1
|
Coelho RA, Figueiredo-Carvalho MHG, Almeida-Silva F, de Souza Rabello VB, de Souza GR, Sangenito LS, Joffe LS, Santos ALSD, da Silva Lourenço MC, Rodrigues ML, Almeida-Paes R. Repurposing Benzimidazoles against Causative Agents of Chromoblastomycosis: Albendazole Has Superior In Vitro Activity Than Mebendazole and Thiabendazole. J Fungi (Basel) 2023; 9:753. [PMID: 37504741 PMCID: PMC10381309 DOI: 10.3390/jof9070753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Chromoblastomycosis (CBM) is a neglected human implantation mycosis caused by several dematiaceous fungal species. Currently available therapy is usually associated with physical methods, especially surgery, and with high refractoriness. Therefore, drug discovery for CBM is essential. Drug repositioning is a strategy used to facilitate the discovery of new treatments for several diseases. The aim of this study was to discover substances with antifungal activity against CBM agents from a collection of drugs previously approved for use in human diseases. A screening was performed with the NIH Clinical Collection against Fonsecaea pedrosoi. Ten substances, with clinical applicability in CBM, inhibited fungal growth by at least 60%. The minimum inhibitory concentration (MIC) of these substances was determined against other CBM agents, and the benzimidazoles albendazole, mebendazole and thiabendazole presented the lowest MIC values. The selectivity index, based on MIC and cytotoxicity of these substances, revealed albendazole to be more selective. To investigate a possible synergism of this benzimidazole with itraconazole and terbinafine, the chequerboard method was used. All interactions were classified as indifferent. Our current results suggest that benzimidazoles have repositioning potential against CBM agents. Albendazole seems to be the most promising, since it presented the highest selectivity against all dematiaceous fungi tested.
Collapse
Affiliation(s)
- Rowena Alves Coelho
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Vanessa Brito de Souza Rabello
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Gabriela Rodrigues de Souza
- Plataforma de Bioensaios RPT 11B, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Leandro Stefano Sangenito
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Nilópolis 26530-060, RJ, Brazil
| | - Luna Sobrino Joffe
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11792, USA
| | - André Luis Souza Dos Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Maria Cristina da Silva Lourenço
- Plataforma de Bioensaios RPT 11B, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba 81350-010, PR, Brazil
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
2
|
The Effect of Aflatoxin B1 on Tumor-Related Genes and Phenotypic Characters of MCF7 and MCF10A Cells. Int J Mol Sci 2022; 23:ijms231911856. [PMID: 36233156 PMCID: PMC9570345 DOI: 10.3390/ijms231911856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
The fungal toxin aflatoxin B1 (AB1) and its reactive intermediate, aflatoxin B1-8, 9 epoxide, could cause liver cancer by inducing DNA adducts. AB1 exposure can induce changes in the expression of several cancer-related genes. In this study, the effect of AB1 exposure on breast cancer MCF7 and normal breast MCF10A cell lines at the phenotypic and epigenetic levels was investigated to evaluate its potential in increasing the risk of breast cancer development. We hypothesized that, even at low concentrations, AB1 can cause changes in the expression of important genes involved in four pathways, i.e., p53, cancer, cell cycle, and apoptosis. The transcriptomic levels of BRCA1, BRCA2, p53, HER1, HER2, cMyc, BCL2, MCL1, CCND1, WNT3A, MAPK1, MAPK3, DAPK1, Casp8, and Casp9 were determined in MCF7 and MCF10A cells. Our results illustrate that treating both cells with AB1 induced cytotoxicity and apoptosis with reduction in cell viability in a concentration-dependent manner. Additionally, AB1 reduced reactive oxygen species levels. Phenotypically, AB1 caused cell-cycle arrest at G1, hypertrophy, and increased cell migration rates. There were changes in the expression levels of several tumor-related genes, which are known to contribute to activating cancer pathways. The effects of AB1 on the phenotype and epigenetics of both MCF7 and MCF10A cells associated with cancer development observed in this study suggest that AB1 is a potential risk factor for developing breast cancer.
Collapse
|
3
|
Gajewska J, Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, Mattoo A, Arasimowicz-Jelonek M. Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus 2022; 13:6. [PMID: 35468869 PMCID: PMC9036806 DOI: 10.1186/s43008-022-00092-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/07/2022] [Indexed: 01/30/2023] Open
Abstract
Heavy metal (HM) contamination of the environment is a major problem worldwide. The rate of global deposition of HMs in soil has dramatically increased over the past two centuries and there of facilitated their rapid accumulation also in living systems. Although the effects of HMs on plants, animals and humans have been extensively studied, yet little is known about their effects on the (patho)biology of the microorganisms belonging to a unique group of filamentous eukaryotic pathogens, i.e., fungi and oomycetes. Much of the literature concerning mainly model species has revealed that HM stress affects their hyphal growth, morphology, and sporulation. Toxicity at cellular level leads to disturbance of redox homeostasis manifested by the formation of nitro-oxidative intermediates and to the induction of antioxidant machinery. Despite such adverse effects, published data is indicative of the fact that fungal and oomycete pathogens have a relatively high tolerance to HMs in comparison to other groups of microbes such as bacteria. Likely, these pathogens may harbor a network of detoxification mechanisms that ensure their survival in a highly HM-polluted (micro)habitat. Such a network may include extracellular HMs immobilization, biosorption to cell wall, and/or their intracellular sequestration to proteins or other ligands. HMs may also induce a hormesis-like phenomenon allowing the pathogens to maintain or even increase fitness against chemical challenges. Different scenarios linking HMs stress and modification of the microorganisms pathogenicity are disscused in this review.
Collapse
|
4
|
Identification and Characterisation of Seed-Borne Fungal Pathogens Associated with Maize ( Zea mays L.). Int J Microbiol 2021; 2021:6702856. [PMID: 34630568 PMCID: PMC8497155 DOI: 10.1155/2021/6702856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
A research study was conducted to identify and characterise seed-borne fungal pathogens associated with maize (Zea mays L.) in storage. Seed-borne fungal pathogenic infections of maize were studied using seed samples collected from Gokwe South District in Zimbabwe. The agar plating method using PDA medium was used to detect fungal pathogens on the maize seeds. A total of 150 treatments were used for this experiment, which were replicated three times in a randomised complete block design (RCBD). Analysis of the grain showed the presence of Fusarium moniliforme, Rhizopus stolonifer, Penicillium citrinum, and mostly Aspergillus species, namely, Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger, and Aspergillus tamarii. Significant differences (p < 0.05) between treatments were detected for the pathogens. A total of ten samples were used for mycotoxin determination, and all of them were 100% positive with aflatoxin total, zearalenone, fumonisin, and deoxynivalenol (DON) having an average of 0.255 ppb, 2.425 ppb, 2.65 ppb, and 0.07 ppb, respectively. The present study showed that most grain samples are contaminated with different species of fungi with mycotoxigenic potential. The data on the diversity and magnitude of pathogen infection by fungal species will have a significant effect even at the regional level for predicting the extent of pre- and postinfections. Measures to reduce mycotoxin contamination are needed for maize grains.
Collapse
|
5
|
Xie X, Liu J, Jiang Z, Li H, Ye M, Pan H, Zhu J, Song H. The conversion of the nutrient condition alter the phenol degradation pathway by Rhodococcus biphenylivorans B403: A comparative transcriptomic and proteomic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56152-56163. [PMID: 34046837 DOI: 10.1007/s11356-021-14374-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Highly toxic phenol causes a threat to the ecosystem and human body. The development of bioremediation is a crucial issue in environmental protection. Herein, Rhodococcus biphenylivorans B403, which was isolated from the activated sludge of the sewage treatment plant, exhibited a good tolerance and removal efficiency to phenol. The degradation efficiency of phenol increased up to 62.27% in the oligotrophic inorganic medium (MM) containing 500-mg/L phenol at 18 h. R. biphenylivorans B403 cultured in the MM medium showed a higher phenol degradation efficiency than that in the eutrophic LB medium. On the basis of the transcriptomic and proteomic analysis, a total of 799 genes and 123 proteins showed significantly differential expression between two different culture conditions, especially involved in phenol degradation, carbon metabolism, and nitrogen metabolism. R. biphenylivorans B403 could alter the phenol degradation pathway by facing different culture conditions. During the phenol removal in the oligotrophic inorganic medium, muconate cycloisomerase, acetyl-CoA acyltransferase, and catechol 1,2-dioxygenase in the ortho-pathway for phenol degradation showed upregulation compared with those in the eutrophic organic medium. Our study provides novel insights into the possible pathway underlying the response of bacterium to environmental stress for phenol degradation.
Collapse
Affiliation(s)
- Xiaohang Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Meng Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Hong Pan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Jingwei Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Huiting Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China.
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
6
|
|
7
|
Exploring the UVB-protective efficacy of melanin precursor extracted from marine imperfect fungus: Featuring characterization and application studies under in vitro conditions. Int Microbiol 2018; 21:59-71. [DOI: 10.1007/s10123-018-0005-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/20/2018] [Accepted: 04/06/2018] [Indexed: 01/30/2023]
|
8
|
Sharma R, Bhardwaj R, Gautam V, Kohli SK, Kaur P, Bali RS, Saini P, Thukral AK, Arora S, Vig AP. Microbial Siderophores in Metal Detoxification and Therapeutics: Recent Prospective and Applications. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Looi HK, Toh YF, Yew SM, Na SL, Tan YC, Chong PS, Khoo JS, Yee WY, Ng KP, Kuan CS. Genomic insight into pathogenicity of dematiaceous fungus Corynespora cassiicola. PeerJ 2017; 5:e2841. [PMID: 28149676 PMCID: PMC5274520 DOI: 10.7717/peerj.2841] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/29/2016] [Indexed: 01/05/2023] Open
Abstract
Corynespora cassiicola is a common plant pathogen that causes leaf spot disease in a broad range of crop, and it heavily affect rubber trees in Malaysia (Hsueh, 2011; Nghia et al., 2008). The isolation of UM 591 from a patient's contact lens indicates the pathogenic potential of this dematiaceous fungus in human. However, the underlying factors that contribute to the opportunistic cross-infection have not been fully studied. We employed genome sequencing and gene homology annotations in attempt to identify these factors in UM 591 using data obtained from publicly available bioinformatics databases. The assembly size of UM 591 genome is 41.8 Mbp, and a total of 13,531 (≥99 bp) genes have been predicted. UM 591 is enriched with genes that encode for glycoside hydrolases, carbohydrate esterases, auxiliary activity enzymes and cell wall degrading enzymes. Virulent genes comprising of CAZymes, peptidases, and hypervirulence-associated cutinases were found to be present in the fungal genome. Comparative analysis result shows that UM 591 possesses higher number of carbohydrate esterases family 10 (CE10) CAZymes compared to other species of fungi in this study, and these enzymes hydrolyses wide range of carbohydrate and non-carbohydrate substrates. Putative melanin, siderophore, ent-kaurene, and lycopene biosynthesis gene clusters are predicted, and these gene clusters denote that UM 591 are capable of protecting itself from the UV and chemical stresses, allowing it to adapt to different environment. Putative sterigmatocystin, HC-toxin, cercosporin, and gliotoxin biosynthesis gene cluster are predicted. This finding have highlighted the necrotrophic and invasive nature of UM 591.
Collapse
Affiliation(s)
- Hong Keat Looi
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Yue Fen Toh
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Su Mei Yew
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Shiang Ling Na
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Yung-Chie Tan
- Department of Science and Technology, Codon Genomics SB, Seri Kembangan, Selangor, Malaysia
| | - Pei-Sin Chong
- Department of Science and Technology, Codon Genomics SB, Seri Kembangan, Selangor, Malaysia
| | - Jia-Shiun Khoo
- Department of Science and Technology, Codon Genomics SB, Seri Kembangan, Selangor, Malaysia
| | - Wai-Yan Yee
- Department of Science and Technology, Codon Genomics SB, Seri Kembangan, Selangor, Malaysia
| | - Kee Peng Ng
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Sian Kuan
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Ogórek R, Dyląg M, Kozak B. Dark stains on rock surfaces in Driny Cave (Little Carpathian Mountains, Slovakia). Extremophiles 2016; 20:641-52. [PMID: 27315167 PMCID: PMC4996882 DOI: 10.1007/s00792-016-0853-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022]
Abstract
Mycobiota are important in underground ecology. In 2014, we discovered dark stains on clayey sediments on the walls of Driny Cave, Slovakia. Our description is based on the morphology of the fungus and the phylogenetic relationships of the internal transcribed spacer (ITS) region. In addition, data on its capacity for the production of extracellular enzymes, growth, and survival in vitro at different temperatures are reported. Our analyses revealed that this dark stains on the wall was produced by Penicillium glandicola. The fungus was able to synthesize amylases, proteases and cellulases, but not pectinases and keratinases. The vegetative structures of mycelium of this fungus are viable in vitro after storage at cool temperatures (from −72 to 5 °C), and show active growth at temperatures from 5 to 25 °C, but without spore germination, and without active growth at 30 and 37 °C. Penicillium glandicola is a psychrotolerant species and belong to var. glandicola.
Collapse
Affiliation(s)
- Rafał Ogórek
- Department of Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego Street 63/77, 51-148 Wroclaw, Poland
| | - Mariusz Dyląg
- Department of Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego Street 63/77, 51-148 Wroclaw, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wroclaw, Poland
| |
Collapse
|
11
|
Meena M, Prasad V, Zehra A, Gupta VK, Upadhyay RS. Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions. Front Microbiol 2015; 6:1019. [PMID: 26441941 PMCID: PMC4585237 DOI: 10.3389/fmicb.2015.01019] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/08/2015] [Indexed: 12/03/2022] Open
Abstract
Numerous plants and fungi produce mannitol, which may serve as an osmolyte or metabolic store; furthermore, mannitol also acts as a powerful quencher of reactive oxygen species (ROS). Some phytopathogenic fungi use mannitol to stifle ROS-mediated plant resistance. Mannitol is essential in pathogenesis to balance cell reinforcements produced by both plants and animals. Mannitol likewise serves as a source of reducing power, managing coenzymes, and controlling cytoplasmic pH by going about as a sink or hotspot for protons. The metabolic pathways for mannitol biosynthesis and catabolism have been characterized in filamentous fungi by direct diminishment of fructose-6-phosphate into mannitol-1-phosphate including a mannitol-1-phosphate phosphatase catalyst. In plants mannitol is integrated from mannose-6-phosphate to mannitol-1-phosphate, which then dephosphorylates to mannitol. The enzyme mannitol dehydrogenase plays a key role in host-pathogen interactions and must be co-localized with pathogen-secreted mannitol to resist the infection.
Collapse
Affiliation(s)
- Mukesh Meena
- Department of Botany, Banaras Hindu UniversityVaranasi, India
| | - Vishal Prasad
- Institute of Environment and Sustainable Development, Banaras Hindu UniversityVaranasi, India
| | - Andleeb Zehra
- Department of Botany, Banaras Hindu UniversityVaranasi, India
| | - Vijai K. Gupta
- Molecular Glycobiotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland GalwayGalway, Ireland
| | - Ram S. Upadhyay
- Department of Botany, Banaras Hindu UniversityVaranasi, India
| |
Collapse
|