1
|
Saelor S, Kongjan P, Prasertsan P, Mamimin C, O-Thong S. Enhancing thermophilic methane production from oil palm empty fruit bunches through various pretreatment methods: A comparative study. Heliyon 2024; 10:e39668. [PMID: 39506955 PMCID: PMC11538946 DOI: 10.1016/j.heliyon.2024.e39668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
This study investigated the effects of various pretreatment methods on the anaerobic digestibility of oil palm empty fruit bunches (EFB) for methane production. Pretreatment methods included weak alkaline (2 % Ca(OH)2), weak acid (2 % acetic acid), acidified palm oil mill effluent (POME), biogas effluent, hydrothermal (180 °C, 190 °C, and 200 °C), and microwave pretreatments. All pretreatment methods enhanced methane yield compared to untreated EFB (189.45 mL-CH4/g-VS), with weak alkaline pretreatment being the most effective (277.11 mL-CH4/g-VS), followed by hydrothermal pretreatment at 180 °C (244.33 mL-CH4/g-VS) and biogas effluent pretreatment (238.32 mL-CH4/g-VS). The enhanced methane yield was attributed to increased cellulose content (45.5 % for weak alkaline pretreatment), reduced hemicellulose (18.0 % for hydrothermal pretreatment at 200 °C), and lignin contents (19.0 % for hydrothermal pretreatment at 200 °C), decreased crystallinity index (40.0 % for hydrothermal pretreatment at 200 °C), and increased surface area. Weak alkaline pretreatment also showed the highest net energy balance (8.73 kJ/g-VS) and a short break-even point (2 years). Microbial community analysis revealed that weak alkaline pretreatment favored the growth of syntrophic acetate-oxidizing bacteria and hydrogenotrophic methanogens, contributing to improved methane yield. This study demonstrates the potential of EFB pretreatment, particularly weak alkaline and biogas effluent pretreatment, for enhancing methane production and sustainable management of palm oil mill waste.
Collapse
Affiliation(s)
- Sittikorn Saelor
- Department of Biological Science, Faculty of Science and Digital Innovation, Thaksin University, Phatthalung 93210, Thailand
- Faculty of Science and Technology, Hatyai University, Hat Yai, Songkhla 90110, Thailand
| | - Prawit Kongjan
- Chemistry Division, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Poonsuk Prasertsan
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | | | - Sompong O-Thong
- Biofuel and Biocatalysis Innovation Research Unit, Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| |
Collapse
|
2
|
Shakoor R, Hussain N, Younas S, Bilal M. Novel strategies for extraction, purification, processing, and stability improvement of bioactive molecules. J Basic Microbiol 2023; 63:276-291. [PMID: 36316223 DOI: 10.1002/jobm.202200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Bioactive molecules gain significance in pharmaceutical and nutraceutical industries for showcasing various beneficial biological properties including but not limited to anticancer, antimicrobial, antioxidant, antifungal, anti-inflammatory, cardioprotective, neuroprotective, and antidiabetic. However, the practice of using traditional approaches to produce bioactive molecules is gradually declining due to various limitations such as low product quality, high toxicity, low product yield, low efficiency, and product degradation. Thus, with the escalating demand for these bioactive molecules and active agents in food and other food-related industries, it has become a dire need for the scientific world to come up with novel approaches and strategies that cannot just improve the quality of these bioactives but also prepare them in a comparatively shorter time span. This review includes the latest approaches and techniques used either independently or in combinations for the extraction, purification, processing, and stability improvement of general bioactive molecules. Different parameters of these versatile techniques have been discussed with their effectiveness and work principles.
Collapse
Affiliation(s)
- Rafia Shakoor
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Saima Younas
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
3
|
Thi Thuy Van N, Gaspillo PA, Thanh HGT, Nhi NHT, Long HN, Tri N, Thi Truc Van N, Nguyen TT, Ky Phuong Ha H. Cellulose from the banana stem: optimization of extraction by response surface methodology (RSM) and charaterization. Heliyon 2022; 8:e11845. [PMID: 36506388 PMCID: PMC9730135 DOI: 10.1016/j.heliyon.2022.e11845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Cellulose was extracted from the banana stem by chemical method and the factors affecting the extraction process such as concentration of NaOH and H2O2, as well as the assisted microwave time were investigated. Design-Expert software with Response Surface Methodology was used in the modeling and optimization of the cellulose extraction process. The results of XRD, FT-IR, SEM were also used to determine the physicochemical properties of cellulose obtained from the banana stem. The results of the modeling and optimization process of cellulose extraction showed the efficiency of the process and the high applicability of cellulose from the banana stem to create valuable industrial products.
Collapse
Affiliation(s)
- Nguyen Thi Thuy Van
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, Viet Nam
| | - Pag-asa Gaspillo
- Department of Chemical Engineering, De La Salle University, Manila, Philippines
| | - Ho Gia Thien Thanh
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, Viet Nam
| | - Nguyen Huynh Thao Nhi
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Viet Nam,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City, Viet Nam
| | - Huynh Nhat Long
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Viet Nam,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City, Viet Nam
| | - Nguyen Tri
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, Viet Nam
| | - Nguyen Thi Truc Van
- Institute of Drug Quality Control Ho Chi Minh City, 200 Co Bac Str., District 1, Ho Chi Minh City, Viet Nam
| | - Tien-Thanh Nguyen
- Institute of Materials Science − VAST, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Viet Nam
| | - Huynh Ky Phuong Ha
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Viet Nam,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City, Viet Nam,Corresponding author.
| |
Collapse
|
4
|
Das S, Nadar SS, Rathod VK. Integrated strategies for enzyme assisted extraction of bioactive molecules: A review. Int J Biol Macromol 2021; 191:899-917. [PMID: 34534588 DOI: 10.1016/j.ijbiomac.2021.09.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Conventional methods of extracting bioactive molecules are gradually losing pace due to their numerous disadvantages, such as product degradation, lower efficiency, and toxicity. Thus, in light of the rising demand for these bioactive, enzymes have garnered much attention for their efficiency in extraction. However, enzyme-assisted extraction is also plagued with a high capital cost that cannot justify the extraction yields obtained. In order to mitigate these problems, enzyme-assisted extraction can be consorted with non-conventional methods. This review includes current progress concerning the combined approaches while converging the recent advancements in the field that outperformed conventional extraction processes. It also highlights the design of biocatalyst and key parameters involved in the effective extraction of bioactive molecules. An integrated approach for efficiently extracting polyphenols, essential oils, pigments, and vitamins has been comprehensively reviewed. Furthermore, the different immobilization strategies have been discussed for large-scale implementation of enzymes for extraction. The integration of advanced non-conventional methods with enzyme-assisted extraction will open new avenues to enhance the overall extraction efficiency.
Collapse
Affiliation(s)
- Srija Das
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India.
| |
Collapse
|
5
|
Illi Mohamad Puad N, Madihah Mohd Rashidi U, Suhaida Azmi A, Firdaus Abd Wahab M. Microwave-assisted Acid Pretreatment of Sago Wastewater for Fermentable Sugar Production. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 2020; 778:012051. [DOI: 10.1088/1757-899x/778/1/012051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Sago wastewater (SWW) is one of by-products from sago starch industry. In most practice, SWW is discharged to the nearby rivers. As it contains high amount of organic compounds, usual practice of disposing the wastewater will cause a detrimental impact to the environment. The organic compounds found in SWW such as starch can be utilized as substrate for biofuel and biohydrogen fermentations. However, this starch needs to first undergo pretreatment process to breakdown its complex sugars to the simpler ones. This study aimed to investigate the effect of microwave-assisted acid pretreatment of SWW for fermentable sugar (glucose) production using sulphuric acid (H2SO4). Three parameters that influenced microwave-assisted acid pretreatment were chosen for optimization which are residence time (3-9 min), acid concentration (0.2-0.6 M) and solid loading (5-15% w/v). Faced Centered Central Composite Design (FCCCD) tool under Response Surface Methodology (RSM) in Design Expert v9.0.6.2 software was used for designing the experiments and optimization purposes. The response was the amount of glucose converted (g/L). The maximum fermentable sugar produced was 3.920 g/L, obtained at 9 minutes with 15% solid loading using 0.6 M of H2SO4. Then, the kinetic study of acid hydrolysis was performed by following the first order reaction kinetics. The rate constant of reaction obtained was 0.1684 min−1. It can be concluded that microwave-assisted acid pretreatment of SWW is able to produce high amount of fermentable sugar within a short residence time.
Collapse
|
6
|
Elgharbawy AA, Moniruzzaman M, Goto M. Recent advances of enzymatic reactions in ionic liquids: Part II. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107426] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Sombatpraiwan S, Junyusen T, Treeamnuk T, Junyusen P. Optimization of microwave‐assisted alkali pretreatment of cassava rhizome for enhanced enzymatic hydrolysis glucose yield. Food Energy Secur 2019. [DOI: 10.1002/fes3.174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sakaya Sombatpraiwan
- School of Agricultural Engineering, Institute of Engineering Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Tiraporn Junyusen
- School of Agricultural Engineering, Institute of Engineering Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Tawarat Treeamnuk
- School of Agricultural Engineering, Institute of Engineering Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Payungsak Junyusen
- School of Agricultural Engineering, Institute of Engineering Suranaree University of Technology Nakhon Ratchasima Thailand
| |
Collapse
|
8
|
Sen KY, Hussin MH, Baidurah S. Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator from various pretreated molasses as carbon source. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules 2018; 23:E2937. [PMID: 30423814 PMCID: PMC6278514 DOI: 10.3390/molecules23112937] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomass is an abundant and renewable resource that potentially contains large amounts of energy. It is an interesting alternative for fossil fuels, allowing the production of biofuels and other organic compounds. In this paper, a review devoted to the processing of lignocellulosic materials as substrates for fermentation processes is presented. The review focuses on physical, chemical, physicochemical, enzymatic, and microbiologic methods of biomass pretreatment. In addition to the evaluation of the mentioned methods, the aim of the paper is to understand the possibilities of the biomass pretreatment and their influence on the efficiency of biofuels and organic compounds production. The effects of different pretreatment methods on the lignocellulosic biomass structure are described along with a discussion of the benefits and drawbacks of each method, including the potential generation of inhibitory compounds for enzymatic hydrolysis, the effect on cellulose digestibility, the generation of compounds that are toxic for the environment, and energy and economic demand. The results of the investigations imply that only the stepwise pretreatment procedure may ensure effective fermentation of the lignocellulosic biomass. Pretreatment step is still a challenge for obtaining cost-effective and competitive technology for large-scale conversion of lignocellulosic biomass into fermentable sugars with low inhibitory concentration.
Collapse
Affiliation(s)
- Karolina Kucharska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Piotr Rybarczyk
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Iwona Hołowacz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Rafał Łukajtis
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Marta Glinka
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Marian Kamiński
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
10
|
|
11
|
Pathania S, Sharma N, Handa S. Utilization of horticultural waste (Apple Pomace) for multiple carbohydrase production from Rhizopus delemar F 2 under solid state fermentation. J Genet Eng Biotechnol 2018; 16:181-189. [PMID: 30647721 PMCID: PMC6296608 DOI: 10.1016/j.jgeb.2017.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/10/2017] [Accepted: 10/14/2017] [Indexed: 11/25/2022]
Abstract
The brown rot fungus Rhizopus delemar F2 was shown to produce extracellular thermostable and multiple carbohydrase enzymes. The potential of Rhizopus delemar F2 in utilizing apple pomace under solid state fermentation (SSF) is the purpose of the study. Solid state fermentation (SSF) is a very effective technique opposed to submerged fermentation in various aspects. Enhanced production of multiple carbohydrases 18.20 U g-1 of cellulose, 158.30 U g-1 of xylanase, 61.50 U g-1 of pectinase and amylase 21.03 U g-1 was released by microwave pretreatment of apple pomace at 450 W for 1 min and then by incubation the culture thus obtained at 30 °C for 6 days with moisture content of 1:4.5. Apple pomace can serve as a potential source of raw material for the production of multiple carbohydrases. Besides, it can find great commercial significance in production of bioethanol and various industries like textile, fruit juice, paper and pulp industry.
Collapse
Affiliation(s)
- Shruti Pathania
- Microbiology, Department of Basic Sciences, Dr. Y S Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173230, India
| | | | | |
Collapse
|
12
|
Elgharbawy AA, Alam MZ, Moniruzzaman M, Kabbashi NA, Jamal P. Chemical and structural changes of pretreated empty fruit bunch (EFB) in ionic liquid-cellulase compatible system for fermentability to bioethanol. 3 Biotech 2018; 8:236. [PMID: 29744268 DOI: 10.1007/s13205-018-1253-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/23/2018] [Indexed: 11/30/2022] Open
Abstract
The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process.
Collapse
Affiliation(s)
- Amal A Elgharbawy
- 1Bioenvironmental Engineering Research Unit (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia
| | - Md Zahangir Alam
- 1Bioenvironmental Engineering Research Unit (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia
| | - Muhammad Moniruzzaman
- 2Chemical Engineering Department, Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Malaysia
| | - Nassereldeen Ahmad Kabbashi
- 1Bioenvironmental Engineering Research Unit (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia
| | - Parveen Jamal
- 1Bioenvironmental Engineering Research Unit (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Bhavsar KV, Yadav GD. Microwave assisted solvent-free synthesis of n -butyl propionate by immobilized lipase as catalyst. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Pooja NS, Sajeev MS, Jeeva ML, Padmaja G. Bioethanol production from microwave-assisted acid or alkali-pretreated agricultural residues of cassava using separate hydrolysis and fermentation (SHF). 3 Biotech 2018; 8:69. [PMID: 29354380 DOI: 10.1007/s13205-018-1095-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022] Open
Abstract
The effect of microwave (MW)-assisted acid or alkali pretreatment (300 W, 7 min) followed by saccharification with a triple enzyme cocktail (Cellic, Optimash BG and Stargen) with or without detoxification mix on ethanol production from three cassava residues (stems, leaves and peels) by Saccharomyces cerevisiae was investigated. Significantly higher fermentable sugar yields (54.58, 47.39 and 64.06 g/L from stems, leaves and peels, respectively) were obtained after 120 h saccharification from MW-assisted alkali-pretreated systems supplemented (D+) with detoxification chemicals (Tween 20 + polyethylene glycol 4000 + sodium borohydride) compared to the non-supplemented (D0) or MW-assisted acid-pretreated systems. The percentage utilization of reducing sugars during fermentation (48 h) was also the highest (91.02, 87.16 and 89.71%, respectively, for stems, leaves and peels) for the MW-assisted alkali-pretreated (D+) systems. HPLC sugar profile indicated that glucose was the predominant monosaccharide in the hydrolysates from this system. Highest ethanol yields (YE, g/g), fermentation efficiency (%) and volumetric ethanol productivity (g/L/h) of 0.401, 78.49 and 0.449 (stems), 0.397, 77.71 and 0.341 (leaves) and 0.433, 84.65 and 0.518 (peels) were also obtained for this system. The highest ethanol yields (ml/kg dry biomass) of ca. 263, 200 and 303, respectively, for stems, leaves and peels from the MW-assisted alkali pretreatment (D+) indicated that this was the most effective pretreatment for cassava residues.
Collapse
|
15
|
Agu OS, Tabil LG, Dumonceaux T. Microwave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola Straw and Oat Hull. Bioengineering (Basel) 2017; 4:bioengineering4020025. [PMID: 28952504 PMCID: PMC5590462 DOI: 10.3390/bioengineering4020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/05/2022] Open
Abstract
The effects of microwave-assisted alkali pre-treatment on pellets’ characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to microwave radiation at power level 713 W and three residence times (6, 12 and 18 min). Bulk and particle densities of ground biomass samples were determined. Alkaline-microwave pre-treated and untreated samples were subjected to single pelleting test in an Instron universal machine, pre-set to a load of 4000 N. The measured parameters, pellet density, tensile strength and dimensional stability were evaluated and the results showed that the microwave-assisted alkali pre-treated pellets had a significantly higher density and tensile strength compared to samples that were untreated or pre-treated by microwave alone. The chemical composition analysis showed that microwave-assisted alkali pre-treatment was able to disrupt and break down the lignocellulosic structure of the samples, creating an area of cellulose accessible to cellulase reactivity. The best enzymatic saccharification results gave a high glucose yield of 110.05 mg/g dry sample for canola straw ground in a 1.6 mm screen hammer mill and pre-treated with 1.5% NaOH for 18 min, and a 99.10 mg/g dry sample for oat hull ground in a 1.6 mm screen hammer mill and pre-treated with 0.75% NaOH for 18 min microwave-assisted alkali pre-treatments. The effects of pre-treatment results were supported by SEM analysis. Overall, it was found that microwave-assisted alkali pre-treatment of canola straw and oat hull at a short residence time enhanced glucose yield.
Collapse
Affiliation(s)
- Obiora S Agu
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Lope G Tabil
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Tim Dumonceaux
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| |
Collapse
|
16
|
Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. BIORESOUR BIOPROCESS 2017; 4:7. [PMID: 28163994 PMCID: PMC5241333 DOI: 10.1186/s40643-017-0137-9] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
Lignocellulosic feedstock materials are the most abundant renewable bioresource material available on earth. It is primarily composed of cellulose, hemicellulose, and lignin, which are strongly associated with each other. Pretreatment processes are mainly involved in effective separation of these complex interlinked fractions and increase the accessibility of each individual component, thereby becoming an essential step in a broad range of applications particularly for biomass valorization. However, a major hurdle is the removal of sturdy and rugged lignin component which is highly resistant to solubilization and is also a major inhibitor for hydrolysis of cellulose and hemicellulose. Moreover, other factors such as lignin content, crystalline, and rigid nature of cellulose, production of post-pretreatment inhibitory products and size of feed stock particle limit the digestibility of lignocellulosic biomass. This has led to extensive research in the development of various pretreatment processes. The major pretreatment methods include physical, chemical, and biological approaches. The selection of pretreatment process depends exclusively on the application. As compared to the conventional single pretreatment process, integrated processes combining two or more pretreatment techniques is beneficial in reducing the number of process operational steps besides minimizing the production of undesirable inhibitors. However, an extensive research is still required for the development of new and more efficient pretreatment processes for lignocellulosic feedstocks yielding promising results.
Collapse
Affiliation(s)
- Adepu Kiran Kumar
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand, 388 120 Gujarat India
| | - Shaishav Sharma
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand, 388 120 Gujarat India
| |
Collapse
|
17
|
Enzymatic conversion of date fruit fiber concentrates into a new product enriched in antioxidant soluble fiber. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Hari Das R, Ahirwar R, Kumar S, Nahar P. Microwave-Assisted Rapid Enzymatic Synthesis of Nucleic Acids. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 35:363-9. [PMID: 27159147 DOI: 10.1080/15257770.2016.1163383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Herein we report microwave-induced enhancement of the reactions catalyzed by Escherichia coli DNA polymerase I and avian myeloblastosis virus-reverse transcriptase. The reactions induced by microwaves result in a highly selective synthesis of nucleic acids in 10-50 seconds. In contrast, same reactions failed to give desired reaction products when carried out in the same time periods, but without microwave irradiation. Each of the reactions was carried out for different duration of microwave exposure time to find the optimum reaction time. The products produced by the respective enzyme upon microwave irradiation of the reaction mixtures were identical to that produced by the conventional procedures. As the microwave-assisted reactions are rapid, microwave could be a useful alternative to the conventional and time consuming procedures of enzymatic synthesis of nucleic acids.
Collapse
Affiliation(s)
- Rakha Hari Das
- a CSIR-Institute of Genomics and Integrative Biology , Delhi , India
| | - Rajesh Ahirwar
- a CSIR-Institute of Genomics and Integrative Biology , Delhi , India.,b Academy of Scientific and Innovative Research Anusandhan Bhawan , New Delhi , India
| | - Saroj Kumar
- a CSIR-Institute of Genomics and Integrative Biology , Delhi , India
| | - Pradip Nahar
- a CSIR-Institute of Genomics and Integrative Biology , Delhi , India.,b Academy of Scientific and Innovative Research Anusandhan Bhawan , New Delhi , India
| |
Collapse
|
19
|
Baldikova E, Politi D, Maderova Z, Pospiskova K, Sidiras D, Safarikova M, Safarik I. Utilization of magnetically responsive cereal by-product for organic dye removal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2204-2214. [PMID: 26172305 DOI: 10.1002/jsfa.7337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/25/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Barley straw, an agricultural by-product, can also serve as a low-cost and relatively efficient adsorbent of various harmful compounds. In this case, adsorption of four water-soluble dyes belonging to different dye classes (specifically Bismarck brown Y, representing the azo group; methylene blue, quinone-imine group; safranin O, safranin group; and crystal violet, triphenylmethane group) on native and citric acid-NaOH-modified barley straw, both in magnetic and non-magnetic versions, was studied. RESULTS The adsorption was characterized using three adsorption models, namely Langmuir, Freundlich and Sips. To compare the maximum adsorption capacities (qmax), the Langmuir model was employed. The qmax values reached 86.5-124.3 mg of dye per g of native non-magnetic straw and 410.8-520.3 mg of dye per g of magnetic chemically modified straw. Performed characterization studies suggested that the substantial increase in qmax values after chemical modification could be caused by rougher surface of adsorbent (observed by scanning electron microscopy) and by the presence of higher amounts of carboxyl groups (detected by Fourier transform infrared spectroscopy). The adsorption processes followed the pseudo-second-order kinetic model and thermodynamic studies indicated spontaneous and endothermic adsorption. CONCLUSION The chemical modification of barley straw led to a significant increase in maximum adsorption capacities for all tested dyes, while magnetic modification substantially facilitated the manipulation with adsorbent.
Collapse
Affiliation(s)
- Eva Baldikova
- Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, 370 05, Ceske Budejovice, Czech Republic
| | - Dorothea Politi
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 18534, Piraeus, Greece
| | - Zdenka Maderova
- Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, 370 05, Ceske Budejovice, Czech Republic
| | - Kristyna Pospiskova
- Regional Centre of Advanced Technologies and Materials, Palacky University, 783 71, Olomouc, Czech Republic
| | - Dimitrios Sidiras
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 18534, Piraeus, Greece
| | - Mirka Safarikova
- Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, 370 05, Ceske Budejovice, Czech Republic
| | - Ivo Safarik
- Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, 370 05, Ceske Budejovice, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacky University, 783 71, Olomouc, Czech Republic
| |
Collapse
|
20
|
Wongsawaeng D, Jumpee C. Superabsorbentmaterials from grafting of acrylic acid onto Thai agricultural residues by gamma irradiation. J NUCL SCI TECHNOL 2016. [DOI: 10.1080/00223131.2016.1152924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Doonyapong Wongsawaeng
- Nuclear Engineering Department, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Chayanit Jumpee
- Nuclear Engineering Department, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Prospects for Irradiation in Cellulosic Ethanol Production. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2015; 2015:157139. [PMID: 26839707 PMCID: PMC4709612 DOI: 10.1155/2015/157139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022]
Abstract
Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol.
Collapse
|
22
|
Maurya DP, Singla A, Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 2015; 5:597-609. [PMID: 28324530 PMCID: PMC4569620 DOI: 10.1007/s13205-015-0279-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/21/2015] [Indexed: 11/29/2022] Open
Abstract
Second-generation bioethanol can be produced from various lignocellulosic biomasses such as wood, agricultural or forest residues. Lignocellulosic biomass is inexpensive, renewable and abundant source for bioethanol production. The conversion of lignocellulosic biomass to bioethanol could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. Proper pretreatment methods can increase concentrations of fermentable sugars after enzymatic saccharification, thereby improving the efficiency of the whole process. Conversion of glucose as well as xylose to bioethanol needs some new fermentation technologies to make the whole process inexpensive. The main goal of pretreatment is to increase the digestibility of maximum available sugars. Each pretreatment process has a specific effect on the cellulose, hemicellulose and lignin fraction; thus, different pretreatment methods and conditions should be chosen according to the process configuration selected for the subsequent hydrolysis and fermentation steps. The cost of ethanol production from lignocellulosic biomass in current technologies is relatively high. Additionally, low yield still remains as one of the main challenges. This paper reviews the various technologies for maximum conversion of cellulose and hemicelluloses fraction to ethanol, and it point outs several key properties that should be targeted for low cost and maximum yield.
Collapse
Affiliation(s)
- Devendra Prasad Maurya
- Department of Biochemistry and Biochemical Engineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211-007, Uttar Pradesh, India
| | - Ankit Singla
- Department of Microbiology and Fermentation Technology, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211-007, Uttar Pradesh, India.
| | - Sangeeta Negi
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211-004, Uttar Pradesh, India
| |
Collapse
|
23
|
Sudha A, Sivakumar V, Sangeetha V, Devi KSP. Enhancing fermentable sugar yield from cassava pulp for bioethanol production: microwave-coupled enzymatic hydrolysis approach. Bioprocess Biosyst Eng 2015; 38:1509-15. [DOI: 10.1007/s00449-015-1393-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/22/2015] [Indexed: 11/28/2022]
|
24
|
Chaturvedi V, Verma P. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 2013; 3:415-431. [PMID: 28324338 PMCID: PMC3781263 DOI: 10.1007/s13205-013-0167-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022] Open
Abstract
The hunt for alternative sources of energy generation that are inexpensive, ecofriendly, renewable and can replace fossil fuels is on, owing to the increasing demands of energy. One approach in this direction is the conversion of plant residues into biofuels wherein lignocellulose, which forms the structural framework of plants consisting of cellulose, hemicellulose and lignin, is first broken down and hydrolyzed into simple fermentable sugars, which upon fermentation form biofuels such as ethanol. A major bottleneck is to disarray lignin which is present as a protective covering and makes cellulose and hemicellulose recalcitrant to enzymatic hydrolysis. A number of biomass deconstruction or pretreatment processes (physical, chemical and biological) have been used to break the structural framework of plants and depolymerize lignin. This review surveys and discusses some major pretreatment processes pertaining to the pretreatment of plant biomass, which are used for the production of biofuels and other value added products. The emphasis is given on processes that provide maximum amount of sugars, which are subsequently used for the production of biofuels.
Collapse
Affiliation(s)
- Venkatesh Chaturvedi
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - Pradeep Verma
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh India
- Present Address: Department of Microbiology, Central University of Rajasthan, N.H. 8 Bandarsindri, Kishangarh, Ajmer, Rajasthan India
| |
Collapse
|