1
|
Broniarek I, Niewiadomska D, Sobczak K. Contribution of DNA/RNA Structures Formed by Expanded CGG/CCG Repeats Within the FMR1 Locus in the Pathogenesis of Fragile X-Associated Disorders. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1874. [PMID: 39523485 DOI: 10.1002/wrna.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
Repeat expansion disorders (REDs) encompass over 50 inherited neurological disorders and are characterized by the expansion of short tandem nucleotide repeats beyond a specific repeat length. Particularly intriguing among these are multiple fragile X-associated disorders (FXds), which arise from an expansion of CGG repeats in the 5' untranslated region of the FMR1 gene. Despite arising from repeat expansions in the same gene, the clinical manifestations of FXds vary widely, encompassing developmental delays, parkinsonism, dementia, and an increased risk of infertility. FXds also exhibit molecular mechanisms observed in other REDs, that is, gene- and protein-loss-of-function and RNA- and protein-gain-of-function. The heterogeneity of phenotypes and pathomechanisms in FXds results from the different lengths of the CGG tract. As the number of repeats increases, the structures formed by RNA and DNA fragments containing CGG repeats change significantly, contributing to the diversity of FXd phenotypes and mechanisms. In this review, we discuss the role of RNA and DNA structures formed by expanded CGG repeats in driving FXd pathogenesis and how the genetic instability of CGG repeats is mediated by the complex interplay between transcription, DNA replication, and repair. We also discuss therapeutic strategies, including small molecules, antisense oligonucleotides, and CRISPR-Cas systems, that target toxic RNA and DNA involved in the development of FXds.
Collapse
Affiliation(s)
- Izabela Broniarek
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
2
|
Rosario R, Stewart HL, Choudhury NR, Michlewski G, Charlet‐Berguerand N, Anderson RA. Evidence for a fragile X messenger ribonucleoprotein 1 (FMR1) mRNA gain-of-function toxicity mechanism contributing to the pathogenesis of fragile X-associated premature ovarian insufficiency. FASEB J 2022; 36:e22612. [PMID: 36250920 PMCID: PMC9828574 DOI: 10.1096/fj.202200468rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
Fragile X-associated premature ovarian insufficiency (FXPOI) is among a family of disorders caused by expansion of a CGG trinucleotide repeat sequence located in the 5' untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene on the X chromosome. Women with FXPOI have a depleted ovarian follicle population, resulting in amenorrhea, hypoestrogenism, and loss of fertility before the age of 40. FXPOI is caused by expansions of the CGG sequence to lengths between 55 and 200 repeats, known as a FMRI premutation, however the mechanism by which the premutation drives disease pathogenesis remains unclear. Two main hypotheses exist, which describe an mRNA toxic gain-of-function mechanism or a protein-based mechanism, where repeat-associated non-AUG (RAN) translation results in the production of an abnormal protein, called FMRpolyG. Here, we have developed an in vitro granulosa cell model of the FMR1 premutation by ectopically expressing CGG-repeat RNA and FMRpolyG protein. We show that expanded CGG-repeat RNA accumulated in intranuclear RNA structures, and these aggregates were able to cause significant granulosa cell death independent of FMRpolyG expression. Using an innovative RNA pulldown, mass spectrometry-based approach we have identified proteins that are specifically sequestered by CGG RNA aggregates in granulosa cells in vitro, and thus may be deregulated as consequence of this interaction. Furthermore, we have demonstrated reduced expression of three proteins identified via our RNA pulldown (FUS, PA2G4 and TRA2β) in ovarian follicles in a FMR1 premutation mouse model. Collectively, these data provide evidence for the contribution of an mRNA gain-of-function mechanism to FXPOI disease biology.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK,Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Hazel L. Stewart
- MRC Centre for Reproductive Health, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | | | - Gracjan Michlewski
- Infection MedicineUniversity of EdinburghEdinburghUK,Zhejiang University‐University of Edinburgh InstituteZhejiang UniversityZhejiangP.R. China,Dioscuri Centre for RNA‐Protein Interactions in Human Health and DiseaseInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Nicholas Charlet‐Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)INSERM U 1258, CNRS UMR 7104, Université of StrasbourgIllkirchFrance
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
3
|
Shin J, Paek KY, Chikhaoui L, Jung S, Ponny S, Suzuki Y, Padmanabhan K, Richter JD. Oppositional poly(A) tail length regulation by FMRP and CPEB1. RNA (NEW YORK, N.Y.) 2022; 28:756-765. [PMID: 35217597 PMCID: PMC9014880 DOI: 10.1261/rna.079050.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/09/2022] [Indexed: 05/03/2023]
Abstract
Poly(A) tail length is regulated in both the nucleus and cytoplasm. One factor that controls polyadenylation in the cytoplasm is CPEB1, an RNA binding protein that associates with specific mRNA 3'UTR sequences to tether enzymes that add and remove poly(A). Two of these enzymes, the noncanonical poly(A) polymerases GLD2 (TENT2, PAPD4, Wispy) and GLD4 (TENT4B, PAPD5, TRF4, TUT3), interact with CPEB1 to extend poly(A). To identify additional RNA binding proteins that might anchor GLD4 to RNA, we expressed double tagged GLD4 in U87MG cells, which was used for sequential immunoprecipitation and elution followed by mass spectrometry. We identified several RNA binding proteins that coprecipitated with GLD4, among which was FMRP. To assess whether FMRP regulates polyadenylation, we performed TAIL-seq from WT and FMRP-deficient HEK293 cells. Surprisingly, loss of FMRP resulted in an overall increase in poly(A), which was also observed for several specific mRNAs. Conversely, loss of CPEB1 elicited an expected decrease in poly(A), which was examined in cultured neurons. We also examined polyadenylation in wild type (WT) and FMRP-deficient mouse brain cortex by direct RNA nanopore sequencing, which identified RNAs with both increased and decreased poly(A). Our data show that FMRP has a role in mediating poly(A) tail length, which adds to its repertoire of RNA regulation.
Collapse
Affiliation(s)
- Jihae Shin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ki Young Paek
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Lies Chikhaoui
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Suna Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - SitharaRaju Ponny
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Yutaka Suzuki
- University of Tokyo, Kashiwa II campus, Kashiwa-Shi 2770882, Japan
| | - Kiran Padmanabhan
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
4
|
Rosario R, Anderson R. The molecular mechanisms that underlie fragile X-associated premature ovarian insufficiency: is it RNA or protein based? Mol Hum Reprod 2021; 26:727-737. [PMID: 32777047 PMCID: PMC7566375 DOI: 10.1093/molehr/gaaa057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/03/2020] [Indexed: 01/30/2023] Open
Abstract
The FMR1 gene contains a polymorphic CGG trinucleotide sequence within its 5′ untranslated region. More than 200 CGG repeats (termed a full mutation) underlie the severe neurodevelopmental condition fragile X syndrome, while repeat lengths that range between 55 and 200 (termed a premutation) result in the conditions fragile X-associated tremor/ataxia syndrome and fragile X-associated premature ovarian insufficiency (FXPOI). Premutations in FMR1 are the most common monogenic cause of premature ovarian insufficiency and are routinely tested for clinically; however, the mechanisms that contribute to the pathology are still largely unclear. As studies in this field move towards unravelling the molecular mechanisms involved in FXPOI aetiology, we review the evidence surrounding the two main theories which describe an RNA toxic gain-of-function mechanism, resulting in the loss of function of RNA-binding proteins, or a protein-based mechanism, where repeat-associated non-AUG translation leads to the formation of an abnormal polyglycine containing protein, called FMRpolyG.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Richard Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Haify SN, Botta-Orfila T, Hukema RK, Tartaglia GG. In silico, in vitro, and in vivo Approaches to Identify Molecular Players in Fragile X Tremor and Ataxia Syndrome. Front Mol Biosci 2020; 7:31. [PMID: 32219099 PMCID: PMC7078329 DOI: 10.3389/fmolb.2020.00031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative monogenetic disorder affecting carriers of premutation (PM) forms of the FMR1 gene, resulting in a progressive development of tremors, ataxia, and neuropsychological problems. This highly disabling disease is quite common in the general population with an estimation of about 20 million PM carriers worldwide. The chances of developing FXTAS increase dramatically with age, with about 45% of male carriers over the age of 50 being affected. Both the gene and pathogenic trigger, a mutant expansion of CGG RNA, causing FXTAS are known. This makes it an interesting disease to develop targeted therapeutic interventions for. Yet, no such interventions are available at this moment. Here we discuss in silico, in vitro, and in vivo approaches and how they have been used to identify the molecular determinants of FXTAS pathology. These approaches have yielded substantial information about FXTAS pathology and, consequently, many markers have emerged to play a key role in understanding the disease mechanism. Integration of the different approaches is expected to provide crucial information about the value of these markers as either therapeutic target or biomarker, essential to monitor therapeutic interventions in the future.
Collapse
Affiliation(s)
- Saif N Haify
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Teresa Botta-Orfila
- Biological Fluids Bank of the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biology 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
6
|
Berman RF, Buijsen RA, Usdin K, Pintado E, Kooy F, Pretto D, Pessah IN, Nelson DL, Zalewski Z, Charlet-Bergeurand N, Willemsen R, Hukema RK. Mouse models of the fragile X premutation and fragile X-associated tremor/ataxia syndrome. J Neurodev Disord 2014; 6:25. [PMID: 25136376 PMCID: PMC4135345 DOI: 10.1186/1866-1955-6-25] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/29/2014] [Indexed: 11/10/2022] Open
Abstract
Carriers of the fragile X premutation (FPM) have CGG trinucleotide repeat expansions of between 55 and 200 in the 5'-UTR of FMR1, compared to a CGG repeat length of between 5 and 54 for the general population. Carriers were once thought to be without symptoms, but it is now recognized that they can develop a variety of early neurological symptoms as well as being at risk for developing the late onset neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Several mouse models have contributed to our understanding of FPM and FXTAS, and findings from studies using these models are summarized here. This review also discusses how this information is improving our understanding of the molecular and cellular abnormalities that contribute to neurobehavioral features seen in some FPM carriers and in patients with FXTAS. Mouse models show much of the pathology seen in FPM carriers and in individuals with FXTAS, including the presence of elevated levels of Fmr1 mRNA, decreased levels of fragile X mental retardation protein, and ubiquitin-positive intranuclear inclusions. Abnormalities in dendritic spine morphology in several brain regions are associated with neurocognitive deficits in spatial and temporal memory processes, impaired motor performance, and altered anxiety. In vitro studies have identified altered dendritic and synaptic architecture associated with abnormal Ca(2+) dynamics and electrical network activity. FPM mice have been particularly useful in understanding the roles of Fmr1 mRNA, fragile X mental retardation protein, and translation of a potentially toxic polyglycine peptide in pathology. Finally, the potential for using these and emerging mouse models for preclinical development of therapies to improve neurological function in FXTAS is considered.
Collapse
Affiliation(s)
- Robert F Berman
- Department of Neurological Surgery, Room 502C, UC Davis, 1515 Newton Court, Davis, CA 95618, USA
| | | | - Karen Usdin
- NIDDK, National Institutes of Health, Bethesda, MD, USA
| | | | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | - Isaac N Pessah
- Department Molecular Biosciences, UC Davis, Davis, CA, USA
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zachary Zalewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Rob Willemsen
- Department Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Renate K Hukema
- Department Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
7
|
Poultney C, Goldberg A, Drapeau E, Kou Y, Harony-Nicolas H, Kajiwara Y, De Rubeis S, Durand S, Stevens C, Rehnström K, Palotie A, Daly M, Ma’ayan A, Fromer M, Buxbaum J. Identification of small exonic CNV from whole-exome sequence data and application to autism spectrum disorder. Am J Hum Genet 2013; 93:607-619. [PMID: 24094742 PMCID: PMC3791269 DOI: 10.1016/j.ajhg.2013.09.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022] Open
Abstract
Copy number variation (CNV) is an important determinant of human diversity and plays important roles in susceptibility to disease. Most studies of CNV carried out to date have made use of chromosome microarray and have had a lower size limit for detection of about 30 kilobases (kb). With the emergence of whole-exome sequencing studies, we asked whether such data could be used to reliably call rare exonic CNV in the size range of 1-30 kilobases (kb), making use of the eXome Hidden Markov Model (XHMM) program. By using both transmission information and validation by molecular methods, we confirmed that small CNV encompassing as few as three exons can be reliably called from whole-exome data. We applied this approach to an autism case-control sample (n = 811, mean per-target read depth = 161) and observed a significant increase in the burden of rare (MAF ≤1%) 1-30 kb CNV, 1-30 kb deletions, and 1-10 kb deletions in ASD. CNV in the 1-30 kb range frequently hit just a single gene, and we were therefore able to carry out enrichment and pathway analyses, where we observed enrichment for disruption of genes in cytoskeletal and autophagy pathways in ASD. In summary, our results showed that XHMM provided an effective means to assess small exonic CNV from whole-exome data, indicated that rare 1-30 kb exonic deletions could contribute to risk in up to 7% of individuals with ASD, and implicated a candidate pathway in developmental delay syndromes.
Collapse
Affiliation(s)
- Christopher S. Poultney
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arthur P. Goldberg
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Kou
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York (SBCNY), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hala Harony-Nicolas
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuji Kajiwara
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simon Durand
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christine Stevens
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karola Rehnström
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Aarno Palotie
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland
| | - Mark J. Daly
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York (SBCNY), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Menachem Fromer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
8
|
Conde V, Palomar FJ, Lama MJ, Martínez R, Carrillo F, Pintado E, Mir P. Abnormal GABA-mediated and cerebellar inhibition in women with the fragile X premutation. J Neurophysiol 2012; 109:1315-22. [PMID: 23236003 DOI: 10.1152/jn.00730.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The fragile X syndrome is a mutation-driven developmental disorder caused by a repetition over 200 times of the CGG trinucleotide situated in the 5'-untranslated region of the fragile X mental retardation 1 gene (FMR1). The interval between 55 and 199 CGG repeats, which is over the normal range but below full mutation, is named fragile X premutation. Recent studies have focused on the asymptomatic state of fragile X premutation carriers and their potentially relevant preclinical features. However, the underlying neurological mechanisms leading to altered functions in fragile X premutation carriers are still poorly understood. In this study, we wanted to test the hypothesis that asymptomatic women who carry the fragile X premutation present GABAergic and cerebellar abnormalities compared with healthy women without the premutation. We performed noninvasive brain stimulation protocols on both asymptomatic fragile X premutation carriers and controls comprising of measures of GABAA- and GABAB-mediated intracortical inhibition, afferent inhibition, and cerebello-motor functional interactions. Premutation carriers presented an absence of cerebellar inhibition over primary motor cortex as well as a reduced GABAA-mediated intracortical and afferent inhibition compared with healthy nonpremutated controls. These alterations are most probably dependent on a dysfunctional GABAergic mechanism associated with the fragile X premutation condition as previously found in CGG-repeat animal models. Furthermore, the lack of cerebello-motor inhibition could be related to the cerebellar structural abnormalities previously found in carriers of the premutation.
Collapse
Affiliation(s)
- Virginia Conde
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiolgía Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|