1
|
Jiang C, Yan Y, Long T, Xu J, Chang C, Kang M, Wang X, Chen Y, Qiu J. Ferroptosis: a potential therapeutic target in cardio-cerebrovascular diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05262-7. [PMID: 40148662 DOI: 10.1007/s11010-025-05262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Cardio-cerebrovascular diseases (CCVDs) are the leading cause of global mortality, yet effective treatment options remain limited. Ferroptosis, a novel form of regulated cell death, has emerged as a critical player in various CCVDs, including atherosclerosis, myocardial infarction, ischemia-reperfusion injury, cardiomyopathy, and ischemic/hemorrhagic strokes. This review highlights the core mechanisms of ferroptosis, its pathological implications in CCVDs, and the therapeutic potential of targeting this process. Additionally, it explores the role of Chinese herbal medicines (CHMs) in mitigating ferroptosis, offering novel therapeutic strategies for CCVDs management. Ferroptosis is regulated by several key pathways. The GPX4-GSH-System Xc- axis is central to ferroptosis execution, involving GPX4 using GSH to neutralize lipid peroxides, with system Xc- being crucial for GSH synthesis. The NAD(P)H/FSP1/CoQ10 axis involves FSP1 regenerating CoQ10 via NAD(P)H, inhibiting lipid peroxidation independently of GPX4. Lipid peroxidation, driven by PUFAs and enzymes like ACSL4 and LPCAT3, and iron metabolism, regulated by proteins like TfR1 and ferritin, are also crucial for ferroptosis. Inhibiting ferroptosis shows promise in managing CCVDs. In atherosclerosis, ferroptosis inhibitors reduce iron accumulation and lipid peroxidation. In myocardial infarction, inhibitors protect cardiomyocytes by preserving GPX4 and SLC7A11 levels. In ischemia-reperfusion injury, targeting ferroptosis reduces myocardial and cerebral damage. In diabetic cardiomyopathy, Nrf2 activators alleviate oxidative stress and iron metabolism irregularities. CHMs offer natural compounds that mitigate ferroptosis. They possess antioxidant properties, chelate iron, and modulate signaling pathways like Nrf2 and AMPK. For example, Salvia miltiorrhiza and Astragalus membranaceus reduce oxidative stress, while some CHMs chelate iron, reducing its availability for ferroptosis. In conclusion, ferroptosis plays a pivotal role in CCVDs, and targeting it offers novel therapeutic avenues. CHMs show promise in reducing ferroptosis and improving patient outcomes. Future research should explore combination therapies and further elucidate the molecular interactions in ferroptosis.
Collapse
Affiliation(s)
- Chenlong Jiang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Yang Yan
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Jiawei Xu
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Cuicui Chang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Meili Kang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Xuanqi Wang
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| | - Yuhua Chen
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China.
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China.
- School of Life and Health Science, Hainan University, No. 58 People's Avenue, Haikou, 570100, Hainan, China.
| | - Junlin Qiu
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| |
Collapse
|
2
|
Chi ZC. Progress in research of ferroptosis in gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:699-715. [DOI: 10.11569/wcjd.v32.i10.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis is a non-apoptotic and oxidation-damaged regulated cell death caused by iron accumulation, lipid peroxidation, and subsequent plasma membrane rupture. Ferroptosis is the main cause of tissue damage caused by iron overload and lipid peroxidation. With the deepening of the research in recent years, the understanding of the occurrence and treatment of tumors has made a major breakthrough, which brings new strategies for anti-cancer treatment. This paper reviews the relationship between ferroptosis and gastrointestinal tumors, the research of ferroptosis in cancer prevention and treatment, and the role of ferroptosis in the prevention and treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
3
|
Wang H, Fang D, Zhu J, Liu L, Xue L, Wang L, Karzai F, Antonarakis ES, Urabe F, Ma W, Wei W. Ferroptosis-related gene signature predicts prognosis and immune microenvironment in prostate cancer. Transl Androl Urol 2024; 13:2092-2109. [PMID: 39434758 PMCID: PMC11491218 DOI: 10.21037/tau-24-415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Background Ferroptosis, an iron-dependent form of programmed cell death, significantly impacts cancer, yet its link to prostate cancer (PCa) prognosis remains underexplored. This study aims to develop and validate a ferroptosis-related gene signature to predict PCa prognosis and immune microenvironment differences, potentially identifying therapeutic targets. Methods RNA-sequencing data of 478 PCa patients and corresponding clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. We investigated the disease-free survival (DFS) rates of the high- and low-risk groups using the Kaplan-Meier method. Functional differences between the high- and low-risk groups were investigated by a gene set enrichment analysis (GSEA), and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The link between ferroptosis risk score and immune status was examined using CIBERSORT. The expression levels of core prognostic genes in benign prostatic hyperplasia (BPH) and PCa were verified using quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemistry (IHC). Results A novel ferroptosis-related prognostic gene signature was established and tested in the Gene Expression Omnibus (GEO) database based on univariate and multivariate Cox regression analyses. Patients with PCa were classified into high- and low-risk groups based on this ferroptosis signature. Patients in the high-risk group had worse outcomes than those in the low-risk group. The predictive accuracy of the model was demonstrated by a receiver operating characteristic (ROC) analysis. An additional enrichment analysis of TCGA cohort revealed the immune-related pathways were significantly upregulated in the high-risk group, with areas under the curve (AUCs) of 0.85 at 1 year, 0.82 at 3 years, and 0.76 at 5 years. In the GEO cohort, the AUCs reached 0.69 at 1 year, 0.74 at 3 years, and 0.75 at 5 years. An additional enrichment analysis indicated a significant upregulation of cytokine-related pathways, immune receptor activity, and other immune-related pathways in the high-risk group. Furthermore, the analysis revealed that the proportions of mast cells and plasma cells were significantly lower in the high-risk group compared to the low-risk group of PCa patients. Conversely, the proportion of regulatory T cells (Tregs) was significantly higher in the high-risk group than in the low-risk group. According to the qRT-PCR, Western blot, and IHC results, DRD4, SRC, AKR1C2, and AIFM2 expression was significantly higher in PCa than BPH. We also showed that the ferrostatin 1-treated LNCaP cells had higher expression levels of DRD4, SRC, and AKR1C2. Conclusions A prognostic signature of eight ferroptosis-related genes (FRGs) that may accurately predict PCa patient outcomes was constructed and validated. FRGs may contribute to anti-tumor immunity and serve as therapeutic targets in PCa.
Collapse
Affiliation(s)
- Hao Wang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Dalang Fang
- Department of Gland Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, China
| | - Jinxin Zhu
- Department of Science and Education, Lianshui People’s Hospital of Kangda College Affiliated to Nanjing Medical University, Huai’an, China
| | - Lin Liu
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Liang Xue
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Liucheng Wang
- Department of Urology, Lianshui People’s Hospital of Kangda College Affiliated to Nanjing Medical University, Huai’an, China
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Weiming Ma
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Wanqing Wei
- Department of Urology, Lianshui People’s Hospital of Kangda College Affiliated to Nanjing Medical University, Huai’an, China
| |
Collapse
|
4
|
Shetake NG, Das SK, Kumar A, Pandey BN. Nano-inducer of ferroptosis for targeted chemotherapy of human triple negative breast carcinoma. BIOMATERIALS ADVANCES 2024; 161:213868. [PMID: 38677038 DOI: 10.1016/j.bioadv.2024.213868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Triple negative breast carcinoma (TNBC) accounts for 15-20 % of all incident breast cancers (BC) and is known to be highly invasive, has fewer treatment options, and tends to have a worse prognosis. However, due to its biological heterogeneity and diverse clinical and epidemiological behaviors, TNBC lacks a tumor-specific targeted therapy. In the present work we have developed a TNBC-specific targeted nano-delivery agent comprising of a cRGD labeled magneto-liposome (T-LMD) co-encapsulated with oleic acid coated iron oxide nanoparticles (MN-OA) and doxorubicin (Dox) in the liposome bilayer and core, respectively. T-LMD was found to show enhanced uptake and induction of ferroptotic cell death in MDA-MB-231, a TNBC model cell line. Additionally, T-LMD induced ferroptosis was found to be accompanied by release of HMGB1, an immunogenic cell death marker, suggesting its immunogenicity for augmenting the activation of anti-tumor immunity in TNBC. The strategic placement of IONPs in the liposome bilayer of T-LMD facilitates the sensitization of MDA-MB-231 cells to undergo ferroptosis; predominantly via the activation of the iron/lipid metabolism pathway, as validated by use of small molecule ferroptosis inhibitor (ferrostatin-1) and iron chelator (deferoxamine). Activation of ferroptotic cell death was also corroborated by ferroptosis specific-ultrastructural alterations in the shape/size of cellular mitochondria and cell ballooning as observed by transmission electron microscopy and bright field imaging, respectively. Thus, our ferroptosis nano-inducer (T-LMD) can efficiently kill TNBC cells via enhanced LPO and ROS generation leading to membrane damage and consequent release of LDH and HMGB1, induce mitochondrial alterations and enhanced DNA double strand breaks. Altogether, our results suggest significant implications of T-LMD for treatment of TNBC.
Collapse
Affiliation(s)
- Neena G Shetake
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| | - Sourav Kumar Das
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Badri N Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
5
|
Feng Z, Luan M, Zhu W, Xing Y, Ma X, Wang Y, Jia Y. Targeted ferritinophagy in gastrointestinal cancer: from molecular mechanisms to implications. Arch Toxicol 2024; 98:2007-2018. [PMID: 38602537 DOI: 10.1007/s00204-024-03745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Gastrointestinal cancer is a significant global health burden, necessitating the development of novel therapeutic strategies. Emerging evidence has highlighted the potential of targeting ferritinophagy as a promising approach for the treatment of gastrointestinal cancer. Ferritinophagy is a form of selective autophagy that is mediated by the nuclear receptor coactivator 4 (NCOA4). This process plays a crucial role in regulating cellular iron homeostasis and has been implicated in various pathological conditions, including cancer. This review discusses the molecular mechanisms underlying ferritinophagy and its relevance to gastrointestinal cancer. Furthermore, we highlight the potential therapeutic implications of targeting ferritinophagy in gastrointestinal cancer. Several approaches have been proposed to modulate ferritinophagy, including small molecule inhibitors and immunotherapeutic strategies. We discuss the advantages and challenges associated with these therapeutic interventions and provide insights into their potential clinical applications.
Collapse
Affiliation(s)
- Zhaotian Feng
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yanfei Jia
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China.
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
6
|
Shu YJ, Lao B, Qiu YY. Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer. World J Gastrointest Oncol 2024; 16:2335-2349. [PMID: 38994128 PMCID: PMC11236230 DOI: 10.4251/wjgo.v16.i6.2335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 06/13/2024] Open
Abstract
As a highly aggressive tumor, the pathophysiological mechanism of primary liver cancer has attracted much attention. In recent years, factors such as ferroptosis regulation, lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer, providing a new perspective for understanding the development of liver cancer. Ferroptosis regulation, lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer. The regulation of ferroptosis is involved in apoptosis and necrosis, affecting cell survival and death. Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells. Metabolic abnormalities, especially the disorders of glucose and lipid metabolism, directly affect the proliferation and growth of liver cancer cells. Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes. The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer, and reduce the risk of disease by adjusting the metabolic process. This review focuses on the key roles of ferroptosis regulation, lipid peroxidation and metabolic abnormalities in this process.
Collapse
Affiliation(s)
- Yu-Jie Shu
- Department of Gastroenterology, Yinzhou District Second Hospital, Ningbo 315199, Zhejiang Province, China
| | - Bo Lao
- Department of Gastroenterology, Yinzhou District Second Hospital, Ningbo 315199, Zhejiang Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
7
|
Yang F, He Y, Ge N, Guo J, Yang F, Sun S. Exploring KRAS-mutant pancreatic ductal adenocarcinoma: a model validation study. Front Immunol 2024; 14:1203459. [PMID: 38268915 PMCID: PMC10805828 DOI: 10.3389/fimmu.2023.1203459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) has the highest mortality rate among all solid tumors. Tumorigenesis is promoted by the oncogene KRAS, and KRAS mutations are prevalent in patients with PDAC. Therefore, a comprehensive understanding of the interactions between KRAS mutations and PDAC may expediate the development of therapeutic strategies for reversing the progression of malignant tumors. Our study aims at establishing and validating a prediction model of KRAS mutations in patients with PDAC based on survival analysis and mRNA expression. METHODS A total of 184 and 412 patients with PDAC from The Cancer Genome Atlas (TCGA) database and the International Cancer Genome Consortium (ICGC), respectively, were included in the study. RESULTS After tumor mutation profile and copy number variation (CNV) analyses, we established and validated a prediction model of KRAS mutations, based on survival analysis and mRNA expression, that contained seven genes: CSTF2, FAF2, KIF20B, AKR1A1, APOM, KRT6C, and CD70. We confirmed that the model has a good predictive ability for the prognosis of overall survival (OS) in patients with KRAS-mutated PDAC. Then, we analyzed differential biological pathways, especially the ferroptosis pathway, through principal component analysis, pathway enrichment analysis, Gene Ontology (GO) enrichment analysis, and gene set enrichment analysis (GSEA), with which patients were classified into low- or high-risk groups. Pathway enrichment results revealed enrichment in the cytokine-cytokine receptor interaction, metabolism of xenobiotics by cytochrome P450, and viral protein interaction with cytokine and cytokine receptor pathways. Most of the enriched pathways are metabolic pathways predominantly enriched by downregulated genes, suggesting numerous downregulated metabolic pathways in the high-risk group. Subsequent tumor immune infiltration analysis indicated that neutrophil infiltration, resting CD4 memory T cells, and resting natural killer (NK) cells correlated with the risk score. After verifying that the seven gene expression levels in different KRAS-mutated pancreatic cancer cell lines were similar to that in the model, we screened potential drugs related to the risk score. DISCUSSION This study established, analyzed, and validated a model for predicting the prognosis of PDAC based on risk stratification according to KRAS mutations, and identified differential pathways and highly effective drugs.
Collapse
Affiliation(s)
- Fan Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanjie He
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, United States
| | - Nan Ge
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jintao Guo
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Xi S, Ding W, Weng D, Zeng Y, Gao K, Wu Q, Huang G, Li Y, Yue H. Chrysophanol induces apoptosis and ferroptosis of gastric cancer cells by targeted regulation of mTOR. Chem Biol Drug Des 2024; 103:e14417. [PMID: 38230790 DOI: 10.1111/cbdd.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Programmed cell death (PCD) induction is a promising strategy for killing gastric cancer cells. In this study, we investigated the effects of chrysophanol on apoptosis and ferroptosis in gastric cancer cells. Chrysophanol in concentrations ranging from 0 to 100 μM were used to treat GES-1, HGC-27 and AGS cells. Cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine staining, flow cytometry, JC-1 probe insertion, dihydroethidium staining and western blotting were performed. The effects of chrysophanol on gastric cancer cells were evaluated in vivo using a xenograft mouse model. Chrysophanol had no cytotoxic effects on GES-1 cells. Chrysophanol with concentrations higher than 25 μM inhibited gastric cancer cell colony formation and proliferation. Chrysophanol induces gastric cancer cell apoptosis in a dose-dependent manner, accompanied by mitochondrial membrane potential dysfunction and cytochrome c release. Additionally, chrysophanol increased the levels of reactive oxygen species, total iron, and Fe2+ in HGC-27 and AGS cells, in a dose-dependent manner. Treatment of cells with the ferroptosis inhibitor ferrostatin-1 attenuated the effects of chrysophanol on cell survival and the expression of ferroptosis markers SLC7A11 and GPX4. Screening by GEO software indicated that the mTOR signalling pathway is possibly regulated by chrysophanol. Furthermore, mTOR overexpression significantly reversed the inhibitory effects of chrysophanol on gastric cancer cells. In gastric cancer xenograft mouse models, chrysophanol treatment inhibited tumour growth and downregulated SLC7A11 and GPX4. Chrysophanol induces apoptosis and ferroptosis, making it a potential candidate for killing gastric cancer cells. The beneficial effects of chrysophanol may be attribute to the targeted regulation of mTOR.
Collapse
Affiliation(s)
- Sujuan Xi
- Department of Gastroenterology, PLA Naval Medical Center, Shanghai, China
| | - Wei Ding
- Department of Gastroenterology, PLA Naval Medical Center, Shanghai, China
| | - Danping Weng
- Department of Gastroenterology, PLA Naval Medical Center, Shanghai, China
| | - Yue Zeng
- Department of Gastroenterology, PLA Naval Medical Center, Shanghai, China
| | - Kewei Gao
- Department of Gastroenterology, PLA Naval Medical Center, Shanghai, China
| | - Qiuye Wu
- Department of Gastroenterology, PLA Naval Medical Center, Shanghai, China
| | - Guoping Huang
- Department of Gastroenterology, PLA Naval Medical Center, Shanghai, China
| | - Yufang Li
- Department of Gastroenterology, PLA Naval Medical Center, Shanghai, China
| | - Haiyan Yue
- Department of Gastroenterology, PLA Naval Medical Center, Shanghai, China
| |
Collapse
|
9
|
Li W, Li S, Xu G, Man X, Yang T, Zhang Z, Liang H, Yang F. Developing a Ruthenium(III) Complex to Trigger Gasdermin E-Mediated Pyroptosis and an Immune Response Based on Decitabine and Liposomes: Targeting Inhibition of Gastric Tumor Growth and Metastasis. J Med Chem 2023; 66:13072-13085. [PMID: 37702429 DOI: 10.1021/acs.jmedchem.3c01110] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
To develop next-generation metal drugs with high efficiency and low toxicity for targeting inhibition of gastric tumor growth and metastasis, we not only optimized a series of ruthenium (Ru, III) 2-hydroxy-1-naphthaldehyde thiosemicarbazone complexes to obtain a Ru(III) complex (4b) with remarkable cytotoxicity in vitro but also constructed a 4b-decitabine (DCT)/liposome (Lip) delivery system (4b-DCT-Lip). The in vivo results showed that 4b-DCT-Lip not only had a stronger capacity to inhibit gastric tumor growth and metastasis than 4b-DCT but also addressed the co-delivery problems of 4b-DCT and improved their targeting ability. Furthermore, we confirmed the mechanism of 4b-DCT/4b-DCT-Lip inhibiting the growth and metastasis of a gastric tumor. DCT-upregulated gasdermin E (GSDME) was cleaved by 4b-activated caspase-3 to afford GSDME-N terminal and then was aggregated to form nonselective pores on the cell membrane of a gastric tumor, thereby inducing pyroptosis and a pyroptosis-induced immune response.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| |
Collapse
|
10
|
Li L, Guo L, Gao R, Yao M, Qu X, Sun G, Fu Q, Hu C, Han G. Ferroptosis: a new regulatory mechanism in neuropathic pain. Front Aging Neurosci 2023; 15:1206851. [PMID: 37810619 PMCID: PMC10556472 DOI: 10.3389/fnagi.2023.1206851] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain (NP) is pain caused by damage to the somatosensory system. It is a common progressive neurodegenerative disease that usually presents with clinical features such as spontaneous pain, touch-evoked pain, nociceptive hyperalgesia, and sensory abnormalities. Due to the complexity of the mechanism, NP often persists. In addition to the traditionally recognized mechanisms of peripheral nerve damage and central sensitization, excessive iron accumulation, oxidative stress, neuronal inflammation, and lipid peroxidation damage are distinctive features of NP in pathophysiology. However, the mechanisms linking these pathological features to NP are not fully understood. The complexity of the pathogenesis of NP greatly limits the development of therapeutic approaches for NP. Ferroptosis is a novel form of cell death discovered in recent years, in which cell death is usually accompanied by massive iron accumulation and lipid peroxidation. Ferroptosis-inducing factors can affect glutathione peroxidase directly or indirectly through different pathways, leading to decreased antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in cells, ultimately leading to oxidative cell death. It has been shown that ferroptosis is closely related to the pathophysiological process of many neurological disorders such as NP. Possible mechanisms involved are changes in intracellular iron ion levels, alteration of glutamate excitability, and the onset of oxidative stress. However, the functional changes and specific molecular mechanisms of ferroptosis during this process still need to be further explored. How to intervene in the development of NP by regulating cellular ferroptosis has become a hot issue in etiological research and treatment. In this review, we systematically summarize the recent progress of ferroptosis research in NP, to provide a reference for further understanding of its pathogenesis and propose new targets for treatment.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingling Guo
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Gao
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengwen Yao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyu Qu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangwei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuntao Hu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guang Han
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Rabitha R, Shivani S, Showket Y, Sudhandiran G. Ferroptosis regulates key signaling pathways in gastrointestinal tumors: Underlying mechanisms and therapeutic strategies. World J Gastroenterol 2023; 29:2433-2451. [PMID: 37179581 PMCID: PMC10167906 DOI: 10.3748/wjg.v29.i16.2433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Ferroptosis is an emerging novel form of non-apoptotic, regulated cell death that is heavily dependent on iron and characterized by rupture in plasma membrane. Ferroptosis is distinct from other regulated cell death modalities at the biochemical, morphological, and molecular levels. The ferroptotic signature includes high membrane density, cytoplasmic swelling, condensed mitochondrial membrane, and outer mitochondrial rupture with associated features of accumulation of reactive oxygen species and lipid peroxidation. The selenoenzyme glutathione peroxidase 4, a key regulator of ferroptosis, greatly reduces the lipid overload and protects the cell membrane against oxidative damage. Ferroptosis exerts a momentous role in regulating cancer signaling pathways and serves as a therapeutic target in cancers. Dysregulated ferroptosis orchestrates gastrointestinal (GI) cancer signaling pathways leading to GI tumors such as colonic cancer, pancreatic cancer, and hepatocellular carcinoma. Crosstalk exists between ferroptosis and other cell death modalities. While apoptosis and autophagy play a detrimental role in tumor progression, depending upon the factors associated with tumor microenvironment, ferroptosis plays a decisive role in either promoting tumor growth or suppressing it. Several transcription factors, such as TP53, activating transcription factors 3 and 4, are involved in influencing ferroptosis. Importantly, several molecular mediators of ferroptosis, such as p53, nuclear factor erythroid 2-related factor 2/heme oxygenase-1, hypoxia inducible factor 1, and sirtuins, coordinate with ferroptosis in GI cancers. In this review, we elaborated on key molecular mechanisms of ferroptosis and the signaling pathways that connect ferroptosis to GI tumors.
Collapse
Affiliation(s)
- Ravichandiran Rabitha
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Sethuraman Shivani
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Yahya Showket
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Ganapasam Sudhandiran
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
12
|
Yang L, Zhang Y, Zhang Y, Fan Z. Mechanism and application of ferroptosis in colorectal cancer. Biomed Pharmacother 2023; 158:114102. [PMID: 36528917 DOI: 10.1016/j.biopha.2022.114102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world. CRC has high morbidity and mortality rates and it is a serious threat to human health. Ferroptosis is a unique form of iron-dependent oxidative cell death that is usually accompanied by iron accumulation and lipid peroxidation. Ferroptosis has attracted worldwide attention since it was first proposed. It plays an important role in the development of a variety of diseases, such as tumors, ischemia/reperfusion injury, nervous system diseases, and kidney damage, and it may serve as a new therapeutic target. This article reviews the mechanism of ferroptosis and the possibility to target ferroptosis pathways in CRC, providing new ideas for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Liu Yang
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, The Third People's Hospital of Dalian, Dalian, China
| | - Yewei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yingyi Zhang
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, The Third People's Hospital of Dalian, Dalian, China.
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, The Third People's Hospital of Dalian, Dalian, China.
| |
Collapse
|
13
|
Insights on Ferroptosis and Colorectal Cancer: Progress and Updates. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010243. [PMID: 36615434 PMCID: PMC9821926 DOI: 10.3390/molecules28010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Patients with advanced-stage or treatment-resistant colorectal cancer (CRC) benefit less from traditional therapies; hence, new therapeutic strategies may help improve the treatment response and prognosis of these patients. Ferroptosis is an iron-dependent type of regulated cell death characterized by the accumulation of lipid reactive oxygen species (ROS), distinct from other types of regulated cell death. CRC cells, especially those with drug-resistant properties, are characterized by high iron levels and ROS. This indicates that the induction of ferroptosis in these cells may become a new therapeutic approach for CRC, particularly for eradicating CRC resistant to traditional therapies. Recent studies have demonstrated the mechanisms and pathways that trigger or inhibit ferroptosis in CRC, and many regulatory molecules and pathways have been identified. Here, we review the current research progress on the mechanism of ferroptosis, new molecules that mediate ferroptosis, including coding and non-coding RNA; novel inducers and inhibitors of ferroptosis, which are mainly small-molecule compounds; and newly designed nanoparticles that increase the sensitivity of cells to ferroptosis. Finally, the gene signatures and clusters that have predictive value on CRC are summarized.
Collapse
|
14
|
Xia Y, Jin Y, Cui D, Wu X, Song C, Jin W, Huang H. Antitumor Effect of Simvastatin in Combination With DNA Methyltransferase Inhibitor on Gastric Cancer via GSDME-Mediated Pyroptosis. Front Pharmacol 2022; 13:860546. [PMID: 35517821 PMCID: PMC9065610 DOI: 10.3389/fphar.2022.860546] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Gasdermin E (GSDME) is one of the executors of pyroptosis, a type of programmed lytic cell death, which can be triggered by caspase-3 activation upon stimulation. Silenced GSDME expression due to promoter hypermethylation is associated with gastric cancer (GC), which is confirmed in the present study by bioinformatics analysis and methylation-specific PCR (MSP) test of GC cell lines and clinical samples. GC cell lines and mouse xenograft models were used to investigate the pyroptosis-inducing effect of the common cholesterol-depleting, drug simvastatin (SIM), allied with upregulating GSDME expression by doxycycline (DOX)- inducible Tet-on system or DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine (5-Aza-CdR). Cell viability assessment and xenograft tumour growth demonstrated that the tumour inhibition effects of SIM can be enhanced by elevated GSDME expression. Morphological examinations and assays measuring lactate dehydrogenase (LDH) release and caspase-3/GSDME protein cleavage underlined the stimulation of pyroptosis as an important mechanism. Using short hairpin RNA (shRNA) knockdown of caspase-3 or GSDME, and caspase-3-specific inhibitors, we provided evidence of the requirement of caspase-3/GSDME in the pyroptosis process triggered by SIM. We conclude that reactivating GSDME expression and thereby inducing cancer cell-specific pyroptosis could be a potential therapeutic strategy against GC.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yong Jin
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Daxiang Cui
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Wu
- Guizhou Provincial People’s Hospital, Guiyang, China
| | - Cunfeng Song
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Cunfeng Song, ; Weilin Jin, ; Hai Huang,
| | - Weilin Jin
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
- *Correspondence: Cunfeng Song, ; Weilin Jin, ; Hai Huang,
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
- *Correspondence: Cunfeng Song, ; Weilin Jin, ; Hai Huang,
| |
Collapse
|