1
|
Wu KY, Dhaliwal JK, Sasitharan A, Kalevar A. Cell Therapy for Retinal Degenerative Diseases: Progress and Prospects. Pharmaceutics 2024; 16:1299. [PMID: 39458628 PMCID: PMC11510658 DOI: 10.3390/pharmaceutics16101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are leading causes of vision loss, with AMD affecting older populations and RP being a rarer, genetically inherited condition. Both diseases result in progressive retinal degeneration, for which current treatments remain inadequate in advanced stages. This review aims to provide an overview of the retina's anatomy and physiology, elucidate the pathophysiology of AMD and RP, and evaluate emerging cell-based therapies for these conditions. Methods: A comprehensive review of the literature was conducted, focusing on cell therapy approaches, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells. Preclinical and clinical studies were analyzed to assess therapeutic potential, with attention to mechanisms such as cell replacement, neuroprotection, and paracrine effects. Relevant challenges, including ethical concerns and clinical translation, were also explored. Results: Cell-based therapies demonstrate potential for restoring retinal function and slowing disease progression through mechanisms like neuroprotection and cell replacement. Preclinical trials show promising outcomes, but clinical studies face significant hurdles, including challenges in cell delivery and long-term efficacy. Combination therapies integrating gene editing and biomaterials offer potential future advancements. Conclusions: While cell-based therapies for AMD and RP have made significant progress, substantial barriers to clinical application remain. Further research is essential to overcome these obstacles, improve delivery methods, and ensure the safe and effective translation of these therapies into clinical practice.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Jaskarn K. Dhaliwal
- Faculty of Health Sciences, Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Akash Sasitharan
- Faculty of Medicine and Health Sciences, Department of Medicine, McGill University, Montreal, QC H3A 0GA, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| |
Collapse
|
2
|
Bingnan W, Jiao T, Ghorbani A, Baghei S. Enhancing regenerative potential: A comprehensive review of stem cell transplantation for sports-related neuronal injuries, with a focus on spinal cord injuries and peripheral nervous system damage. Tissue Cell 2024; 88:102429. [PMID: 38833939 DOI: 10.1016/j.tice.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Neuronal injuries, as one of the consequences of sports-related incidents, exert a profound influence on the athletes' future, potentially leading to complete immobility and impeding their athletic pursuits. In cases of severe damage inflicted upon the spinal cord (SC) and peripheral nervous systems (PNS), the regenerative process is notably compromised, rendering it essentially inefficient. Among the pivotal therapeutic approaches for the enhancement and prevention of secondary SC injuries (SCI), stem cell transplantation (SCT) stands out prominently. Stem cells, whether directly involved in replacement and reconstruction or indirectly through modification and secretion of crucial bioenvironmental factors, engage in the intricate process of tissue regeneration. Stem cells, through the secretion of neurotrophic factors (NTFs) (aiming to modulate the immune system), reduction of inflammation, axonal growth stimulation, and myelin formation, endeavor to facilitate the regeneration of damaged SC tissue. The fundamental challenges of this approach encompass the proper selection of suitable stem cell candidates for transplantation and the establishment of an appropriate microenvironment conducive to SC repair. In this article, an attempt has been made to explore sports-related injuries, particularly SCI, to comprehensively review innovative methods for treating SCI, and to address the existing challenges. Additionally, some of the stem cells used in neural injuries and the process of their utilization have been discussed.
Collapse
Affiliation(s)
- Wang Bingnan
- Department of P.E, Central South University, Changsha 410083, China
| | - Tong Jiao
- The High School Attached to Hunan Normal University Bocai Experimental Middle School,Changsha 410208, China.
| | - A Ghorbani
- Biotechnology Department, Islamic Azad University, Isfahan, Iran
| | - Sh Baghei
- Biotechnology Department, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
3
|
Zhang K, Cai W, Hu L, Chen S. Generating Retinas through Guided Pluripotent Stem Cell Differentiation and Direct Somatic Cell Reprogramming. Curr Stem Cell Res Ther 2024; 19:1251-1262. [PMID: 37807418 DOI: 10.2174/011574888x255496230923164547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
Retinal degeneration diseases affect millions of people worldwide but are among the most difficult eye diseases to cure. Studying the mechanisms and developing new therapies for these blinding diseases requires researchers to have access to many retinal cells. In recent years there has been substantial advances in the field of biotechnology in generating retinal cells and even tissues in vitro, either through programmed sequential stem cell differentiation or direct somatic cell lineage reprogramming. The resemblance of these in vitro-generated retinal cells to native cells has been increasingly utilized by researchers. With the help of these in vitro retinal models, we now have a better understanding of human retinas and retinal diseases. Furthermore, these in vitro-generated retinal cells can be used as donor cells which solves a major hurdle in the development of cell replacement therapy for retinal degeneration diseases, while providing a promising option for patients suffering from these diseases. In this review, we summarize the development of pluripotent stem cell-to-retinal cell differentiation methods, the recent advances in generating retinal cells through direct somatic cell reprogramming, and the translational applications of retinal cells generated in vitro. Finally, we discuss the limitations of the current protocols and possible future directions for improvement.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Wenwen Cai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| |
Collapse
|
4
|
Ajgaonkar BS, Kumaran A, Kumar S, Jain RD, Dandekar PP. Cell-based Therapies for Corneal and Retinal Disorders. Stem Cell Rev Rep 2023; 19:2650-2682. [PMID: 37704835 DOI: 10.1007/s12015-023-10623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Maintenance of the visual function is the desired outcome of ophthalmologic therapies. The shortcomings of the current treatment options, like partial recovery, post-operation failure, rigorous post-operative care, complications, etc., which are usually encountered with the conventional treatment options has warranted newer treatment options that may eliminate the root cause of diseases and minimize the side effects. Cell therapies, a class of regenerative medicines, have emerged as cutting-edge treatment option. The corneal and retinal dystrophies during the ocular disorders are the major cause of blindness, worldwide. Corneal disorders are mainly categorized mainly into corneal epithelial, stromal, and endothelial disorders. On the other hand, glaucoma, retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, Stargardt Disease, choroideremia, Leber congenital amaurosis are then major retinal degenerative disorders. In this manuscript, we have presented a detailed overview of the development of cell-based therapies, using embryonic stem cells, bone marrow stem cells, mesenchymal stem cells, dental pulp stem cells, induced pluripotent stem cells, limbal stem cells, corneal epithelial, stromal and endothelial, embryonic stem cell-derived differentiated cells (like retinal pigment epithelium or RPE), neural progenitor cells, photoreceptor precursors, and bone marrow-derived hematopoietic stem/progenitor cells etc. The manuscript highlights their efficiency, drawbacks and the strategies that have been explored to regain visual function in the preclinical and clinical state associated with them which can be considered for their potential application in the development of treatment.
Collapse
Affiliation(s)
- Bhargavi Suryakant Ajgaonkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Akash Kumaran
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Salil Kumar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Ratnesh D Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Prajakta P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
5
|
Chen L, Yang J, Klassen H. Immune Responses to Sequential Binocular Transplantation of Allogeneic Retinal Progenitor Cells to the Vitreous Cavity in Mice. Int J Mol Sci 2023; 24:ijms24076205. [PMID: 37047179 PMCID: PMC10093920 DOI: 10.3390/ijms24076205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Intravitreal transplantation of allogeneic human retinal progenitor cells (hRPCs) holds promise as a treatment for blinding retinal degenerations. Prior work has shown that neural progenitors are well-tolerated as allografts following single injections; however, sequential delivery of allogeneic cells raises the potential risk of host sensitization with subsequent immune rejection of grafts. The current study was designed to assess whether an immune response would be induced by repeated intravitreal transplants of allogeneic RPCs utilizing the mouse animal model. We injected murine retinal progenitor cells (gmRPCs), originally derived from donors with a C57BL/6 genetic background, into BALB/c recipient mice in order to provide safety data as to what might be expected following repeated treatment of patients with allogeneic human cell product. Immune responses to gmRPCs were mild, consisting of T cells, B cells, neutrophils, and natural killer cells, with macrophages clearly the predominating. Animals treated with repeat doses of gmRPCs did not show evidence of sensitization, nor was there immune-mediated destruction of the grafts. Despite the absence of immunosuppressive treatments, allogeneic gmRPC grafts survived following repeat dosing, thus providing support for the preliminary observation that repeated injection of allogeneic RPCs to the vitreous cavity is tolerated in patients with retinitis pigmentosa.
Collapse
|
6
|
Grigoryan EN. Cell Sources for Retinal Regeneration: Implication for Data Translation in Biomedicine of the Eye. Cells 2022; 11:cells11233755. [PMID: 36497013 PMCID: PMC9738527 DOI: 10.3390/cells11233755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The main degenerative diseases of the retina include macular degeneration, proliferative vitreoretinopathy, retinitis pigmentosa, and glaucoma. Novel approaches for treating retinal diseases are based on cell replacement therapy using a variety of exogenous stem cells. An alternative and complementary approach is the potential use of retinal regeneration cell sources (RRCSs) containing retinal pigment epithelium, ciliary body, Müller glia, and retinal ciliary region. RRCSs in lower vertebrates in vivo and in mammals mostly in vitro are able to proliferate and exhibit gene expression and epigenetic characteristics typical for neural/retinal cell progenitors. Here, we review research on the factors controlling the RRCSs' properties, such as the cell microenvironment, growth factors, cytokines, hormones, etc., that determine the regenerative responses and alterations underlying the RRCS-associated pathologies. We also discuss how the current data on molecular features and regulatory mechanisms of RRCSs could be translated in retinal biomedicine with a special focus on (1) attempts to obtain retinal neurons de novo both in vivo and in vitro to replace damaged retinal cells; and (2) investigations of the key molecular networks stimulating regenerative responses and preventing RRCS-related pathologies.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Seah I, Ong C, Liu Z, Su X. Polymeric biomaterials in the treatment of posterior segment diseases. Front Med (Lausanne) 2022; 9:949543. [PMID: 36059842 PMCID: PMC9433984 DOI: 10.3389/fmed.2022.949543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Polymeric biomaterials are biological or synthetic substances which can be engineered to interact with biological systems for the diagnosis or treatment of diseases. These biomaterials have immense potential for treating eyes diseases, particularly the retina—a site of many inherited and acquired diseases. Polymeric biomaterials can be engineered to function both as an endotamponade agent and to prevent intraocular scarring in retinal detachment repair surgeries. They can also be designed as a drug delivery platform for treatment of retinal diseases. Finally, they can be used as scaffolds for cellular products and provide non-viral gene delivery solutions to the retina. This perspective article explains the role of polymeric biomaterials in the treatment of retinal conditions by highlighting recent advances being translated to clinical practice. The article will also identify potential hurdles to clinical translation as future research directions in the field.
Collapse
Affiliation(s)
- Ivan Seah
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Charles Ong
- Singapore National Eye Centre (SNEC), Singapore, Singapore
| | - Zengping Liu
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
| | - Xinyi Su
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
- *Correspondence: Xinyi Su
| |
Collapse
|
8
|
Mut SR, Mishra S, Vazquez M. A Microfluidic Eye Facsimile System to Examine the Migration of Stem-like Cells. MICROMACHINES 2022; 13:mi13030406. [PMID: 35334698 PMCID: PMC8954941 DOI: 10.3390/mi13030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023]
Abstract
Millions of adults are affected by progressive vision loss worldwide. The rising incidence of retinal diseases can be attributed to damage or degeneration of neurons that convert light into electrical signals for vision. Contemporary cell replacement therapies have transplanted stem and progenitor-like cells (SCs) into adult retinal tissue to replace damaged neurons and restore the visual neural network. However, the inability of SCs to migrate to targeted areas remains a fundamental challenge. Current bioengineering projects aim to integrate microfluidic technologies with organotypic cultures to examine SC behaviors within biomimetic environments. The application of neural phantoms, or eye facsimiles, in such systems will greatly aid the study of SC migratory behaviors in 3D. This project developed a bioengineering system, called the μ-Eye, to stimulate and examine the migration of retinal SCs within eye facsimiles using external chemical and electrical stimuli. Results illustrate that the imposed fields stimulated large, directional SC migration into eye facsimiles, and that electro-chemotactic stimuli produced significantly larger increases in cell migration than the individual stimuli combined. These findings highlight the significance of microfluidic systems in the development of approaches that apply external fields for neural repair and promote migration-targeted strategies for retinal cell replacement therapy.
Collapse
Affiliation(s)
- Stephen Ryan Mut
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ 08854, USA;
| | - Shawn Mishra
- Regeneron, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA;
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ 08854, USA;
- Correspondence:
| |
Collapse
|