1
|
Yeh CT, Barshilia D, Hsieh CJ, Li HY, Hsieh WH, Chang GE. Rapid and Highly Sensitive Detection of C-Reaction Protein Using Robust Self-Compensated Guided-Mode Resonance BioSensing System for Point-of-Care Applications. BIOSENSORS 2021; 11:523. [PMID: 34940280 PMCID: PMC8699450 DOI: 10.3390/bios11120523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 05/24/2023]
Abstract
The rapid and sensitive detection of human C-reactive protein (CRP) in a point-of-care (POC) may be conducive to the early diagnosis of various diseases. Biosensors have emerged as a new technology for rapid and accurate detection of CRP for POC applications. Here, we propose a rapid and highly stable guided-mode resonance (GMR) optofluidic biosensing system based on intensity detection with self-compensation, which substantially reduces the instability caused by environmental factors for a long detection time. In addition, a low-cost LED serving as the light source and a photodetector are used for intensity detection and real-time biosensing, and the system compactness facilitates POC applications. Self-compensation relies on a polarizing beam splitter to separate the transverse-magnetic-polarized light and transverse-electric-polarized light from the light source. The transverse-electric-polarized light is used as a background signal for compensating noise, while the transverse-magnetic-polarized light is used as the light source for the GMR biosensor. After compensation, noise is drastically reduced, and both the stability and performance of the system are enhanced over a long period. Refractive index experiments revealed a resolution improvement by 181% when using the proposed system with compensation. In addition, the system was successfully applied to CRP detection, and an outstanding limit of detection of 1.95 × 10-8 g/mL was achieved, validating the proposed measurement system for biochemical reaction detection. The proposed GMR biosensing sensing system can provide a low-cost, compact, rapid, sensitive, and highly stable solution for a variety of point-of-care applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-En Chang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Minxiong Township 62102, Taiwan; (C.-T.Y.); (D.B.); (C.-J.H.); (H.-Y.L.); (W.-H.H.)
| |
Collapse
|
2
|
Jyoti A, Kumar S, Kumar Srivastava V, Kaushik S, Govind Singh S. Neonatal sepsis at point of care. Clin Chim Acta 2021; 521:45-58. [PMID: 34153274 DOI: 10.1016/j.cca.2021.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
Sepsis, which includes infection followed by inflammation, is one of the leading causes of death among neonates worldwide. The major attribute of this disease process is dysregulated host response to infection leading to organ dysfunction and potentially death. A comprehensive understanding of the host response as well as the pathogen itself are important factors contributing to outcome. Early diagnosis is paramount, as it leads to accurate assessment and improved clinical management. Accordingly, a number of diagnostic platforms have been introduced to assess the presence of blood stream pathogens in septic neonates. Unfortunately, current point-of-care (POC) methods rely on a single parameter/biomarker and thus lack a comprehensive evaluation. The emerging field of biosensing has, however, resulted in the development of a wide range of analytical devices that may be useful at POC. This review discusses currently available methods to screen the inflammatory process in neonatal sepsis. We describe POC sensor-based methods for single platform multi-analyte detection and highlight the latest advances in this evolving technology. Finally, we critically evaluate the applicability of these POC devices clinically for early diagnosis of sepsis in neonates.
Collapse
Affiliation(s)
- Anupam Jyoti
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan 303002, India; Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India.
| | - Sanni Kumar
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| | | | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan 303002, India.
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| |
Collapse
|
3
|
Imas JJ, Ruiz Zamarreño C, Zubiate P, Sanchez-Martín L, Campión J, Matías IR. Optical Biosensors for the Detection of Rheumatoid Arthritis (RA) Biomarkers: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6289. [PMID: 33158306 PMCID: PMC7663853 DOI: 10.3390/s20216289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
A comprehensive review of optical biosensors for the detection of biomarkers associated with rheumatoid arthritis (RA) is presented here, including microRNAs (miRNAs), C-reactive protein (CRP), rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), interleukin-6 (IL-6) and histidine, which are biomarkers that enable RA detection and/or monitoring. An overview of the different optical biosensors (based on fluorescence, plasmon resonances, interferometry, surface-enhanced Raman spectroscopy (SERS) among other optical techniques) used to detect these biomarkers is given, describing their performance and main characteristics (limit of detection (LOD) and dynamic range), as well as the connection between the respective biomarker and rheumatoid arthritis. It has been observed that the relationship between the corresponding biomarker and rheumatoid arthritis tends to be obviated most of the time when explaining the mechanism of the optical biosensor, which forces the researcher to look for further information about the biomarker. This review work attempts to establish a clear association between optical sensors and rheumatoid arthritis biomarkers as well as to be an easy-to-use tool for the researchers working in this field.
Collapse
Affiliation(s)
- José Javier Imas
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| | - Carlos Ruiz Zamarreño
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| | - Pablo Zubiate
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
| | | | - Javier Campión
- Making Genetics S.L., Plaza CEIN 5, 31110 Noáin, Spain; (L.S.-M.); (J.C.)
| | - Ignacio Raúl Matías
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| |
Collapse
|
4
|
Carbon Nanotube-Based Electrochemical Biosensor for Label-Free Protein Detection. BIOSENSORS-BASEL 2019; 9:bios9040144. [PMID: 31861101 PMCID: PMC6956173 DOI: 10.3390/bios9040144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
There is a growing need for biosensors that are capable of efficiently and rapidly quantifying protein biomarkers, both in the biological research and clinical setting. While accurate methods for protein quantification exist, the current assays involve sophisticated techniques, take long to administer and often require highly trained personnel for execution and analysis. Herein, we explore the development of a label-free biosensor for the detection and quantification of a standard protein. The developed biosensors comprise carbon nanotubes (CNTs), a specific antibody and cellulose filtration paper. The change in electrical resistance of the CNT-based biosensor system was used to sense a standard protein, bovine serum albumin (BSA) as a proof-of-concept. The developed biosensors were found to have a limit of detection of 2.89 ng/mL, which is comparable to the performance of the typical ELISA method for BSA quantification. Additionally, the newly developed method takes no longer than 10 min to perform, greatly reducing the time of analysis compared to the traditional ELISA technique. Overall, we present a versatile, affordable, simplified and rapid biosensor device capable of providing great benefit to both biological research and clinical diagnostics.
Collapse
|
5
|
Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours. Sci Rep 2019; 9:13485. [PMID: 31530877 PMCID: PMC6748992 DOI: 10.1038/s41598-019-49998-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 09/02/2019] [Indexed: 01/17/2023] Open
Abstract
We report detection of Baculoviral inhibitor of apoptosis repeat containing-5 (BIRC5) protein biomarker in dog serum by label-free surface plasmon resonance (SPR) immunosensor. Initially, overexpression of BIRC5 in canine mammary tumour (CMT) tissues was confirmed by real-time PCR. Recombinant BIRC5 was produced and protein specific antibodies developed in guinea pig specifically reacted with native protein in immunohistochemistry and immunocytochemistry. SPR immunosensor was developed by fabricating anti-BIRC5 antibodies on gold sensor disc. The equilibrium dissociation constant, (KD = kd/ka) was 12.1 × 10−12 M; which indicates that antibodies are of high affinity with sensitivity in picomolar range. The SPR assay could detect as low as 6.25 pg/ml of BIRC5 protein in a calibration experiment (r2 = 0.9964). On testing real clinical samples, 95% specificity and 73.33% sensitivity were recorded. The average amount of serum BIRC5 in dogs with CMT was 110.02 ± 9.77 pg/ml; whereas, in non-cancerous disease conditions, 44.79 ± 4.28 pg/ml and in healthy dog sera 30.28 ± 2.99 pg/ml protein was detected. The SPR immunosensor for detection of BIRC5 in dog sera is reported for the first time and this may find prognostic and diagnostic applications in management of CMT. In future, ‘on-site’ sensors can be developed using this technique for near-patient testing.
Collapse
|
6
|
Kumar S, Tripathy S, Jyoti A, Singh SG. Recent advances in biosensors for diagnosis and detection of sepsis: A comprehensive review. Biosens Bioelectron 2018; 124-125:205-215. [PMID: 30388563 DOI: 10.1016/j.bios.2018.10.034] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
Sepsis is one of the leading causes of mortality among critically ill patients globally. According to WHO report 2018, it is estimated to affect beyond 30 million people worldwide every year. It causes loss of human lives, which arise from infection and inflammation and long term stay in intensive care unit (ICU) in hospitals. Despite the availability of satisfactory prognostic markers contributing to the diagnosis of sepsis, millions of people die even after admission to the hospitals. Correct and early diagnosis of sepsis leads to rapid administration of appropriate antibiotics can thus potentially avert the attainment to critical stages of sepsis, thereby saving human lives. Conventional diagnostic practices are costly, time consuming and they lack adequate sensitivity and selectivity, provoking an urgent need for developing alternate sepsis diagnosis systems. Nevertheless, biosensors have the much-treasured scope for reasonable sepsis diagnosis. Advancement in nano-biotechnology has provided new paradigm for biosensor platforms with upgraded features. Here, we provide an overview of the recent advances in biosensors with a brief introduction to sepsis, followed by the conventional methods of diagnosis and bio-sensing. To conclude, a proactive role and an outlook on technologically advanced biosensor platforms are discoursed with possible biomedical applications.
Collapse
Affiliation(s)
- Sanni Kumar
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan 303002, India.
| | | | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan 303002, India.
| | | |
Collapse
|
7
|
Helali S, Sawelem Eid Alatawi A, Abdelghani A. Pathogenic Escherichia coli
biosensor detection on chicken food samples. J Food Saf 2018. [DOI: 10.1111/jfs.12510] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Saloua Helali
- Faculty of Science, Department of Physics; University of Tabuk; Tabuk Kingdom of Saudi Arabia
- CRTEn, Research and Technology Center of Energy, Technopole of Borj Cedria; BP 95-Hammam Lif -TUNISIA
| | | | - Adnane Abdelghani
- National Institute of Applied Science and Technology; Nanotechnology Group, Bp676, Centre Urbain Nord; 1080 Charguia Cedex Tunisia
| |
Collapse
|
8
|
Bohli N, Meilhac O, Rondeau P, Gueffrache S, Mora L, Abdelghani A. A facile route to glycated albumin detection. Talanta 2018; 184:507-512. [PMID: 29674076 DOI: 10.1016/j.talanta.2018.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/13/2022]
Abstract
In this paper we propose an easy way to detect the glycated form of human serum albumin which is biomarker for several diseases such as diabetes and Alzheimer. The detection platform is a label free impedimetric immunosensor, in which we used a monoclonal human serum albumin antibody as a bioreceptor and electrochemical impedance as a transducing method. The antibody was deposited onto a gold surface by simple physisorption technique. Bovine serum albumin was used as a blocking agent for non-specific binding interactions. Cyclic voltammetry and electrochemical impedance spectroscopy were used for the characterization of each layer. Human serum albumin was glycated at different levels with several concentrations of glucose ranging from 0 mM to 500 mM representing physiological, pathological (diabetic albumin) and suprapathological concentration of glucose. Through the calibration curves, we could clearly distinguish between two different areas related to physiological and pathological albumin glycation levels. The immunosensor displayed a linear range from 7.49% to 15.79% of glycated albumin to total albumin with a good sensitivity. Surface plasmon resonance imaging was also used to characterize the developed immunosensor.
Collapse
Affiliation(s)
- Nadra Bohli
- Carthage University, UR17ES22 Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, National Institute of Applied Science and Technology, Bp 676, Centre Urbain Nord, 1080 Charguia Cedex, Tunisia.
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France; CHU de La Réunion, Saint-Denis de La Réunion, France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Syrine Gueffrache
- Carthage University, UR17ES22 Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, National Institute of Applied Science and Technology, Bp 676, Centre Urbain Nord, 1080 Charguia Cedex, Tunisia
| | - Laurence Mora
- Université Paris13, Inserm, U1148, Laboratory for Vascular Transitional Science, Institut Galilée, Sorbonne Paris Cité, F-93430 Villetaneuse, France
| | - Adnane Abdelghani
- Carthage University, UR17ES22 Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, National Institute of Applied Science and Technology, Bp 676, Centre Urbain Nord, 1080 Charguia Cedex, Tunisia
| |
Collapse
|
9
|
Bohli N, Chammem H, Meilhac O, Mora L, Abdelghani A. Electrochemical Impedance Spectroscopy on Interdigitated Gold Microelectrodes for Glycosylated Human Serum Albumin Characterization. IEEE Trans Nanobioscience 2017; 16:676-681. [DOI: 10.1109/tnb.2017.2752693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Bermudes ACG, de Carvalho WB, Zamberlan P, Muramoto G, Maranhão RC, Delgado AF. Changes in lipid metabolism in pediatric patients with severe sepsis and septic shock. Nutrition 2017; 47:104-109. [PMID: 29429528 DOI: 10.1016/j.nut.2017.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Limited knowledge exists regarding the lipid profiles of critically ill pediatric patients with systemic inflammatory response syndrome. The aim of this study was to evaluate the relationship between the intensity of the inflammatory response and changes in the lipid profiles of critically ill pediatric patients admitted to a pediatric intensive care unit (PICU) with severe sepsis/septic shock. METHODS This was a prospective and observational study at a 15-bed PICU at a public university hospital. We analyzed the lipid profiles of 40 patients with severe sepsis/septic shock admitted to the PICU on the first and seventh days of hospitalization. C-reactive protein was used as a marker for systemic inflammation. Forty-two pediatric patients seen in the emergency department and without systemic inflammatory response syndrome were used to provide control values. RESULTS On day 1 of admission to the PICU, the patients had significantly lower levels of total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) as well as higher concentrations of triacylglycerols compared with the control group. There was a significant increase in the TC, HDL, LDL, and apolipoprotein levels from day 1 to day 7 of the study. CONCLUSIONS During severe sepsis/septic shock, we found lower serum levels of lipoproteins and apolipoproteins, and these were negatively correlated with C-reactive protein. As the inflammatory response improved, the levels of TC, HDL, LDL, and apolipoproteins increased, suggesting a direct relationship between changes in the lipid profiles and inflammation.
Collapse
Affiliation(s)
- Ana Carolina G Bermudes
- Pediatric Critical Care Unit, Instituto da Criança da Faculdade de Medicina, São Paulo University, São Paulo, Brazil.
| | - Werther B de Carvalho
- Pediatric Critical Care Unit, Instituto da Criança da Faculdade de Medicina, São Paulo University, São Paulo, Brazil
| | - Patricia Zamberlan
- Division of Nutrition, Instituto da Criança da Faculdade de Medicina, São Paulo University, São Paulo, Brazil
| | - Giovana Muramoto
- Emergency Department, Hospital Universitário, São Paulo University, São Paulo, Brazil
| | - Raul C Maranhão
- Lipid Metabolism Laboratory, Heart Institute (InCor) of the Medical School Hospital, São Paulo University, São Paulo, Brazil
| | - Artur F Delgado
- Pediatric Critical Care Unit, Instituto da Criança da Faculdade de Medicina, São Paulo University, São Paulo, Brazil
| |
Collapse
|
11
|
Yüce M, Ullah N, Budak H. Trends in aptamer selection methods and applications. Analyst 2016; 140:5379-99. [PMID: 26114391 DOI: 10.1039/c5an00954e] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aptamers are target specific ssDNA, RNA or peptide sequences generated by an in vitro selection and amplification method called SELEX (Systematic Evolution of Ligands by EXponential Enrichment), which involves repetitive cycles of binding, recovery and amplification steps. Aptamers have the ability to bind with a variety of targets such as drugs, proteins, heavy metals, and pathogens with high specificity and selectivity. Aptamers are similar to monoclonal antibodies regarding their binding affinities, but they offer a number of advantages over the existing antibody-based detection methods, which make the aptamers promising diagnostic and therapeutic tools for future biomedical and analytical applications. The aim of this review article is to provide an overview of the recent advancements in aptamer screening methods along with a concise description of the major application areas of aptamers including biomarker discovery, diagnostics, imaging and nanotechnology.
Collapse
Affiliation(s)
- Meral Yüce
- Sabanci University, Nanotechnology Research and Application Centre, 34956, Istanbul, Turkey.
| | | | | |
Collapse
|
12
|
A disposable electrochemical sensor based on protein G for High-Density Lipoprotein (HDL) detection. Talanta 2015; 144:466-73. [DOI: 10.1016/j.talanta.2015.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/26/2023]
|
13
|
A flexible giant magnetoimpedance-based biosensor for the determination of the biomarker C-reactive protein. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1587-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Detection of the inflammation biomarker C-reactive protein in serum samples: towards an optimal biosensor formula. BIOSENSORS-BASEL 2014; 4:340-57. [PMID: 25587427 PMCID: PMC4287706 DOI: 10.3390/bios4040340] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/04/2014] [Accepted: 09/16/2014] [Indexed: 12/18/2022]
Abstract
The development of an electrochemical immunosensor for the biomarker, C-reactive protein (CRP), is reported in this work. CRP has been used to assess inflammation and is also used in a multi-biomarker system as a predictive biomarker for cardiovascular disease risk. A gold-based working electrode sensor was developed, and the types of electrode printing inks and ink curing techniques were then optimized. The electrodes with the best performance parameters were then employed for the construction of an immunosensor for CRP by immobilizing anti-human CRP antibody on the working electrode surface. A sandwich enzyme-linked immunosorbent assay (ELISA) was then constructed after sample addition by using anti-human CRP antibody labelled with horseradish peroxidase (HRP). The signal was generated by the addition of a mediator/substrate system comprised of 3,3,5',5'-Tetramethylbenzidine dihydrochloride (TMB) and hydrogen peroxide (H2O2). Measurements were conducted using chronoamperometry at -200 mV against an integrated Ag/AgCl reference electrode. A CRP limit of detection (LOD) of 2.2 ng·mL(-1) was achieved in spiked serum samples, and performance agreement was obtained with reference to a commercial ELISA kit. The developed CRP immunosensor was able to detect a diagnostically relevant range of the biomarker in serum without the need for signal amplification using nanoparticles, paving the way for future development on a cardiac panel electrochemical point-of-care diagnostic device.
Collapse
|