1
|
Faid AH, Ramadan MA. Reducing the effective dose of cisplatin using cobalt modified silver nano-hybrid as a carriers on MCF7 and HCT cell models. BMC Chem 2024; 18:69. [PMID: 38600590 PMCID: PMC11007969 DOI: 10.1186/s13065-024-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Cancer is a deadly illness with a convoluted pathogenesis. The most prevalent restrictions that frequently result in treatment failure for cancer chemotherapy include lack of selectivity, cytotoxicity, and multidrug resistance. Thus, considerable efforts have been focused in recent years on the establishment of a modernistic sector termed nano-oncology, which offers the option of employing nanoparticles (NPs) with the objective of detecting, targeting, and treating malignant disorders. NPs offer a focused approach compared to conventional anticancer methods, preventing negative side effects. In the present work, a successful synthetic process was used to create magnetic cobalt cores with an AgNPs shell to form bimetallic nanocomposites CoAg, then functionalized with Cis forming novel CoAg@Cis nanohybrid. The morphology and optical properties were determined by TEM, DLS, FTIRs and UV-vis spectroscopy, furthermore, anticancer effect of CoAg and CoAg@Cis nanohybrids were estimated using MTT assay on MCF7 and HCT cell lines. Our results showed that Co@Ag core shell is about 15 nm were formed with dark CoNPs core and AgNPs shell with less darkness than the core, moreover, CoAg@Cis has diameter about 25 nm which are bigger in size than Co@Ag core shell demonstrating the loading of Cis. It was observed that Cis, CoAg and CoAg@Cis induced a decline in cell survival and peaked at around 65%, 73%and 66% on MCF7 and 80%, 76%and 78% on HCT at 100 µg/ml respectively. Compared to Cis alone, CoAg and CoAg@Cis caused a significant decrease in cell viability. These findings suggest that the synthesized CoAg can be used as a powerful anticancer drug carrier.
Collapse
Affiliation(s)
- Amna H Faid
- Department of Laser Science and Interaction, National Institute of Laser Enhanced Science (NILES) Cairo University, Giza, Egypt.
| | - Marwa A Ramadan
- Department of Laser Application in Metrology, Photochemistry and Agriculture, National Institute of Laser Enhanced Science (NILES) Cairo University (CU), Giza, Egypt
| |
Collapse
|
2
|
Umar H, Wahab HA, Ahmed N, Fujimura NA, Amjad MW, Bukhari SNA, Ahmad W. Development, optimization and characterization of cisplatin loaded cubosomes for human lung carcinoma. Drug Dev Ind Pharm 2024:1-14. [PMID: 38451066 DOI: 10.1080/03639045.2024.2326043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVES This study aimed to develop, optimize and evaluate glyceryl monooleate (GMO) based cubosomes as a drug delivery system containing cisplatin for treatment of human lung carcinoma. SIGNIFICANCE The significance of this research was to successfully incorporate slightly water soluble and potent anticancer drug (cisplatin) into cubosomes, which provide slow and sustained release of drug for longer period of time. METHODS The delivery system was developed through top-down approach by melting GMO and poloxamer 407 (P407) at 70 °C and then drop-wise addition of warm deionized water (70 °C) containing cisplatin. The formulation then exposed to probe sonicator for about 2 min. A randomized regular two level full factorial design with help of Design Expert was used for optimization of blank cubosomal formulations. Cisplatin loaded cubosomes were then subjected to physico-chemical characterization. RESULTS The characterization of the formulation revealed that it had a sufficient surface charge of -9.56 ± 1.33 mV, 168.25 ± 5.73 nm particle size, and 60.64 ± 0.11% encapsulation efficiency. The in vitro release of cisplatin from the cubosomes at pH 7.4 was observed to be sustained, with 94.5% of the drug being released in 30 h. In contrast, 99% of cisplatin was released from the drug solution in just 1.5 h. In vitro cytotoxicity assay was conducted on the human lung carcinoma NCI-H226 cell line, the cytotoxicity of cisplatin-loaded cubosomes was relative to that of pure cisplatin solution, while blank (without cisplatin) cubosomes were nontoxic. CONCLUSIONS The obtained results demonstrated the successful development of cubosomes for sustained delivery of cisplatin.
Collapse
Affiliation(s)
- Hassaan Umar
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Malaysia
| | - Habibah A Wahab
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Malaysia
| | | | | | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Saudi Arabia
| | - Waqas Ahmad
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Malaysia
| |
Collapse
|
3
|
Das SK, Roy S, Das A, Chowdhury A, Chatterjee N, Bhaumik A. A conjugated 2D covalent organic framework as a drug delivery vehicle towards triple negative breast cancer malignancy. NANOSCALE ADVANCES 2022; 4:2313-2320. [PMID: 36133695 PMCID: PMC9417737 DOI: 10.1039/d2na00103a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 06/05/2023]
Abstract
Cancer, one of the deadliest diseases for both sexes, has always demanded updated treatment strategies with time. Breast cancer is responsible for the highest mortality rate among females worldwide and requires treatment with advanced regimens due to the higher probability of breast cancer cells to develop drug cytotoxicity followed by resistance. Covalent organic framework (COF) materials with ordered nanoscale porosity can serve as drug delivery vehicles due to their biocompatible nature and large internal void spaces. In this research work, we have employed a novel biocompatible COF, TRIPTA, as a drug delivery carrier towards breast cancer cells. It served as a drug delivery vehicle for cisplatin in triple negative breast cancer (TNBC) cells. We have checked the potency of TRIPTA in combating the proliferation of metastatic TNBC cells. Our results revealed that cisplatin loaded over TRIPTA-COF exhibited a greater impact on the CD44+/CD24- cancer stem cell niche of breast cancer. Retarded migration of cancer cells has also been observed with the dual treatment of TRIPTA and cisplatin compared to that of cisplatin alone. Epithelial-mesenchymal transition (EMT) has also been minimized by the combinatorial treatment of cisplatin carried by the carrier material in comparison to cisplatin alone. The epithelial marker E-cadherin is significantly increased in cells treated with cisplatin together with the carrier COF, and the expression of mesenchymal markers such as N-cadherin is lower. The transcriptional factor Snail has been observed under the same treatment. The carrier material is also internalized by the cancer cells in a time-dependent manner, suggesting that the organic carrier can serve as a specific drug delivery vehicle. Our experimental results suggested that TRIPTA-COF can serve as a potent nanocarrier for cisplatin, showing higher detrimental effects on the proliferation and migration of TNBC cells by increasing the cytotoxicity of cisplatin.
Collapse
Affiliation(s)
- Sabuj Kanti Das
- School of Materials Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Sraddhya Roy
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute 37, S P Mukherjee Road Kolkata-700 026 India
| | - Ananya Das
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute 37, S P Mukherjee Road Kolkata-700 026 India
| | - Avik Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Nabanita Chatterjee
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute 37, S P Mukherjee Road Kolkata-700 026 India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
4
|
Tran VA, Vo GV, Tan MA, Park JS, An SSA, Lee SW. Dual Stimuli-Responsive Multifunctional Silicon Nanocarriers for Specifically Targeting Mitochondria in Human Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14040858. [PMID: 35456692 PMCID: PMC9028052 DOI: 10.3390/pharmaceutics14040858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 01/16/2023] Open
Abstract
Specific targeting, selective stimuli-responsiveness, and controlled release of anticancer agents are requested for high therapeutic efficiency with a minimal adverse effect. Herein, we report the sophisticated synthesis and functionalization of fluorescent mesoporous silicon (FMPSi) nanoparticles decorated with graphene oxide (GO) nanosheets. GO-wrapped FMPSi (FMPSi@GO) was loaded with a cisplatin (Cis) anticancer agent, and Cis-loaded FMPSi@GO (FMPSi-Cis@GO) exhibited the dual stimuli (pH and NIR)-responsiveness of controlled drug release, i.e., the drug release rate was distinctly enhanced at acidic pH 5.5 than at neutral pH 7.0 and further enhanced under NIR irradiation at acidic pH condition. Notably, dequalinium-conjugated FMPSi-Cis@GO (FMPSi-Cis@GO@DQA) demonstrated an excellent specificity for mitochondrial targeting in cancer cells without noticeable toxicity to normal human cells. Our novel silicon nanocarriers demonstrated not only stimuli (pH and NIR)-responsive controlled drug release, but also selective accumulation in the mitochondria of cancer cells and destroying them.
Collapse
Affiliation(s)
- Vy Anh Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Vietnam;
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Vietnam
| | - Mario A. Tan
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines;
| | - Joon-Seo Park
- Department of Chemistry, Eastern University, 1300 Eagle Road, St. Davids, PA 19087, USA;
| | - Seong Soo A. An
- Department of Bionano Technology, Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea
- Correspondence: (S.S.A.A.); (S.-W.L.); Tel.: +82-31-750-8755 (S.S.A.A.); +82-31-750-5360 (S.-W.L.)
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
- Correspondence: (S.S.A.A.); (S.-W.L.); Tel.: +82-31-750-8755 (S.S.A.A.); +82-31-750-5360 (S.-W.L.)
| |
Collapse
|
5
|
Co-Entrapment of Sorafenib and Cisplatin Drugs and iRGD Tumour Homing Peptide by Poly[ε-caprolactone-co-(12-hydroxystearate)] Copolymer. Biomedicines 2021; 10:biomedicines10010043. [PMID: 35052723 PMCID: PMC8772891 DOI: 10.3390/biomedicines10010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
The drug-loaded nanocarriers have overcome various challenges compared with the pure chemotherapeutic drug, such as limited bioavailability, multiple drug resistance, poor patient compliance, and adverse drug reactions, offering advantages such as protection from degradation in the blood stream, better drug solubility, and improved drug stability. One promising group of controlled and targeted drug delivery systems is polymer-based nanoparticles that can sustain the release of the active agent by diffusion and their degradation. Sorafenib is the only drug that can prolong the life of patients suffering from hepatocellular carcinoma. Cisplatin remains one of the most widely used broad-spectrum anticancer drugs for the treatment of a variety of solid tumours. Nanoformulations can exert a synergistic effect by entrapping two drugs with different modes of action, such as sorafenib and cisplatin. In our study, polymeric nanoparticles were prepared with a good production yield by an improved double emulsion solvent evaporation method using the copolymer of 12-hydroxystearic acid with ε-caprolactone (12CL), a biocatalytically synthesised biocompatible and biodegradable carrier, for the co-entrapment of sorafenib and cisplatin in nanotherapeutics. A bovine serum albumin (BSA) model compound was used to increase the cisplatin incorporation; then, it was successfully substituted by a iRGD tumour penetrating peptide that might provide a targeting function of the nanoparticles.
Collapse
|
6
|
A winning strategy to improve the anticancer properties of Cisplatin and Quercetin based on the nanoemulsions formulation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Cellular Toxicity Mechanisms and the Role of Autophagy in Pt(IV) Prodrug-Loaded Ultrasmall Iron Oxide Nanoparticles Used for Enhanced Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13101730. [PMID: 34684023 PMCID: PMC8541321 DOI: 10.3390/pharmaceutics13101730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Ultrasmall iron oxide nanoparticles (<10 nm) were loaded with cis-diamminetetrachloroplatinum (IV), a cisplatin (II) prodrug, and used as an efficient nanodelivery system in cell models. To gain further insight into their behavior in ovarian cancer cells, the level of cellular incorporation as well as the platination of mitochondrial and nuclear DNA were measured using inductively coupled plasma mass spectrometry (ICP-MS) strategies. Quantitative Pt results revealed that after 24 h exposure to 20 µM Pt in the form of the Pt(IV)-loaded nanoparticles, approximately 10% of the incorporated Pt was associated with nuclear DNA. This concentration increased up to 60% when cells were left to stand in drug-free media for 3 h. These results indicated that the intracellular reducing conditions permitted the slow release of cisplatin (II) from the cisplatin (IV)-loaded nanoparticles. Similar results were obtained for the platination of mitochondrial DNA, which reached levels up to 17,400 ± 75 ng Pt/ mg DNA when cells were left in drug-free media for 3 h, proving that this organelle was also a target for the action of the released cisplatin (II). The time-dependent formation of Pt-DNA adducts could be correlated with the time-dependent decrease in cell viability. Such a decrease in cell viability was correlated with the induction of apoptosis as the main route of cell death. The formation of autophagosomes, although observed upon exposure in treated cells, does not seem to have played an important role as a means for cells to overcome nanoparticles’ toxicity. Thus, the designed nanosystem demonstrated high cellular penetration and the “in situ” production of the intracellularly active cisplatin (II), which is able to induce cell death, in a sustained manner.
Collapse
|
8
|
Razuvaeva EV, Kalinin KT, Sedush NG, Nazarov AA, Volkov DS, Chvalun SN. Structure and cytotoxicity of biodegradable poly(d,l-lactide-co-glycolide) nanoparticles loaded with oxaliplatin. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Cyphert EL, Bil M, Recum HA, Święszkowski W. Repurposing biodegradable tissue engineering scaffolds for localized chemotherapeutic delivery. J Biomed Mater Res A 2020; 108:1144-1158. [DOI: 10.1002/jbm.a.36889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Erika L. Cyphert
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio
| | - Monika Bil
- Faculty of Materials Science and Engineering Warsaw University of Technology Warsaw Poland
| | - Horst A. Recum
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering Warsaw University of Technology Warsaw Poland
| |
Collapse
|
10
|
Pierstorff E, Yang WW, Chen YJA, Cheung S, Kalinec F, Slattery WH. Prevention of cisplatin-induced hearing loss by extended release fluticasone propionate intracochlear implants. Int J Pediatr Otorhinolaryngol 2019; 121:157-163. [PMID: 30913504 PMCID: PMC6502669 DOI: 10.1016/j.ijporl.2019.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/27/2019] [Accepted: 03/17/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Cisplatin is a chemotherapeutic drug known to induce hearing loss. Although corticosteroids may help to mitigate the ototoxic side effects of cisplatin, there are complications associated with their systemic and prolonged use. The goal of this study is to test the efficacy of extended-release fluticasone propionate intracochlear implant particles to protect against cisplatin-induced hearing loss. METHODS We used guinea pigs (n = 9) injected with cisplatin (IP, 12 mg/kg weight). Fluticasone particles were delivered to the cochlear scala tympani through the round window membrane into the right ears of the guinea pigs (left ears being used as a control) two weeks prior to cisplatin administration, and hearing function was evaluated by ABR and DPOAE before implantation, immediately before cisplatin administration, and 2 weeks after the challenge with cisplatin. Data was statistically evaluated using paired t-test analysis. RESULTS No significant differences were observed in ABR threshold between control and implanted ears on day 14 (23.9 ± 2.3 dB vs. 25.6 ± 1.3 dB, P = 0.524), whereas the significant cisplatin-induced hearing loss in control animals (23.9 ± 2.3 dB at day 14 vs. 40.7 ± 2.5 dB at day 28, P ≤ 0.0001) was prevented in implanted animals (25.6 ± 1.3 dB at day 14 vs. 25.0 ± 3.1 at day 28, P ≥ 0.85). A similar, though not statistically significant, trend was observed in DPOAE responses in untreated ears (7.9 ± 5.8 dB at day14 vs. -0.5 ± 5.3 dB at day 28, P = 0.654) as compared to treatment (11.1 ± 3.4 dB at day 14 vs. 13.6 ± 4.8 dB at day 28, P = 0.733). CONCLUSION These results suggest that fluticasone intracochlear implants are safe and able to provide effective otoprotection against cisplatin-induced hearing loss in the guinea pig model.
Collapse
Affiliation(s)
- Erik Pierstorff
- O-Ray Pharma, Inc., 2285 E. Foothill Blvd, Pasadena, CA, 91107, USA.
| | - Wan-Wan Yang
- O-Ray Pharma, Inc., 2285 E. Foothill Blvd, Pasadena, CA, 91107, USA
| | - Yen-Jung Angel Chen
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Shirley Cheung
- O-Ray Pharma, Inc., 2285 E. Foothill Blvd, Pasadena, CA, 91107, USA
| | - Federico Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | | |
Collapse
|
11
|
Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers. Acta Biomater 2018; 74:397-413. [PMID: 29775731 DOI: 10.1016/j.actbio.2018.05.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022]
Abstract
This study demonstrated the targeted delivery and controlled release of cisplatin drug molecules from doubly decorated mesoporous silica nanoparticles (MSNs), which were internally grafted with fluorescent conjugates and externally coated with polydopamine (PDA) and graphene oxide (GO) layers. The brush-like internal conjugates conferred fluorescent functionality and high capacity of cisplatin loading into MSNs, as well as contributing to a sustained release of the cisplatin through a porous channel with the assistance of external PDA layer. A consolidated double-layer formed by electrostatic interactions between the GO nanosheet and the PDA layer induced more controlled release kinetics which was well predicted by Higuchi model. In addition, Our MSNs exhibited stimuli (pH, NIR irradiation)-responsive controlled release as a potential chemo-photothermal agent against cancer cells. In a cell test, multifunctional MSNs showed a low toxicity itself, but gave a high cytotoxicity against human epithelial neuroblastoma cells (SH-SY5Y) after loading cisplatin. Notably, GO-wrapped MSNs exhibited very effective drug delivery because GO wrapping enhanced their dispensability in aqueous solution, photothermal heating effect, and efficient endocytosis into cells. Furthermore, monoclonal antibody (anti-human epidermal growth factor receptor)-conjugated MSNs showed a higher specificity, which resulted in more enhanced anticancer effects in vitro. The current study demonstrated a reliable synthesis of multifunctional MSNs, endowed with fluorescent imaging, stimuli-responsive controlled release, higher specificity, and efficient cytotoxicity toward cancer cells. STATEMENT OF SIGNIFICANCE The current study demonstrated the reliable synthesis of multifunctional mesoporous silica nanoparticles (MSNs) with internal fluorescent conjugates and external polydopamine and graphene oxide (GO) layers. The combination of internal conjugates and external coating layers produced an effective pore closure effect, leading to controlled and sustained release of small drug molecules. Notably, GO wrapping improved the dispensability and cellular uptake of the MSNs, as well as enhanced drug-controlled release. Our multifunctional MSNs revealed very efficient drug delivery effects against human epithelial neuroblastoma cells by demonstrating several strengths: i) fluorescent imaging, ii) sustained and controlled release of small drug molecules, iii) efficient cellular uptake, cytotoxicity and specificity, and v) stimuli (pH, NIR irradiation)-responsive controlled release as a potential chemo-photothermal agent.
Collapse
|
12
|
Palacios-Álvarez O, Tlahuice-Flores A. Study of the interaction between cisplatin and the Au 18(SR) 14 cluster: in search of an appropriate cisplatin carrier. Phys Chem Chem Phys 2018; 19:26545-26550. [PMID: 28967012 DOI: 10.1039/c7cp04452f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cisplatin is a well known anti-cancer drug and considered as essential by the World Health Organization. However, cisplatin features side effects during medical treatments due to its lack of selectivity resulting in the indiscriminate death of cells including healthy cells. To solve this issue, it is mandatory to improve its delivery towards affected organs or tissues. The well known bio-compatibility of gold clusters encouraged us to study the interaction between cisplatin molecules and the Au18(SR)14 cluster (named Au18) and our DFT calculations have provided insight into this aspect. Calculated adsorption energy values of the cisplatinn/Au18 complexes are within the 0.5-3.6 eV range, which attests to their unique interaction. In addition, their calculated optical absorption (UV-vis) and circular dichroism (CD) spectra display distinct peaks in such a manner that UV/CD spectra can be used as fingerprints by experimentalists.
Collapse
Affiliation(s)
- O Palacios-Álvarez
- Universidad Autónoma de Nuevo León, CICFIM-Facultad de Ciencias Físico-Matemáticas, San Nicolás de los Garza, NL 66450, Mexico.
| | | |
Collapse
|
13
|
Dunuweera SP, Rajapakse RMG. Encapsulation of anticancer drug cisplatin in vaterite polymorph of calcium carbonate nanoparticles for targeted delivery and slow release. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa9719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Co-delivery of cisplatin and doxorubicin from calcium phosphate beads/matrix scaffolds for osteosarcoma therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:427-435. [DOI: 10.1016/j.msec.2017.03.164] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/21/2022]
|
15
|
Jeon S, Subbiah R, Bonaedy T, Van S, Park K, Yun K. Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields. J Cell Physiol 2017; 233:1168-1178. [PMID: 28464242 DOI: 10.1002/jcp.25980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
Abstract
Magnetic nanoparticles (MNPs) are used as contrast agents and targeted drug delivery systems (TDDS) due to their favorable size, surface charge, and magnetic properties. Unfortunately, the toxicity associated with MNPs limits their biological applications. Surface functionalization of MNPs with selective polymers alters the surface chemistry to impart better biocompatibility. We report the preparation of surface functionalized MNPs using iron oxide NPs (MNPs), poly (lactic-co-glycolic acid) (PLGA), and sodium alginate via co-precipitation, emulsification, and electro-spraying, respectively. The NPs are in the nanosize range and negatively charged. Morphological and structural analyses affirm the surface functionalized nanostructure of the NPs. The surface functionalized MNPs are biocompatible, and demonstrate enhanced intracellular delivery under an applied magnetic field (H), which evinces the targeting ability of MNPs. After NP treatment, the physico-mechanical properties of fibroblasts are decided by the selective MNP uptake under "on" or "off" magnetic field conditions. We envision potential use of biocompatible surface functionalized MNP for intracellular-, targeted-DDS, imaging, and for investigating cellular mechanics.
Collapse
Affiliation(s)
- Seongbeom Jeon
- Department of Bionanotechnology, Gachon University, Seongnam, South Korea
| | - Ramesh Subbiah
- Department of Bionanotechnology, Gachon University, Seongnam, South Korea.,Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Taufik Bonaedy
- Center for Spintronics Research, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Nanomaterials Science and Engineering, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Seyoung Van
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam, South Korea
| |
Collapse
|
16
|
Li CW, Pan WT, Ju JC, Wang GJ. An endothelial cultured condition medium embedded porous PLGA scaffold for the enhancement of mouse embryonic stem cell differentiation. ACTA ACUST UNITED AC 2016; 11:025015. [PMID: 27068738 DOI: 10.1088/1748-6041/11/2/025015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we have developed a microporous poly(lactic-co-glycolic acid) (PLGA) scaffold that combines a continuous release property and a three-dimensional (3D) scaffolding technique for the precise and efficient formation of endothelial cell lineage from embryonic stem cells (ESCs). Eight PLGA scaffolds (14.29%, 16.67%, 20% and 25% concentrations of PLGA solutions) mixed with two crystal sizes of sodium chloride (NaCl) were fabricated by leaching. Then, vascular endothelial cell conditioned medium (ECCM) mixed with gelatin was embedded into the scaffold for culturing of mouse embryonic stem cells (mESCs). The 14.29% PLGA scaffolds fabricated using non-ground NaCl particles (NG-PLGA) and the 25% PLGA containing scaffolds fabricated using ground NaCl particles (G-PLGA) possessed minimum and maximum moisture content and bovine serum albumin (BSA) content properties, respectively. These two groups of scaffolds were used for future experiments in this study. Cell culture results demonstrated that the proposed porous scaffolds without growth factors were sufficient to induce mouse ESCs to differentiate into endothelial-like cells in the early culture stages, and combined with embedded ECCM could provide a long-term inducing system for ESC differentiation.
Collapse
Affiliation(s)
- Ching-Wen Li
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung 40227, Taiwan
| | | | | | | |
Collapse
|
17
|
Lee PC, Lin CY, Peng CL, Shieh MJ. Development of a controlled-release drug delivery system by encapsulating oxaliplatin into SPIO/MWNT nanoparticles for effective colon cancer therapy and magnetic resonance imaging. Biomater Sci 2016; 4:1742-1753. [DOI: 10.1039/c6bm00444j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The development of a controlled-release drug delivery system has been an important objective for cancer therapy.
Collapse
Affiliation(s)
- Pei-Chi Lee
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei 100
- China
| | - Chien-Yu Lin
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei 100
- China
| | - Cheng-Liang Peng
- Isotope Application Division
- Institute of Nuclear Energy Research
- Taoyuan 325
- China
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei 100
- China
| |
Collapse
|
18
|
Kim J, Pramanick S, Lee D, Park H, Kim WJ. Polymeric biomaterials for the delivery of platinum-based anticancer drugs. Biomater Sci 2015. [PMID: 26221935 DOI: 10.1039/c5bm00039d] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since cisplatin, cis-diamminedichloroplatinum(ii), received FDA approval for use in cancer treatment in 1978, platinum-based drugs have been one of the most widely used drugs for the treatment of tumors in testicles, ovaries, head and neck. However, there are concerns associated with the use of platinum-based anticancer drugs, owing to severe side effects and drug resistance. In order to overcome these limitations, various drug-delivery systems have been developed based on diverse organic and inorganic materials. In particular, the versatility of polymeric materials facilitates the tuning of drug-delivery systems to meet their primary goals. This review focuses on the progress made over the last five years in the application of polymeric nanoparticles for the delivery of platinum-based anticancer drugs. The present article not only describes the fundamental principles underlying the implementation of polymeric nanomaterials in platinum-based drug delivery, but also summarizes concepts and strategies employed in the development of drug-delivery systems.
Collapse
Affiliation(s)
- Jihoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Panta P, Kim DY, Kwon JS, Son AR, Lee KW, Kim MS. Protein Drug-Loaded Polymeric Nanoparticles. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbise.2014.710082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|