1
|
Alonaizan R, K Alotaibi W, Alsulami A, M Alkhulaifi F, Alomar S. Sex-Differences Influence Depressive-Like Behaviour via Alterations in Microglial Expression of GIF-1, TREM2, and IL-1β in an Acute Lipopolysaccharide-Induced Murine Neuroinflammation Model. Immunol Invest 2025; 54:317-333. [PMID: 39701694 DOI: 10.1080/08820139.2024.2440006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
BACKGROUND Neurodegenerative diseases (NDs) have caused serious health issues worldwide. A growing body of evidence suggests a correlation between neuroinflammation and abnormal microglial activity with ND symptoms. Microglia survey play crucial roles in CNS during health and the injury. It is proposed that sex affects microglial roles during inflammation, resulting in mouse behavioural changes and expression alterations in key markers related to microglia functions. METHODS Male and female C57BL/6 mice were injected with a single dose of LPS (5 mg/kg, i.p.) or saline. After 48 h, an open field test was conducted, followed by brain tissues collection for measuring the expression of IGF-1, IL-1β and TREM2 and Immunohistochemistry (IHC) analysis for NLRP3 level. RESULTS Males displayed greater depressive-like behaviour in the OFT, with lower levels of IGF-1, IL-1β, and NLRP3 and high TREM2 expression. Female mice did not exhibit this behaviour, in contrast to male mice, they exhibited increased IL-1β and NLRP3 expression. DISCUSSION This study revealed that LPS-induced sex-specific changes in genes involved in neuronal cell survival caused behavioural alterations in male mice. Moreover, females had observed inflammatory responses that had no impact on behavioural alterations. Overall, both sexes exhibited sex-specific microglial activation states.
Collapse
Affiliation(s)
- Rasha Alonaizan
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wafa K Alotaibi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Asma Alsulami
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fadwa M Alkhulaifi
- Biology Department, College of Science, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Suliman Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Barrett CME, Zeidy Z, Farrell A, Cahill LS, Wadden KP. Maternal brain plasticity, physiology and exercise science: A scoping narrative review. Front Neuroendocrinol 2025; 77:101185. [PMID: 39978421 DOI: 10.1016/j.yfrne.2025.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
INTRODUCTION The perinatal period is characterized by extreme shifts in hormones, neurochemistry, and life experiences that drive significant changes in the brain, known as maternal plasticity. Due to rising maternal health conditions, such as postpartum depression, there is a critical need to investigate factors, such as engagement in physical activity and exercise, that may mitigate susceptibility to maladaptive maternal plasticity. This scoping review aims to analyze exercise interventions and maternal brain outcomes during reproduction. METHODS A systematic search was completed in Medline, Embase, CINAHL, PsycINFO, SportDiscuss. The key concepts of the search were (i) brain plasticity, (ii) maternal reproductive period including pre-conception, pregnancy, and postpartum, and (iii) exercise interventions. Due to the limited amount of evidence available on this topic, the review findings were discussed using a combined scoping and narrative review approach. RESULTS The search produced 2,167 unique articles after removing 2588 duplicates. Covidence software was used for the screening procedure. Following title and abstract screening, 2160 articles were deemed irrelevant and removed. Seven articles moved forward to full-text screening. One article was excluded during full-text screening for wrong outcomes, leaving six papers for extraction. Extraction revealed that four out of six studies were conducted in the rodent alone, one was conducted in humans alone and one was conducted in both a human and a rodent model. DISCUSSION The methodological inconsistencies in the limited number of studies within this field highlight the need for standardization, which motivated the development of the Consensus on Exercise Reporting Template for animal research. Moreover, the present review highlights future directions and knowledge gaps, emphasizing the critical need for high-quality research to address the many unanswered questions regarding the impact of exercise on the maternal brain.
Collapse
Affiliation(s)
- Catherine M E Barrett
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Zohreh Zeidy
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Alison Farrell
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katie P Wadden
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
3
|
Hu Z, Li C, Wu T, Zhou J, Han L, Liu J, Qiang S, Zhao W, Li X, Liu X, Li J, Chen X. Sulfathiazole treats type 2 diabetes by restoring metabolism through activating CYP19A1. Biochim Biophys Acta Gen Subj 2023; 1867:130303. [PMID: 36627088 DOI: 10.1016/j.bbagen.2023.130303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Globally, diabetes mellitus has been a major epidemic bringing metabolic and endocrine disorders. Currently, 1 in 11 adults suffers from diabetes mellitus, among the patients >90% contract type 2 diabetes mellitus (T2DM). Therefore, it is urgent to develop new drugs that effectively prevent and treat type 2 diabetes through new targets. With high-throughput screening, we found that sulfathiazole decreased the blood glucose and improved glucose metabolism in T2DM mice. Notably, we discovered that sulfathiazole treated T2DM by activating CYP19A1 protein to synthesize estrogen. Collectively, sulfathiazole along with CYP19A1 target bring new promise for the better therapy of T2DM.
Collapse
Affiliation(s)
- Zhuozhou Hu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Chun Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Tongyu Wu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Jing Zhou
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Liang Han
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Jingjing Liu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Shaojia Qiang
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Wenyang Zhao
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Xiangxiang Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Xiaohua Liu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China.
| | - Xinping Chen
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China; Southeast Research Institute of LZU, Putian, Fujian 351152, PR China; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Wang YJ, Wong HSC, Wu CC, Chiang YH, Chiu WT, Chen KY, Chang WC. The functional roles of IGF-1 variants in the susceptibility and clinical outcomes of mild traumatic brain injury. J Biomed Sci 2019; 26:94. [PMID: 31787098 PMCID: PMC6886173 DOI: 10.1186/s12929-019-0587-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insulin-like growth factor 1 (IGF-1) is an important pleiotropic hormone that exerts neuroprotective and neuroreparative effects after a brain injury. However, the roles of IGF-1 variants in mild traumatic brain injury (mTBI) are not yet fully understood. This study attempted to elucidate the effects of IGF-1 variants on the risk and neuropsychiatric outcomes of mTBI. METHODS Based on 176 recruited mTBI patients and 1517 control subjects from the Taiwan Biobank project, we first compared the genotypic distributions of IGF-1 variants between the two groups. Then, we analyzed associations of IGF-1 variants with neuropsychiatric symptoms after mTBI, including anxiety, depression, dizziness, and sleep disturbances. Functional annotation of IGF-1 variants was also performed through bioinformatics databases. RESULTS The minor allele of rs7136446 was over-represented in mTBI patients compared to community-based control subjects. Patients carrying minor alleles of rs7136446 and rs972936 showed more dizziness and multiple neuropsychiatric symptoms after brain injury. CONCLUSIONS IGF-1 variants were associated with the risk and neuropsychiatric symptoms of mTBI. The findings highlight the important role of IGF-1 in the susceptibility and clinical outcomes of mTBI.
Collapse
Affiliation(s)
- Yu-Jia Wang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chung-Che Wu
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wen-Ta Chiu
- Institute of Injury Prevention and Control, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kai-Yun Chen
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Pain Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Jung Y. Female hormones and the risk of colorectal neoplasm. Korean J Intern Med 2019; 34:982-984. [PMID: 31466433 PMCID: PMC6718757 DOI: 10.3904/kjim.2019.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 08/14/2019] [Indexed: 11/27/2022] Open
Affiliation(s)
- Yunho Jung
- Division of Gastroenterology, Department of Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
- Correspondence to Yunho Jung, M.D. Division of Gastroenterology, Department of Medicine, Soonchunhyang University College of Medicine, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Korea Tel: +82-41-570-3741 Fax: +82-41-574-5762 E-mail:
| |
Collapse
|
6
|
Song W, Jiang W, Wang C, Xie J, Liang X, Sun Y, Gong L, Liu W, Qu L. Jinmaitong, a Traditional Chinese Compound Prescription, Ameliorates the Streptozocin-Induced Diabetic Peripheral Neuropathy Rats by Increasing Sciatic Nerve IGF-1 and IGF-1R Expression. Front Pharmacol 2019; 10:255. [PMID: 30983995 PMCID: PMC6450141 DOI: 10.3389/fphar.2019.00255] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/28/2019] [Indexed: 12/16/2022] Open
Abstract
Jinmaitong (JMT) is a Traditional Chinese Compound Prescription for the treatment of diabetic peripheral neuropathy (DPN). This study aims to investigate the effect of JMT on the insulin-like growth factor 1 (IGF-1) and the insulin like growth factor 1 receptor (IGF-1R) expression in sciatic nerves of diabetic rats. Firstly, the chemical profile of JMT was characterized by UPLC/Q-TOF-MS analysis. A total of 72 compounds were putatively identified. Secondly, streptozotocin (STZ)-induced diabetic rats were treated with neurotropin (NTP, 2.67 NU/kg/day) or JMT at low-dosage (0.4375 g/kg/day), medium-dosage (0.875 g/kg/day), and high-dosage (1.75 g/kg/day) for continuous 16 weeks. Blood glucose and body weight were detected every 4 weeks during the experiment. The mechanical pain and morphological change on sciatic nerves were detected by pain measurement instrument and microscopy. The IGF-1 level in serum and tissues were measured though ELISA and immunohistochemistry. The mRNA and protein expressions of IGF-1, IGF-1R, peripheral myelin protein zero (P0), and peripheral myelin protein 22 (PMP22) in the tissues were measured by qRT-PCR and western blot. As a result, JMT had no significant effect on body weight, but reduced the fasting blood glucose levels of diabetic rats. Besides, the pathological morphology, mechanical pain thresholds, serum level and tissue expression of IGF-1, mRNA, and protein levels of IGF-1R, P0, and PMP22 were significantly improved in JMT group at middle dosage. In conclusion, JMT could ameliorate the behavioristics and morphology changes in DPN rats by promoting IGF-1 and IGF-1R gene and protein expressions in sciatic nerves, as well as regulating the peripheral nerve remyelination genes P0 and PMP22 expressions, which provides scientific evidence for the clinical application of JMT in DPN patients.
Collapse
Affiliation(s)
- Wei Song
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.,Center for Translational Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Wen Jiang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Chao Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Jun Xie
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xiaochun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ying Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Liyun Gong
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Wei Liu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ling Qu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
7
|
Ko BS, Ryuk JA, Hwang JT, Zhang T, Wu X, Park S. Ojayeonjonghwan, an oriental medicine composed of five seeds, protects against vasomotor and neurological disorders in estrogen-deficient rats. Exp Biol Med (Maywood) 2019; 244:193-206. [PMID: 30722698 DOI: 10.1177/1535370219827847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT Menopausal symptoms impair the quality of life of many women, and although conventional treatments are often effective, their use is limited by adverse effects. Ojayeonjonghwan, OJa, is a traditional Oriental medicine that is used for both male and female reproductive health and has a long history of safe use. We evaluated the effectiveness of two variations of OJa (OJa1 and OJa2) for treating menopausal symptoms in ovariectomized (OVX) rats. Both OJa preparations were effective for relieving indicators of hot flashes and depression, and for preventing loss of bone mineral density and lean body mass. Only OJa 2 prevented memory dysfunction. These results show that the traditional Oriental medicine, Ojayeonjonghwan, has the potential to relieve menopausal symptoms in women and should be further evaluated in human clinical trials as an alternative to convention therapies in women for whom conventional therapies are not indicated or found to be ineffective.
Collapse
Affiliation(s)
- Byoung-Seob Ko
- 1 Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea
| | - Jin Ah Ryuk
- 1 Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea
| | - Joo Tae Hwang
- 1 Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea
| | - Ting Zhang
- 2 Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| | - Xuangao Wu
- 2 Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| | - Sunmin Park
- 2 Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| |
Collapse
|
8
|
McGregor BA, Eid S, Rumora AE, Murdock B, Guo K, de Anda-Jáuregui G, Porter JE, Feldman EL, Hur J. Conserved Transcriptional Signatures in Human and Murine Diabetic Peripheral Neuropathy. Sci Rep 2018; 8:17678. [PMID: 30518872 PMCID: PMC6281650 DOI: 10.1038/s41598-018-36098-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes. In this study, we employed a systems biology approach to identify DPN-related transcriptional pathways conserved across human and various murine models. Eight microarray datasets on peripheral nerve samples from murine models of type 1 (streptozotocin-treated) and type 2 (db/db and ob/ob) diabetes of various ages and human subjects with non-progressive and progressive DPN were collected. Differentially expressed genes (DEGs) were identified between non-diabetic and diabetic samples in murine models, and non-progressive and progressive human samples using a unified analysis pipeline. A transcriptional network for each DEG set was constructed based on literature-derived gene-gene interaction information. Seven pairwise human-vs-murine comparisons using a network-comparison program resulted in shared sub-networks including 46 to 396 genes, which were further merged into a single network of 688 genes. Pathway and centrality analyses revealed highly connected genes and pathways including LXR/RXR activation, adipogenesis, glucocorticoid receptor signalling, and multiple cytokine and chemokine pathways. Our systems biology approach identified highly conserved pathways across human and murine models that are likely to play a role in DPN pathogenesis and provide new possible mechanism-based targets for DPN therapy.
Collapse
Affiliation(s)
- Brett A McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Stephanie Eid
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Benjamin Murdock
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Guillermo de Anda-Jáuregui
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - James E Porter
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|
9
|
González-Garrido AA, Gallardo-Moreno GB, Romo-Vázquez R, Vélez-Pérez H, Flores-Saiffe-Farías A, Mendizabal-Ruiz G, Santos-Arce SR, Ruiz-Stovel VD, Gómez-Velázquez FR, Ramos-Loyo J. Is sex an influential factor in type-1 diabetes neurofunctional development? A preliminary study. J Neurosci Res 2018; 96:1699-1706. [PMID: 30027655 DOI: 10.1002/jnr.24268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023]
Abstract
The aim of the study was to evaluate the neurofunctional effect of gender in Type-1 Diabetes Mellitus (T1DM) patients during a Visual Spatial Working Memory (VSWM) task. The study included 28 participants with ages ranging from 17-28 years. Fourteen well-controlled T1DM patients (7 female) and 14 controls matched by age, sex, and education level were scanned performing a block-design VSWM paradigm. Behavioral descriptive analyses and mean comparisons were done, and between-group and condition functional activation patterns were also compared. Whole-brain cumulative BOLD signal (CumBS), voxel-wise BOLD level frequency, Euclidean distance, and divergence indices were also calculated. There were no significant differences between or within-group sex differences for correct responses and reaction times. Functional activation analyses showed that females had activation in more brain regions, and with larger clusters of cortical activations than males. Furthermore, BOLD activation was higher in males. Despite the preliminary nature of the present study given the relatively small sample size, current results acknowledge for the first time that sex might contribute to differences in functional activation in T1DM patients. Findings suggest that sex differences should be considered when studying T1DM-disease development.
Collapse
Affiliation(s)
- Andrés A González-Garrido
- Instituto de Neurociencias. Universidad de Guadalajara. Francisco de Quevedo 180. Col. Arcos Vallarta, Guadalajara, Jalisco, 44130, México
| | - Geisa B Gallardo-Moreno
- Instituto de Neurociencias. Universidad de Guadalajara. Francisco de Quevedo 180. Col. Arcos Vallarta, Guadalajara, Jalisco, 44130, México
| | - Rebeca Romo-Vázquez
- Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara. Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, México
| | - Hugo Vélez-Pérez
- Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara. Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, México
| | - Adolfo Flores-Saiffe-Farías
- Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara. Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, México
| | - Gerardo Mendizabal-Ruiz
- Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara. Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, México
| | - Stewart R Santos-Arce
- Departamento de Electrónica, CUCEI, Universidad de Guadalajara. Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, México
| | - Vanessa D Ruiz-Stovel
- Instituto de Neurociencias. Universidad de Guadalajara. Francisco de Quevedo 180. Col. Arcos Vallarta, Guadalajara, Jalisco, 44130, México
| | - Fabiola R Gómez-Velázquez
- Instituto de Neurociencias. Universidad de Guadalajara. Francisco de Quevedo 180. Col. Arcos Vallarta, Guadalajara, Jalisco, 44130, México
| | - Julieta Ramos-Loyo
- Instituto de Neurociencias. Universidad de Guadalajara. Francisco de Quevedo 180. Col. Arcos Vallarta, Guadalajara, Jalisco, 44130, México
| |
Collapse
|
10
|
Congdon EE. Sex Differences in Autophagy Contribute to Female Vulnerability in Alzheimer's Disease. Front Neurosci 2018; 12:372. [PMID: 29988365 PMCID: PMC6023994 DOI: 10.3389/fnins.2018.00372] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with over 5. 4 million cases in the US alone (Alzheimer's Association, 2016). Clinically, AD is defined by the presence of plaques composed of Aβ and neurofibrillary pathology composed of the microtubule associated protein tau. Another key feature is the dysregulation of autophagy at key steps in the pathway. In AD, disrupted autophagy contributes to disease progression through the failure to clear pathological protein aggregates, insulin resistance, and its role in the synthesis of Aβ. Like many psychiatric and neurodegenerative diseases, the risk of developing AD, and disease course are dependent on the sex of the patient. One potential mechanism through which these differences occur, is the effects of sex hormones on autophagy. In women, the loss of hormones with menopause presents both a risk factor for developing AD, and an obvious example of where sex differences in AD can stem from. However, because AD pathology can begin decades before menopause, this does not provide the full answer. We propose that sex-based differences in autophagy regulation during the lifespan contribute to the increased risk of AD, and greater severity of pathology seen in women.
Collapse
Affiliation(s)
- Erin E Congdon
- Neuroscience and Physiology, School of Medicine, New York University, New York City, NY, United States
| |
Collapse
|
11
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
12
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
13
|
Ray A. Tumor-linked HER2 expression: association with obesity and lipid-related microenvironment. Horm Mol Biol Clin Investig 2017; 32:/j/hmbci.ahead-of-print/hmbci-2017-0020/hmbci-2017-0020.xml. [PMID: 29087955 DOI: 10.1515/hmbci-2017-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
Abstract
Obesity is associated with the risk of several health disorders including certain cancers. Among obesity-related cancers, postmenopausal breast carcinoma is a well-studied one. Apart from an increase in certain types of lipids in obesity, excess adipose tissue releases many hormone-like cytokines/adipokines, which are usually pro-inflammatory in nature. Leptin is one of such adipokines and significantly linked with the intracellular signaling pathways of other growth factors such as insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2). In general, HER2 is overexpressed in roughly 30% of breast carcinomas; its presence indicates aggressive tumor behavior. Conversely, HER2 has certain effects in normal conditions such as differentiation of preadipocytes, cardiovascular health and vitamin D metabolism. HER2 has no known endogenous ligand, but it may form dimers with other three members of the epidermal growth factor receptor (EGFR) family and can activate downstream signaling pathways. Furthermore, HER2 is intimately connected with several enzymes, e.g. fatty acid synthase (FASN), phosphatidylinositol 3-kinase (PI3K), AKT and mechanistic target of rapamycin (mTOR), all of which play significant regulatory roles in lipogenic pathways or lipid metabolism. In obesity-related carcinogenesis, characteristics like insulin resistance and elevated IGF-1 are commonly observed. Both IGF-1 and leptin can modulate EGFR and HER2 signaling pathways. Although clinical studies have shown mixed results, the behavior of HER2+ tumor cells including HER2 levels can be altered by several factors such as obesity, leptin and fatty acids. A precise knowledge is useful in new therapeutic approaches against HER+ tumors.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, 20 Seton Hill Drive, Greensburg, PA 15601, USA, Phone: +(724) 552-2882, Fax: +(724) 552-2865
| |
Collapse
|