1
|
Fang X, Gu B, Chen M, Sun R, Zhang J, Zhao L, Zhao Y. Genome-Wide Association Study of the Reproductive Traits of the Dazu Black Goat ( Capra hircus) Using Whole-Genome Resequencing. Genes (Basel) 2023; 14:1960. [PMID: 37895309 PMCID: PMC10606515 DOI: 10.3390/genes14101960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Reproductive traits are the basic economic traits of goats and important indicators in goat breeding. In this study, Dazu black goats (DBGs; n = 150), an important Chinese local goat breed with excellent reproductive performance, were used to screen for important variation loci and genes of reproductive traits. Through genome-wide association studies (GWAS), 18 SNPs were found to be associated with kidding traits (average litter size, average litter size in the first three parity, and average litter size in the first six parity), and 10 SNPs were associated with udder traits (udder depth, teat diameter, teat length, and supernumerary teat). After gene annotation of the associated SNPs and in combination with relevant references, the candidate genes, namely ATP1A1, LRRC4C, SPCS2, XRRA1, CELF4, NTM, TMEM45B, ATE1, and FGFR2, were associated with udder traits, while the ENSCHIG00000017110, SLC9A8, GLRB, GRIA2, GASK1B, and ENSCHIG00000026285 genes were associated with litter size. These SNPs and candidate genes can provide useful biological information for improvement of the reproductive traits of goats.
Collapse
Affiliation(s)
- Xingqiang Fang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| | - Bowen Gu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| | - Meixi Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| | - Ruifan Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| | - Jipan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| | - Le Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| |
Collapse
|
2
|
Khan MZ, Wang J, Ma Y, Chen T, Ma M, Ullah Q, Khan IM, Khan A, Cao Z, Liu S. Genetic polymorphisms in immune- and inflammation-associated genes and their association with bovine mastitis resistance/susceptibility. Front Immunol 2023; 14:1082144. [PMID: 36911690 PMCID: PMC9997099 DOI: 10.3389/fimmu.2023.1082144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Bovine mastitis, the inflammation of the mammary gland, is a contagious disease characterized by chemical and physical changes in milk and pathological changes in udder tissues. Depressed immunity and higher expression of inflammatory cytokines with an elevated milk somatic cell count can be observed during mastitis in dairy cattle. The use of somatic cell count (SCC) and somatic cell score (SCS) as correlated traits in the indirect selection of animals against mastitis resistance is in progress globally. Traditional breeding for mastitis resistance seems difficult because of the low heritability (0.10-0.16) of SCC/SCS and clinical mastitis. Thus, genetic-marker-selective breeding to improve host genetics has attracted considerable attention worldwide. Moreover, genomic selection has been found to be an effective and fast method of screening for dairy cattle that are genetically resistant and susceptible to mastitis at a very early age. The current review discusses and summarizes the candidate gene approach using polymorphisms in immune- and inflammation-linked genes (CD4, CD14, CD46, TRAPPC9, JAK2, Tf, Lf, TLRs, CXCL8, CXCR1, CXCR2, C4A, C5, MASP2, MBL1, MBL2, LBP, NCF1, NCF4, MASP2, A2M, and CLU, etc.) and their related signaling pathways (Staphylococcus aureus infection signaling, Toll-like receptor signaling, NF-kappa B signaling pathway, Cytokine-cytokine receptor, and Complement and coagulation cascades, etc.) associated with mastitis resistance and susceptibility phenotypic traits (IL-6, interferon-gamma (IFN-γ), IL17, IL8, SCS, and SCC) in dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Single nucleotide polymorphisms and metabolic biochemical profile of productive markers characterize three European breeds of dairy cattle. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this study was to investigate polymorphisms of DGAT1, FABP, OLR1 and ATP1A1 genes using PCR-DNA sequencing, and to associate these genetic structures to changes in metabolic biochemical markers and milk composition indicators in a total of 90 dairy cows of the Holstein, Simmental, and Brown Swiss breeds (30 cows each). PCR was carried out for amplification of 411-bp of DGAT1, 525-bp of FABP, 582-bp of OLR1, and 300-bp of ATP1A1 genes. Three breeds’ nucleotide sequence variations in the form of single nucleotide polymorphisms (SNPs) were detailed by DNA sequencing analysis. Chisquare analysis showed that the distribution of all discovered SNPs varied significantly (P < 0.001). Biochemical indices in cow’s serum revealed no significant difference in serum total protein, albumin, and total cholesterol among the three breeds. However, triglyceride showed a significant increase in Simmental compared to either Holsteins or Brown Swiss, while the highest mean value of triiodothyronine (T3) and tetraiodothyronine (T4) was detected in Holstein dairy cows The milk composition indicators analysis revealed that milk protein, sugar, and density were significantly higher in Holsteins than both Simmental and Brown Swiss. Meanwhile, milk fat and total solids revealed a significantly higher increase in Simmental than both brown Swiss and Holstein. As a result, the metabolic biochemical markers profile along with the identified SNPs could be used as a candidate and a reference guide for effective characterization of the Holstein, Simmental, and Brown Swiss breeds, leading to the creation of a marker-assisted selection system for production traits in dairy cattle breeds.
Collapse
|
4
|
Elayadeth-Meethal M, Thazhathu Veettil A, Asaf M, Pramod S, Maloney SK, Martin GB, Rivero MJ, Sejian V, Naseef PP, Kuruniyan MS, Lee MRF. Comparative Expression Profiling and Sequence Characterization of ATP1A1 Gene Associated with Heat Tolerance in Tropically Adapted Cattle. Animals (Basel) 2021; 11:2368. [PMID: 34438824 PMCID: PMC8388727 DOI: 10.3390/ani11082368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
Climate change is an imminent threat to livestock production. One adaptation strategy is selection for heat tolerance. While it is established that the ATP1A1 gene and its product play an important role in the response to many stressors, there has been no attempt to characterize the sequence or to perform expression profiling of the gene in production animals. We undertook a field experiment to compare the expression profiles of ATP1A1 in heat-tolerant Vechur and Kasaragod cattle (Bos taurus indicus) with the profile of a heat-susceptible crossbreed (B. t. taurus × B. t. indicus). The cattle were exposed to heat stress while on pasture in the hot summer season. The environmental stress was quantified using the temperature humidity index (THI), while the heat tolerance of each breed was assessed using a heat tolerance coefficient (HTC). The ATP1A1 mRNA of Vechur cattle was amplified from cDNA and sequenced. The HTC varied significantly between the breeds and with time-of-day (p < 0.01). The breed-time-of-day interaction was also significant (p < 0.01). The relative expression of ATP1A1 differed between heat-tolerant and heat-susceptible breeds (p = 0.02). The expression of ATP1A1 at 08:00, 10:00 and 12:00, and the breed-time-of-day interaction, were not significant. The nucleotide sequence of Vechur ATP1A1 showed 99% homology with the B. t. taurus sequence. The protein sequence showed 98% homology with B. t. taurus cattle and with B. grunniens (yak) and 97.7% homology with Ovis aries (sheep). A molecular clock analysis revealed evidence of divergent adaptive evolution of the ATP1A1 gene favoring climate resilience in Vechur cattle. These findings further our knowledge of the relationship between the ATP1A1 gene and heat tolerance in phenotypically incongruent animals. We propose that ATP1A1 could be used in marker assisted selection (MAS) for heat tolerance.
Collapse
Affiliation(s)
- Muhammed Elayadeth-Meethal
- Department of Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 673576, Kerala, India;
- Livestock Research Station, Thiruvazhamkunnu, Palakkad 678601, Kerala, India;
- UWA School of Agriculture and Environment, University of Western Australia, Crawley, WA 6009, Australia;
| | - Aravindakshan Thazhathu Veettil
- Centre for Advanced Studies in Animal Genetics and Breeding, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 680651, Kerala, India;
| | - Muhasin Asaf
- Department of Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 673576, Kerala, India;
| | | | - Shane K. Maloney
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Graeme B. Martin
- UWA School of Agriculture and Environment, University of Western Australia, Crawley, WA 6009, Australia;
| | | | - Veerasamy Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi 560030, Bangalore, India;
| | | | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Michael R. F. Lee
- School of Sustainable Food and Farming, Harper Adams University, Edgmond, Newport TF10 8NB, UK;
| |
Collapse
|
5
|
Jaiswal S, Jagannadham J, Kumari J, Iquebal MA, Gurjar AKS, Nayan V, Angadi UB, Kumar S, Kumar R, Datta TK, Rai A, Kumar D. Genome Wide Prediction, Mapping and Development of Genomic Resources of Mastitis Associated Genes in Water Buffalo. Front Vet Sci 2021; 8:593871. [PMID: 34222390 PMCID: PMC8253262 DOI: 10.3389/fvets.2021.593871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Water buffalo (Bubalus bubalis) are an important animal resource that contributes milk, meat, leather, dairy products, and power for plowing and transport. However, mastitis, a bacterial disease affecting milk production and reproduction efficiency, is most prevalent in populations having intensive selection for higher milk yield, especially where the inbreeding level is also high. Climate change and poor hygiene management practices further complicate the issue. The management of this disease faces major challenges, like antibiotic resistance, maximum residue level, horizontal gene transfer, and limited success in resistance breeding. Bovine mastitis genome wide association studies have had limited success due to breed differences, sample sizes, and minor allele frequency, lowering the power to detect the diseases associated with SNPs. In this work, we focused on the application of targeted gene panels (TGPs) in screening for candidate gene association analysis, and how this approach overcomes the limitation of genome wide association studies. This work will facilitate the targeted sequencing of buffalo genomic regions with high depth coverage required to mine the extremely rare variants potentially associated with buffalo mastitis. Although the whole genome assembly of water buffalo is available, neither mastitis genes are predicted nor TGP in the form of web-genomic resources are available for future variant mining and association studies. Out of the 129 mastitis associated genes of cattle, 101 were completely mapped on the buffalo genome to make TGP. This further helped in identifying rare variants in water buffalo. Eighty-five genes were validated in the buffalo gene expression atlas, with the RNA-Seq data of 50 tissues. The functions of 97 genes were predicted, revealing 225 pathways. The mastitis proteins were used for protein-protein interaction network analysis to obtain additional cross-talking proteins. A total of 1,306 SNPs and 152 indels were identified from 101 genes. Water Buffalo-MSTdb was developed with 3-tier architecture to retrieve mastitis associated genes having genomic coordinates with chromosomal details for TGP sequencing for mining of minor alleles for further association studies. Lastly, a web-genomic resource was made available to mine variants of targeted gene panels in buffalo for mastitis resistance breeding in an endeavor to ensure improved productivity and the reproductive efficiency of water buffalo.
Collapse
Affiliation(s)
- Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jaisri Jagannadham
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Juli Kumari
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anoop Kishor Singh Gurjar
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Varij Nayan
- Indian Council of Agricultural Research (ICAR)-Central Institute for Research on Buffaloes, Hisar, India
| | - Ulavappa B Angadi
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sunil Kumar
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rakesh Kumar
- Animal Biotechnology Centre, Indian Council of Agricultural Research (ICAR)-National Dairy research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, Indian Council of Agricultural Research (ICAR)-National Dairy research Institute, Karnal, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
6
|
Grigoletto L, Santana MHA, Bressan FF, Eler JP, Nogueira MFG, Kadarmideen HN, Baruselli PS, Ferraz JBS, Brito LF. Genetic Parameters and Genome-Wide Association Studies for Anti-Müllerian Hormone Levels and Antral Follicle Populations Measured After Estrus Synchronization in Nellore Cattle. Animals (Basel) 2020; 10:E1185. [PMID: 32668804 PMCID: PMC7401547 DOI: 10.3390/ani10071185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Reproductive efficiency plays a major role in the long-term sustainability of livestock industries and can be improved through genetic and genomic selection. This study aimed to estimate genetic parameters (heritability and genetic correlation) and identify genomic regions and candidate genes associated with anti-Müllerian hormone levels (AMH) and antral follicle populations measured after estrous synchronization (AFP) in Nellore cattle. The datasets included phenotypic records for 1099 and 289 Nellore females for AFP and AMH, respectively, high-density single nucleotide polymorphism (SNP) genotypes for 944 animals, and 4129 individuals in the pedigree. The heritability estimates for AMH and AFP were 0.28 ± 0.07 and 0.30 ± 0.09, and the traits were highly and positively genetically correlated (rG = 0.81 ± 0.02). These findings indicated that these traits can be improved through selective breeding, and substantial indirect genetic gains are expected by selecting for only one of the two traits. A total of 31 genomic regions were shown to be associated with AMH or AFP, and two genomic regions located on BTA1 (64.9-65.0 Mb and 109.1-109.2 Mb) overlapped between the traits. Various candidate genes were identified to be potentially linked to important biological processes such as ovulation, tissue remodeling, and the immune system. Our findings support the use of AMH and AFP as indicator traits to genetically improve fertility rates in Nellore cattle and identify better oocyte donors.
Collapse
Affiliation(s)
- Laís Grigoletto
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900 São Paulo, Brazil; (M.H.A.S.); (F.F.B.); (J.P.E.); (J.B.S.F.)
| | - Miguel Henrique Almeida Santana
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900 São Paulo, Brazil; (M.H.A.S.); (F.F.B.); (J.P.E.); (J.B.S.F.)
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900 São Paulo, Brazil; (M.H.A.S.); (F.F.B.); (J.P.E.); (J.B.S.F.)
| | - Joanir Pereira Eler
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900 São Paulo, Brazil; (M.H.A.S.); (F.F.B.); (J.P.E.); (J.B.S.F.)
| | - Marcelo Fábio Gouveia Nogueira
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University, Assis, 19806-900 São Paulo, Brazil;
| | - Haja N. Kadarmideen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 102500 Lyngby, Denmark;
| | - Pietro Sampaio Baruselli
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, 05508-270 São Paulo, Brazil;
| | - José Bento Sterman Ferraz
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900 São Paulo, Brazil; (M.H.A.S.); (F.F.B.); (J.P.E.); (J.B.S.F.)
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Prajapati BM, Gupta JP, Pandey DP, Parmar GA, Chaudhari JD. Molecular markers for resistance against infectious diseases of economic importance. Vet World 2017; 10:112-120. [PMID: 28246455 PMCID: PMC5301170 DOI: 10.14202/vetworld.2017.112-120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/31/2016] [Indexed: 12/22/2022] Open
Abstract
Huge livestock population of India is under threat by a large number of endemic infectious (bacterial, viral, and parasitic) diseases. These diseases are associated with high rates of morbidity and mortality, particularly in exotic and crossbred cattle. Beside morbidity and mortality, economic losses by these diseases occur through reduced fertility, production losses, etc. Some of the major infectious diseases which have great economic impact on Indian dairy industries are tuberculosis (TB), Johne's disease (JD), mastitis, tick and tick-borne diseases (TTBDs), foot and mouth disease, etc. The development of effective strategies for the assessment and control of infectious diseases requires a better understanding of pathogen biology, host immune response, and diseases pathogenesis as well as the identification of the associated biomarkers. Indigenous cattle (Bos indicus) are reported to be comparatively less affected than exotic and crossbred cattle. However, genetic basis of resistance in indigenous cattle is not well documented. The association studies of few of the genes associated with various diseases, namely, solute carrier family 11 member 1, Toll-like receptors 1, with TB; Caspase associated recruitment domain 15, SP110 with JD; CACNA2D1, CD14 with mastitis and interferon gamma, BoLA--DRB3.2 alleles with TTBDs, etc., are presented. Breeding for genetic resistance is one of the promising ways to control the infectious diseases. High host resistance is the most important method for controlling such diseases, but till today no breed is total immune. Therefore, work may be undertaken under the hypothesis that the different susceptibility to these diseases are exhibited by indigenous and crossbred cattle is due to breed-specific differences in the dealing of infected cells with other immune cells, which ultimately influence the immune response responded against infections. Achieving maximum resistance to these diseases is the ultimate goal, is technically possible to achieve, and is permanent. Progress could be enhanced through introgression of resistance genes to breeds with low resistance. The quest for knowledge of the genetic basis for infectious diseases in indigenous livestock is strongly warranted.
Collapse
Affiliation(s)
- B. M. Prajapati
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - J. P. Gupta
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - D. P. Pandey
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - G. A. Parmar
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - J. D. Chaudhari
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| |
Collapse
|