1
|
Varadharajan V, Rajendran R, Muthuramalingam P, Runthala A, Madhesh V, Swaminathan G, Murugan P, Srinivasan H, Park Y, Shin H, Ramesh M. Multi-Omics Approaches Against Abiotic and Biotic Stress-A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:865. [PMID: 40265800 PMCID: PMC11944711 DOI: 10.3390/plants14060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
Plants face an array of environmental stresses, including both abiotic and biotic stresses. These stresses significantly impact plant lifespan and reduce agricultural crop productivity. Abiotic stresses, such as ultraviolet (UV) radiation, high and low temperatures, salinity, drought, floods, heavy metal toxicity, etc., contribute to widespread crop losses globally. On the other hand, biotic stresses, such as those caused by insects, fungi, and weeds, further exacerbate these challenges. These stressors can hinder plant systems at various levels, including molecular, cellular, and development processes. To overcome these challenges, multi-omics computational approaches offer a significant tool for characterizing the plant's biomolecular pool, which is crucial for maintaining homeostasis and signaling response to environmental changes. Integrating multiple layers of omics data, such as proteomics, metabolomics, ionomics, interactomics, and phenomics, simplifies the study of plant resistance mechanisms. This comprehensive approach enables the development of regulatory networks and pathway maps, identifying potential targets for improving resistance through genetic engineering or breeding strategies. This review highlights the valuable insights from integrating multi-omics approaches to unravel plant stress responses to both biotic and abiotic factors. By decoding gene regulation and transcriptional networks, these techniques reveal critical mechanisms underlying stress tolerance. Furthermore, the role of secondary metabolites in bio-based products in enhancing plant stress mitigation is discussed. Genome editing tools offer promising strategies for improving plant resilience, as evidenced by successful case studies combating various stressors. On the whole, this review extensively discusses an advanced multi-omics approach that aids in understanding the molecular basis of resistance and developing novel strategies to improve crops' or organisms' resilience to abiotic and biotic stresses.
Collapse
Affiliation(s)
| | - Radhika Rajendran
- Indian Council of Agricultural Research (ICAR), National Institute for Plant Biotechnology (NIPB), PUSA Campus, New Delhi 110012, India;
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ashish Runthala
- Department of Basic Sciences, School of Science and Humanities, SR University, Warangal 506371, India;
| | - Venkatesh Madhesh
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; (V.M.)
| | - Gowtham Swaminathan
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; (V.M.)
| | - Pooja Murugan
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; (V.M.)
| | - Harini Srinivasan
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; (V.M.)
| | - Yeonju Park
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India;
| |
Collapse
|
2
|
de Paula Correia DV, Rodak BW, Machado HA, Lopes G, Freitas DS. Beneficial or detrimental? How nickel application alters the ionome of soybean plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112274. [PMID: 39343061 DOI: 10.1016/j.plantsci.2024.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The use of nickel (Ni) in agriculture may represent one of the most significant cases of plant hormesis ever reported, as plants exhibit both positive and negative responses depending on the level of exposure to this element. For a more comprehensive understanding of this effect, the next step is to conduct studies on the dynamics of pre-existing chemical elements in the system (ionomic profile), especially when introducing Ni as a novel nutrient for the plants. This micronutrient is of particular interest to the fertilization of leguminous plants, such as the soybean, due to its additional effects on the biological nitrogen fixation process. This study thus evaluated the influence of five doses of Ni (0.0, 0.5, 1.0, 3.0, and 9.0 mg of Ni kg-1) on the ionomic profile of soybean genotypes using modern quantification techniques. The results revealed that the addition of Ni reduced the concentration of cationic micronutrients manganese (Mn), iron (Fe), zinc (Zn), and copper (Cu), while it increased the concentration of macronutrients nitrogen (N) and magnesium (Mg). The application of Ni also resulted in a reduction of the potentially toxic element aluminum (Al). Correlations were also observed for these elements, indicating that Ni could be a controlling agent in elemental absorption and translocation. The ionome of the leaf tissues exhibited the most significant alterations, followed by the grains, nodules, and roots. Exogenous agronomic doses of Ni proved beneficial for the growth and production of soybean plants, although a genotypic effect was observed. The treatment with 9.0 mg of Ni kg-1, resulted in a new ionomic profile related to toxicity, demonstrating suboptimal plant development. Thus, the application of Ni in appropriate doses had a significant impact on the ionomic profile of soybeans, improving plant development and implying resistance to potentially toxic elements such as Al.
Collapse
Affiliation(s)
| | - Bruna Wurr Rodak
- Department of Agronomy, Paraná Federal Institute of Education, Science and Technology, Palmas, Paraná 85690-740, Brazil.
| | - Henrique Amorim Machado
- Department of Agricultural and Natural Science, State University of Minas Gerais, Ituiutaba, Minas Gerais 38302-192, Brazil.
| | - Guilherme Lopes
- Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais 37200-000, Brazil.
| | - Douglas Siqueira Freitas
- Department of Agricultural and Natural Science, State University of Minas Gerais, Ituiutaba, Minas Gerais 38302-192, Brazil.
| |
Collapse
|
3
|
Jadhav Y, Thakur NR, Ingle KP, Ceasar SA. The role of phenomics and genomics in delineating the genetic basis of complex traits in millets. PHYSIOLOGIA PLANTARUM 2024; 176:e14349. [PMID: 38783512 DOI: 10.1111/ppl.14349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Millets, comprising a diverse group of small-seeded grains, have emerged as vital crops with immense nutritional, environmental, and economic significance. The comprehension of complex traits in millets, influenced by multifaceted genetic determinants, presents a compelling challenge and opportunity in agricultural research. This review delves into the transformative roles of phenomics and genomics in deciphering these intricate genetic architectures. On the phenomics front, high-throughput platforms generate rich datasets on plant morphology, physiology, and performance in diverse environments. This data, coupled with field trials and controlled conditions, helps to interpret how the environment interacts with genetics. Genomics provides the underlying blueprint for these complex traits. Genome sequencing and genotyping technologies have illuminated the millet genome landscape, revealing diverse gene pools and evolutionary relationships. Additionally, different omics approaches unveil the intricate information of gene expression, protein function, and metabolite accumulation driving phenotypic expression. This multi-omics approach is crucial for identifying candidate genes and unfolding the intricate pathways governing complex traits. The review highlights the synergy between phenomics and genomics. Genomically informed phenotyping targets specific traits, reducing the breeding size and cost. Conversely, phenomics identifies promising germplasm for genomic analysis, prioritizing variants with superior performance. This dynamic interplay accelerates breeding programs and facilitates the development of climate-smart, nutrient-rich millet varieties and hybrids. In conclusion, this review emphasizes the crucial roles of phenomics and genomics in unlocking the genetic enigma of millets.
Collapse
Affiliation(s)
- Yashoda Jadhav
- International Crops Research Institutes for the Semi-Arid Tropics, Patancheru, TS, India
| | - Niranjan Ravindra Thakur
- International Crops Research Institutes for the Semi-Arid Tropics, Patancheru, TS, India
- Vasantrao Naik Marathwada Agricultural University, Parbhani, MS, India
| | | | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, KL, India
| |
Collapse
|
4
|
Hacisalihoglu G, Beisel NS, Settles AM. Characterization of pea seed nutritional value within a diverse population of Pisum sativum. PLoS One 2021; 16:e0259565. [PMID: 34735531 PMCID: PMC8568279 DOI: 10.1371/journal.pone.0259565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Micronutrient malnutrition is a global concern that affects more than two billion people worldwide. Pea (Pisum sativum) is a nutritious pulse crop with potential to assist in tackling hidden hunger. Here we report seed ionomic data of 96 diverse pea accessions collected via inductively coupled plasma mass spectrometry (ICP-MS). We found a 100 g serving of peas provides the following average percent daily value for U.S. recommendations: 8% Ca, 39% Mg, 73% Cu, 37% Fe, 63% Mn, 45% Zn, 28% K, and 43% P. Correlations were observed between the majority of minerals tested suggesting strong interrelationships between mineral concentration levels. Hierarchical clustering identified fifteen accessions with high-ranking mineral concentrations. Thirty accessions could be compared to earlier inductively coupled optical emission spectrometry (ICP-OES) data, which revealed significant differences particularly for elements at extreme low or high levels of accumulation. These results improve our understanding of the range of variation in mineral content found in peas and provide additional mineral data resources for germplasm selection.
Collapse
Affiliation(s)
- Gokhan Hacisalihoglu
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida, United States of America
| | - Nicole S. Beisel
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - A. Mark Settles
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
5
|
Kumar A, Anju T, Kumar S, Chhapekar SS, Sreedharan S, Singh S, Choi SR, Ramchiary N, Lim YP. Integrating Omics and Gene Editing Tools for Rapid Improvement of Traditional Food Plants for Diversified and Sustainable Food Security. Int J Mol Sci 2021; 22:8093. [PMID: 34360856 PMCID: PMC8348985 DOI: 10.3390/ijms22158093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Indigenous communities across the globe, especially in rural areas, consume locally available plants known as Traditional Food Plants (TFPs) for their nutritional and health-related needs. Recent research shows that many TFPs are highly nutritious as they contain health beneficial metabolites, vitamins, mineral elements and other nutrients. Excessive reliance on the mainstream staple crops has its own disadvantages. Traditional food plants are nowadays considered important crops of the future and can act as supplementary foods for the burgeoning global population. They can also act as emergency foods in situations such as COVID-19 and in times of other pandemics. The current situation necessitates locally available alternative nutritious TFPs for sustainable food production. To increase the cultivation or improve the traits in TFPs, it is essential to understand the molecular basis of the genes that regulate some important traits such as nutritional components and resilience to biotic and abiotic stresses. The integrated use of modern omics and gene editing technologies provide great opportunities to better understand the genetic and molecular basis of superior nutrient content, climate-resilient traits and adaptation to local agroclimatic zones. Recently, realizing the importance and benefits of TFPs, scientists have shown interest in the prospection and sequencing of TFPs for their improvements, cultivation and mainstreaming. Integrated omics such as genomics, transcriptomics, proteomics, metabolomics and ionomics are successfully used in plants and have provided a comprehensive understanding of gene-protein-metabolite networks. Combined use of omics and editing tools has led to successful editing of beneficial traits in several TFPs. This suggests that there is ample scope for improvement of TFPs for sustainable food production. In this article, we highlight the importance, scope and progress towards improvement of TFPs for valuable traits by integrated use of omics and gene editing techniques.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Thattantavide Anju
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Sushil Kumar
- Department of Botany, Govt. Degree College, Kishtwar 182204, Jammu and Kashmir, India;
| | - Sushil Satish Chhapekar
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Sajana Sreedharan
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Sonam Singh
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Su Ryun Choi
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | - Yong Pyo Lim
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| |
Collapse
|
6
|
Ali S, Tyagi A, Bae H. Ionomic Approaches for Discovery of Novel Stress-Resilient Genes in Plants. Int J Mol Sci 2021; 22:7182. [PMID: 34281232 PMCID: PMC8267685 DOI: 10.3390/ijms22137182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Plants, being sessile, face an array of biotic and abiotic stresses in their lifespan that endanger their survival. Hence, optimized uptake of mineral nutrients creates potential new routes for enhancing plant health and stress resilience. Recently, minerals (both essential and non-essential) have been identified as key players in plant stress biology, owing to their multifaceted functions. However, a realistic understanding of the relationship between different ions and stresses is lacking. In this context, ionomics will provide new platforms for not only understanding the function of the plant ionome during stresses but also identifying the genes and regulatory pathways related to mineral accumulation, transportation, and involvement in different molecular mechanisms under normal or stress conditions. This article provides a general overview of ionomics and the integration of high-throughput ionomic approaches with other "omics" tools. Integrated omics analysis is highly suitable for identification of the genes for various traits that confer biotic and abiotic stress tolerance. Moreover, ionomics advances being used to identify loci using qualitative trait loci and genome-wide association analysis of element uptake and transport within plant tissues, as well as genetic variation within species, are discussed. Furthermore, recent developments in ionomics for the discovery of stress-tolerant genes in plants have also been addressed; these can be used to produce more robust crops with a high nutritional value for sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| | - Anshika Tyagi
- National Institute for Plant Biotechnology, New Delhi 110012, India;
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
7
|
Yang Y, Saand MA, Huang L, Abdelaal WB, Zhang J, Wu Y, Li J, Sirohi MH, Wang F. Applications of Multi-Omics Technologies for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:563953. [PMID: 34539683 PMCID: PMC8446515 DOI: 10.3389/fpls.2021.563953] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/06/2021] [Indexed: 05/19/2023]
Abstract
Multiple "omics" approaches have emerged as successful technologies for plant systems over the last few decades. Advances in next-generation sequencing (NGS) have paved a way for a new generation of different omics, such as genomics, transcriptomics, and proteomics. However, metabolomics, ionomics, and phenomics have also been well-documented in crop science. Multi-omics approaches with high throughput techniques have played an important role in elucidating growth, senescence, yield, and the responses to biotic and abiotic stress in numerous crops. These omics approaches have been implemented in some important crops including wheat (Triticum aestivum L.), soybean (Glycine max), tomato (Solanum lycopersicum), barley (Hordeum vulgare L.), maize (Zea mays L.), millet (Setaria italica L.), cotton (Gossypium hirsutum L.), Medicago truncatula, and rice (Oryza sativa L.). The integration of functional genomics with other omics highlights the relationships between crop genomes and phenotypes under specific physiological and environmental conditions. The purpose of this review is to dissect the role and integration of multi-omics technologies for crop breeding science. We highlight the applications of various omics approaches, such as genomics, transcriptomics, proteomics, metabolomics, phenomics, and ionomics, and the implementation of robust methods to improve crop genetics and breeding science. Potential challenges that confront the integration of multi-omics with regard to the functional analysis of genes and their networks as well as the development of potential traits for crop improvement are discussed. The panomics platform allows for the integration of complex omics to construct models that can be used to predict complex traits. Systems biology integration with multi-omics datasets can enhance our understanding of molecular regulator networks for crop improvement. In this context, we suggest the integration of entire omics by employing the "phenotype to genotype" and "genotype to phenotype" concept. Hence, top-down (phenotype to genotype) and bottom-up (genotype to phenotype) model through integration of multi-omics with systems biology may be beneficial for crop breeding improvement under conditions of environmental stresses.
Collapse
Affiliation(s)
- Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- *Correspondence: Yaodong Yang
| | - Mumtaz Ali Saand
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Department of Botany, Shah Abdul Latif University, Khairpur, Pakistan
| | - Liyun Huang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Walid Badawy Abdelaal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jun Zhang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | | | - Fuyou Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
8
|
Rana N, Rahim MS, Kaur G, Bansal R, Kumawat S, Roy J, Deshmukh R, Sonah H, Sharma TR. Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (Oryza sativa L.). Crit Rev Food Sci Nutr 2019; 60:3304-3320. [DOI: 10.1080/10408398.2019.1685454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | | | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
9
|
Misra BB, Reichman SM, Chen S. The guard cell ionome: Understanding the role of ions in guard cell functions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:50-62. [PMID: 30458181 DOI: 10.1016/j.pbiomolbio.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/01/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
The ionome is critical for plant growth, productivity, defense, and it eventually affects human food quantity and quality. Located on the leaf surface, stomatal guard cells are critical gatekeepers for water, gas, and pathogens. Insights form ionomics (metallomics) is imperative as we enter an omics-driven systems biology era where an understanding of guard cell function and physiology is advanced through efforts in genomics, transcriptomics, proteomics, and metabolomics. While the roles of major cations (K, Ca) and anions (Cl) are well known in guard cell function, the related physiology, movement and regulation of trace elements, metal ions, and heavy metals are poorly understood. The majority of the information on the role of trace elements in guard cells emanates from classical feeding experiments, field or in vitro fortification, micropropagation, and microscopy studies, while novel insights are available from limited metal ion transporter and ion channel studies. Given the rejuvenated and recent interest in the constantly changing ionome in plant mineral balance and eventually in human nutrition and health, we looked into the far from established guard cell ionome in lieu of the modern omics era of high throughput research endeavors. Newer technologies and tools i.e., high resolution mass spectrometry, advanced imaging, and phenomics are now available to delve into the guard cell ionomes. In this review, research efforts on guard cell ionomes were collated and categorized, and we highlight the underlying role of the largely unknown ionome in guard cell function towards a systems physiology understanding of plant health and productivity.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, 27157, NC, USA; Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA.
| | - Suzie M Reichman
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, GPO Box 2476, Melbourne, 3001, Australia
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA; Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
10
|
Shah T, Xu J, Zou X, Cheng Y, Nasir M, Zhang X. Omics Approaches for Engineering Wheat Production under Abiotic Stresses. Int J Mol Sci 2018; 19:E2390. [PMID: 30110906 PMCID: PMC6121627 DOI: 10.3390/ijms19082390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/14/2018] [Accepted: 07/24/2018] [Indexed: 02/05/2023] Open
Abstract
Abiotic stresses greatly influenced wheat productivity executed by environmental factors such as drought, salt, water submergence and heavy metals. The effective management at the molecular level is mandatory for a thorough understanding of plant response to abiotic stress. Understanding the molecular mechanism of stress tolerance is complex and requires information at the omic level. In the areas of genomics, transcriptomics and proteomics enormous progress has been made in the omics field. The rising field of ionomics is also being utilized for examining abiotic stress resilience in wheat. Omic approaches produce a huge amount of data and sufficient developments in computational tools have been accomplished for efficient analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. Though, the incorporation of omic-scale data to address complex genetic qualities and physiological inquiries is as yet a challenge. In this review, we have reported advances in omic tools in the perspective of conventional and present day approaches being utilized to dismember abiotic stress tolerance in wheat. Attention was given to methodologies, for example, quantitative trait loci (QTL), genome-wide association studies (GWAS) and genomic selection (GS). Comparative genomics and candidate genes methodologies are additionally talked about considering the identification of potential genomic loci, genes and biochemical pathways engaged with stress resilience in wheat. This review additionally gives an extensive list of accessible online omic assets for wheat and its effective use. We have additionally addressed the significance of genomics in the integrated approach and perceived high-throughput multi-dimensional phenotyping as a significant restricting component for the enhancement of abiotic stress resistance in wheat.
Collapse
Affiliation(s)
- Tariq Shah
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Jinsong Xu
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xiling Zou
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Yong Cheng
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Xuekun Zhang
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| |
Collapse
|
11
|
Kumari A, Das P, Parida AK, Agarwal PK. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. FRONTIERS IN PLANT SCIENCE 2015; 6:537. [PMID: 26284080 PMCID: PMC4518276 DOI: 10.3389/fpls.2015.00537] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/01/2015] [Indexed: 05/18/2023]
Abstract
Halophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis; stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analog (4-hydroxy-N-methyl proline), glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol, and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic, and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Paromita Das
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Asish Kumar Parida
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Pradeep K. Agarwal
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| |
Collapse
|
12
|
Pandotra P, Viz B, Ram G, Gupta AP, Gupta S. Multi-elemental profiling and chemo-metric validation revealed nutritional qualities of Zingiber officinale. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:222-31. [PMID: 24953004 DOI: 10.1016/j.ecoenv.2014.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/05/2013] [Accepted: 01/18/2014] [Indexed: 06/03/2023]
Abstract
Ginger rhizome is a valued food, spice and an important ingredient of traditional systems of medicine of India, China and Japan. An Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) based multi-elemental profiling was performed to assess the quantitative complement of elements, nutritional quality and toxicity of 46 ginger germplasms, collected from the north western Himalayan India. The abundance of eighteen elements quantified in the acid digested rhizomes was observed to be K>Mg>Fe>Ca>Na>Mn>Zn>Ba>Cu>Cr>Ni>Pb>Co>Se>As>Be>Cd. Toxic element, Hg was not detected in any of the investigated samples. Chemometric analyses showed positive correlation among most of the elements. No negative correlation was observed in any of the metals under investigation. UPGMA based clustering analysis of the quantitative data grouped all the 46 samples into three major clusters, displaying 88% similarity in their metal composition, while eighteen metals investigated grouped into two major clusters. Quantitatively, all the elements analyzed were below the permissible limits laid down by World Health Organization. The results were further validated by cluster analysis (CA) and principal component analysis (PCA) to understand the ionome of the ginger rhizome. The study suggested raw ginger to be a good source of beneficial elements/minerals like Mg, Ca, Mn, Fe, Cu and Zn and will provide platform for understanding the functional and physiological status of ginger rhizome.
Collapse
Affiliation(s)
- Pankaj Pandotra
- Plant Biotechnology Department, Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Bhavana Viz
- Quality Control & Quality Assurance, Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Gandhi Ram
- Plant Biotechnology Department, Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Ajai Prakash Gupta
- Quality Control & Quality Assurance, Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India.
| | - Suphla Gupta
- Plant Biotechnology Department, Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India; Academy of Scientific & Innovative Research (AcSIR), CSIR, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
13
|
Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N. From Genetics to Functional Genomics: Improvement in Drought Signaling and Tolerance in Wheat. FRONTIERS IN PLANT SCIENCE 2015; 6:1012. [PMID: 26635838 PMCID: PMC4652017 DOI: 10.3389/fpls.2015.01012] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/02/2015] [Indexed: 05/18/2023]
Abstract
Drought being a yield limiting factor has become a major threat to international food security. It is a complex trait and drought tolerance response is carried out by various genes, transcription factors (TFs), microRNAs (miRNAs), hormones, proteins, co-factors, ions, and metabolites. This complexity has limited the development of wheat cultivars for drought tolerance by classical breeding. However, attempts have been made to fill the lost genetic diversity by crossing wheat with wild wheat relatives. In recent years, several molecular markers including single nucleotide polymorphisms (SNPs) and quantitative trait loci (QTLs) associated with genes for drought signaling pathways have been reported. Screening of large wheat collections by marker assisted selection (MAS) and transformation of wheat with different genes/TFs has improved drought signaling pathways and tolerance. Several miRNAs also provide drought tolerance to wheat by regulating various TFs/genes. Emergence of OMICS techniques including transcriptomics, proteomics, metabolomics, and ionomics has helped to identify and characterize the genes, proteins, metabolites, and ions involved in drought signaling pathways. Together, all these efforts helped in understanding the complex drought tolerance mechanism. Here, we have reviewed the advances in wide hybridization, MAS, QTL mapping, miRNAs, transgenic technique, genome editing system, and above mentioned functional genomics tools for identification and utility of signaling molecules for improvement in wheat drought tolerance.
Collapse
Affiliation(s)
- Hikmet Budak
- Plant Genomics Group, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
- *Correspondence: Hikmet Budak,
| | - Babar Hussain
- Plant Genomics Group, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| | - Zaeema Khan
- Plant Genomics Group, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| | - Neslihan Z. Ozturk
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Niǧde UniversityNiǧde, Turkey
| | - Naimat Ullah
- Plant Genomics Group, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| |
Collapse
|