role in the ethanopharmocological activity of turmeric smudging has been demonstrated. This work opens a new avenue for use of such nano components of smoke for harnessing the ethanopharmacological property of various medicinal smokes, by excluding the smoke factor, through extracting the nano carbon material in them. This is a possibility to realizing the use of such naturally available nanomaterial, as an eco friendly substitute for the notorious anthropogenic nanomaterials.
Collapse
Affiliation(s)
- Sechul Chun
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea
| | - Manikandan Muthu
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea
| | - Enkhtaivan Gansukh
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea
| | - Pradeep Thalappil
- DST Unit of Nanoscience (DST UNS), and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600 036, India
| | - Judy Gopal
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
20
|
Gopal J, Muthu M, Chun S. Autochthonous self-assembly of nature's nanomaterials: green, parsimonious and antibacterial carbon nanofilms on glass. Phys Chem Chem Phys 2016; 18:18670-7. [PMID: 27355696 DOI: 10.1039/c6cp03478k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of thin film coatings has been a very important development in materials science for the modification of native material surface properties. Thin film coatings are enabled through the use of sophisticated instruments and technologies that demand expertise and huge initial and running costs. Nano-thin films are yet a furtherance of thin films which require more expertise and much more sophistication. In this work for the first time we present a one-pot straightforward carbon thin film coating methodology for glass substrates. There is novelty in every single aspect of the method, with the carbon used in the nanofilm being obtained from turmeric soot, the coating technique consisting of a basic immersion technique, a dip-dry method, in combination with the phytosoot-derived carbon's inherent ability to self-assemble to form a uniform and continuous stable coating. The carbon nanofilm has been characterized using field emission scanning electron microscopy (FESEM), Energy Dispersive X-ray (EDAX) analysis, a goniometer and X-ray diffraction (XRD). This study for the first time opens a new school of thought of using such naturally available free nanomaterials as eco-friendly green coatings. The amorphous porous carbon film can be coated on any hydrophilic substrate and is not substrate specific. Its added advantages of being transparent and antibacterial in spite of being green and parsimonious are meant to realize its utility as ideal choices for solar panels, medical implants and other construction applications.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea.
| | | | | |
Collapse
|
21
|
Gilani SA, Kikuchi A, Shimazaki T, Wicaksana N, Wunna, Watanabe KN. Molecular genetic diversity of curcuminoid genes in Curcuma amada: Curcuminoid variation, consideration on species boundary and polyploidy. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Verma S, Singh S, Sharma S, Tewari SK, Roy RK, Goel AK, Rana TS. Assessment of genetic diversity in indigenous turmeric (Curcuma longa) germplasm from India using molecular markers. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:233-42. [PMID: 25964716 PMCID: PMC4411392 DOI: 10.1007/s12298-015-0286-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/21/2015] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Curcuma longa L., commonly known as turmeric, is one of the economically and medicinally important plant species. It is predominantly cultivated in the tropical and sub tropical countries. India is the largest producer, and exporter of turmeric in the world, followed by China, Indonesia, Bangladesh and Thailand. In the present study, Directed Amplification of Minisatellite DNA (DAMD) and Inter Simple Sequence Repeats (ISSR), methods were used to estimate the genetic variability in indigenous turmeric germplasm. Cumulative data analysis for DAMD (15) and ISSR (13) markers resulted into 478 fragments, out of which 392 fragments were polymorphic, revealing 82 % polymorphism across the turmeric genotypes. Wide range of pairwise genetic distances (0.03-0.59) across the genotypes revealed that these genotypes are genetically quite diverse. The UPGMA dendrogram generated using cumulative data showed significant relationships amongst the genotypes. All 29 genotypes studied grouped into two clusters irrespective of their geographical affiliations with 100 % bootstrap value except few genotypes, suggesting considerable diversity amongst the genotypes. These results suggested that the current collection of turmeric genotypes preserve the vast majority of natural variations. The results further demonstrate the efficiency and reliability of DAMD and ISSR markers in determining the genetic diversity and relationships among the indigenous turmeric germplasm. DAMD and ISSR profiling have identified diverse turmeric genotypes, which could be further utilized in various genetic improvement programmes including conventional as well as marker assisted breeding towards development of new and desirable turmeric genotypes.
Collapse
Affiliation(s)
- Sushma Verma
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Shweta Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Suresh Sharma
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - S. K. Tewari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - R. K. Roy
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - A. K. Goel
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - T. S. Rana
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| |
Collapse
|
23
|
High-capacity thermo-responsive magnetic molecularly imprinted polymers for selective extraction of curcuminoids. J Chromatogr A 2014; 1354:1-8. [DOI: 10.1016/j.chroma.2014.05.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022]
|
24
|
Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BIOMED RESEARCH INTERNATIONAL 2014; 2014:186864. [PMID: 24877064 PMCID: PMC4022204 DOI: 10.1155/2014/186864] [Citation(s) in RCA: 522] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/28/2014] [Indexed: 02/08/2023]
Abstract
Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Soheil Zorofchian Moghadamtousi
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hassan Tajik
- Department of Chemistry, Faculty of Sciences, Guilan University, Rasht, Iran
| | - Sazaly Abubakar
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr 3631, Iran
| |
Collapse
|
25
|
Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and Liver Disease: from Chemistry to Medicine. Compr Rev Food Sci Food Saf 2013; 13:62-77. [DOI: 10.1111/1541-4337.12047] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/23/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center; Baqiyatallah Univ. of Medical Sciences; Tehran Iran
| | - Maria Daglia
- Dept. of Drug Sciences; Univ. of Pavia, Medicinal Chemistry and Pharmaceutical Technology Section; via Taramelli 12 27100 Pavia Italy
| | - Akbar Hajizadeh Moghaddam
- Amol Univ. of Special Modern Technologies; Amol Iran
- Dept. of Biology; Faculty of basic science; Univ. of Mazandaran; Babolsar Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories; Medway School of Science, Univ. of Greenwich; Central Ave. Chatham-Maritime Kent ME4 4TB U.K
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center; Baqiyatallah Univ. of Medical Sciences; Tehran Iran
| |
Collapse
|
26
|
Kewitz S, Volkmer I, Staege MS. Curcuma Contra Cancer? Curcumin and Hodgkin's Lymphoma. CANCER GROWTH AND METASTASIS 2013; 6:35-52. [PMID: 24665206 PMCID: PMC3941149 DOI: 10.4137/cgm.s11113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Curcumin, a phytochemical isolated from curcuma plants which are used as coloring ingredient for the preparation of curry powder, has several activities which suggest that it might be an interesting drug for the treatment or prevention of cancer. Curcumin targets different pathways which are involved in the malignant phenotype of tumor cells, including the nuclear factor kappa B (NFKB) pathway. This pathway is deregulated in multiple tumor entities, including Hodgkin’s lymphoma (HL). Indeed, curcumin can inhibit growth of HL cell lines and increases the sensitivity of these cells for cisplatin. In this review we summarize curcumin activities with special focus on possible activities against HL cells.
Collapse
Affiliation(s)
- Stefanie Kewitz
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| | - Ines Volkmer
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| | - Martin S Staege
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| |
Collapse
|
27
|
Sagnou M, Mitsopoulou K, Koliopoulos G, Pelecanou M, Couladouros E, Michaelakis A. Evaluation of naturally occurring curcuminoids and related compounds against mosquito larvae. Acta Trop 2012; 123:190-5. [PMID: 22634203 DOI: 10.1016/j.actatropica.2012.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/23/2012] [Accepted: 05/13/2012] [Indexed: 11/27/2022]
Abstract
The three curcuminoid components commonly isolated from Curcuma longa, curcumin (1), demethoxycurcumin (2), and bis-demethoxycurcumin (3) were separated and isolated from a commercially available turmeric extract product in high purity and sufficient amounts. Three more derivatives of curcumin, the di-O-demethylcurcumin (4), di-O-methylcurcumin (5) and the di-O-acetylcurcumin (6) were also synthesized and characterized. All six compounds were evaluated for their larvicidal effect against the mosquito Culex pipiens. Curcumin (1) exhibited highly potent larvicidal activity with LC(50) value of 19.07mgL(-1). Moreover, di-O-demethylcurcumin (4), was found to be equally active with LC(50) value of 12.42mgL(-1). Based on the LC(90) values of the two compounds, di-O-demethylcurcumin (4) was the most active of all, resulting in an LC(90) value of 29.40mgL(-1), almost half of the LC(90) value 61.63mgL(-1) found for compound 1. The rest of the compounds were inactive at concentrations even as high as 150mgL(-1) indicating a dependence of the larvicidal activity upon the substitution patent and the presence of aromatic hydroxyl and methoxy moieties. These results show for the first time the potential of this valuable natural product regarding its use as vector control agent.
Collapse
|