1
|
Ekrani ST, Mahmoudi M, Haghmorad D, Kheder RK, Hatami A, Esmaeili SA. Manipulated mesenchymal stem cell therapy in the treatment of Parkinson's disease. Stem Cell Res Ther 2024; 15:476. [PMID: 39696636 DOI: 10.1186/s13287-024-04073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Mesenchymal stem cell (MSC) therapy has been considered a promising approach for the treatment of Parkinson's disease (PD) for several years. PD is a globally prevalent neurodegenerative disease characterized by the accumulation of Lewy bodies and the loss of dopaminergic neurons, leading to severe motor and non-motor complications in patients. As current treatments are unable to halt the progression of neuronal loss and dopamine degradation, MSC therapy has emerged as a highly promising strategy for PD treatment. This promise is due to MSCs' unique properties compared to other types of stem cells, including self-renewal, differentiation potential, immune privilege, secretion of neurotrophic factors, ability to improve damaged tissue, modulation of the immune system, and lack of ethical concerns. MSCs have been employed in numerous pre-clinical and clinical studies for PD treatment with promising results. However, certain aspects of their efficacy in treating PD may benefit from various genetic and epigenetic modifications. In this review article, we assess these approaches to improving MSCs for specialized treatment of PD.
Collapse
Affiliation(s)
- Seyedeh Toktam Ekrani
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Alireza Hatami
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Lee GB, Park SM, Jung UJ, Kim SR. The Potential of Mesenchymal Stem Cells in Treating Spinocerebellar Ataxia: Advances and Future Directions. Biomedicines 2024; 12:2507. [PMID: 39595073 PMCID: PMC11591855 DOI: 10.3390/biomedicines12112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous disorder characterized by impaired balance and coordination caused by cerebellar dysfunction. The absence of treatments approved by the U.S. Food and Drug Administration for SCA has driven the investigation of alternative therapeutic strategies, including stem cell therapy. Mesenchymal stem cells (MSCs), known for their multipotent capabilities, have demonstrated significant potential in treating SCA. This review examines how MSCs may promote neuronal growth, enhance synaptic connectivity, and modulate brain inflammation. Recent findings from preclinical and clinical studies are also reviewed, emphasizing the promise of MSC therapy in addressing the unmet needs of SCA patients. Furthermore, ongoing clinical trials and future directions are proposed to address the limitations of the current approaches.
Collapse
Affiliation(s)
- Gi Beom Lee
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Se Min Park
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
3
|
Liu X, Shen L, Wan M, Xie H, Wang Z. Peripheral extracellular vesicles in neurodegeneration: pathogenic influencers and therapeutic vehicles. J Nanobiotechnology 2024; 22:170. [PMID: 38610012 PMCID: PMC11015679 DOI: 10.1186/s12951-024-02428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis epitomize a class of insidious and relentless neurological conditions that are difficult to cure. Conventional therapeutic regimens often fail due to the late onset of symptoms, which occurs well after irreversible neurodegeneration has begun. The integrity of the blood-brain barrier (BBB) further impedes efficacious drug delivery to the central nervous system, presenting a formidable challenge in the pharmacological treatment of NDDs. Recent scientific inquiries have shifted focus toward the peripheral biological systems, investigating their influence on central neuropathology through the lens of extracellular vesicles (EVs). These vesicles, distinguished by their ability to breach the BBB, are emerging as dual operatives in the context of NDDs, both as conveyors of pathogenic entities and as prospective vectors for therapeutic agents. This review critically summarizes the burgeoning evidence on the role of extracerebral EVs, particularly those originating from bone, adipose tissue, and gut microbiota, in modulating brain pathophysiology. It underscores the duplicity potential of peripheral EVs as modulators of disease progression and suggests their potential as novel vehicles for targeted therapeutic delivery, positing a transformative impact on the future landscape of NDD treatment strategies. Search strategy A comprehensive literature search was conducted using PubMed, Web of Science, and Scopus from January 2000 to December 2023. The search combined the following terms using Boolean operators: "neurodegenerative disease" OR "Alzheimer's disease" OR "Parkinson's disease" OR "Amyotrophic lateral sclerosis" AND "extracellular vesicles" OR "exosomes" OR "outer membrane vesicles" AND "drug delivery systems" AND "blood-brain barrier". MeSH terms were employed when searching PubMed to refine the results. Studies were included if they were published in English, involved human subjects, and focused on the peripheral origins of EVs, specifically from bone, adipose tissue, and gut microbiota, and their association with related diseases such as osteoporosis, metabolic syndrome, and gut dysbiosis. Articles were excluded if they did not address the role of EVs in the context of NDDs or did not discuss therapeutic applications. The titles and abstracts of retrieved articles were screened using a dual-review process to ensure relevance and accuracy. The reference lists of selected articles were also examined to identify additional relevant studies.
Collapse
Affiliation(s)
- Xixi Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, Hunan, 410008, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| |
Collapse
|
4
|
Yuan L, Huang W, Bi Y, Chen S, Wang X, Li T, Wei P, Du J, Zhao L, Liu B, Yang Y. G-CSF-mobilized peripheral blood mononuclear cells combined with platelet-rich plasma restored the ovarian function of aged rats. J Reprod Immunol 2023; 158:103953. [PMID: 37209460 DOI: 10.1016/j.jri.2023.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Regenerative medicine with peripheral blood mononuclear cell (PBMC) transplantation sheds light on the issue of premature ovarian insufficiency (POI). However, the efficiency of PBMC treatment in natural ovarian aging (NOA) remains unclear. METHODS Thirteen-month-old female Sprague-Dawley (SD) rats were used to verify the NOA model. Seventy-two NOA rats were randomly divided into three groups: the NOA control group, PBMC group, and PBMC+platelet-rich plasma (PRP) group. PBMCs and PRP were transplanted by intraovarian injection. The effects on ovarian function and fertility were measured after transplantation. RESULTS Transplantation of PBMCs could restore the normal estrous cycle, consistent with the recovery of serum sex hormone levels, increased follicle numbers at all stages, and restoration of fertility by facilitating pregnancy and live birth. Moreover, when combined with PRP injection, these effects were more significant. The male-specific SRY gene was detected in the ovary at all four time points, suggesting that PBMCs continuously survived and functioned in NOA rats. In addition, after PBMC treatment, the expression of angiogenesis-related and glycolysis-related markers in the ovaries was upregulated, which indicated that these effects were associated with angiogenesis and glycolysis. CONCLUSIONS PBMC transplantation restores the ovarian functions and fertility of NOA rats, and PRP could enhance the efficiency. Increased ovarian vascularization, follicle production, and glycolysis are likely the major mechanisms.
Collapse
Affiliation(s)
- Lifang Yuan
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Weiyu Huang
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yin Bi
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Saiqiong Chen
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Xi Wang
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ting Li
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Peiru Wei
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiebing Du
- Guangxi Maternal and Child Healthcare Hospital, Nanning, Guangxi 530002, China
| | - Ling Zhao
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bo Liu
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Yihua Yang
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
5
|
Unnisa A, Dua K, Kamal MA. Mechanism of Mesenchymal Stem Cells as a Multitarget Disease- Modifying Therapy for Parkinson's Disease. Curr Neuropharmacol 2023; 21:988-1000. [PMID: 35339180 PMCID: PMC10227913 DOI: 10.2174/1570159x20666220327212414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/10/2022] [Accepted: 03/12/2022] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders, affecting the basal nuclei, causing impairment of motor and cognitive functions. Loss of dopaminergic (DAergic) neurons or their degeneration and the aggregation of Lewy bodies is the hallmark of this disease. The medications used to treat PD relieve the symptoms and maintain quality of life, but currently, there is no cure. There is a need for the development of therapies that can cease or perhaps reverse neurodegeneration effectively. With the rapid advancements in cell replacement therapy techniques, medical professionals are trying to find a cure by which restoration of dopamine neurotransmitters can occur. Researchers have started focusing on cell-based therapies using mesenchymal stem cells (MSCs) due to their abundance in the body, the ability of proliferation, and immunomodulation. Here we review the MSC-based treatment in Parkinson's disease and the various mechanisms it repairs DAergic neurons in parkinsonian patients.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Kingdom Saudi Arabia
| | - Kamal Dua
- Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
6
|
Heris RM, Shirvaliloo M, Abbaspour-Aghdam S, Hazrati A, Shariati A, Youshanlouei HR, Niaragh FJ, Valizadeh H, Ahmadi M. The potential use of mesenchymal stem cells and their exosomes in Parkinson's disease treatment. Stem Cell Res Ther 2022; 13:371. [PMID: 35902981 PMCID: PMC9331055 DOI: 10.1186/s13287-022-03050-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/17/2022] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most predominant neurodegenerative disease worldwide. It is recognized clinically by severe complications in motor function caused by progressive degeneration of dopaminergic neurons (DAn) and dopamine depletion. As the current standard of treatment is focused on alleviating symptoms through Levodopa, developing neuroprotective techniques is critical for adopting a more pathology-oriented therapeutic approach. Regenerative cell therapy has provided us with an unrivalled platform for evaluating potentially effective novel methods for treating neurodegenerative illnesses over the last two decades. Mesenchymal stem cells (MSCs) are most promising, as they can differentiate into dopaminergic neurons and produce neurotrophic substances. The precise process by which stem cells repair neuronal injury is unknown, and MSC-derived exosomes are suggested to be responsible for a significant portion of such effects. The present review discusses the application of mesenchymal stem cells and MSC-derived exosomes in PD treatment.
Collapse
Affiliation(s)
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Shariati
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Mukai T, Sei K, Nagamura-Inoue T. Mesenchymal Stromal Cells Perspective: New Potential Therapeutic for the Treatment of Neurological Diseases. Pharmaceutics 2021; 13:pharmaceutics13081159. [PMID: 34452120 PMCID: PMC8401282 DOI: 10.3390/pharmaceutics13081159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Several studies have shown that mesenchymal stromal/stem cells (MSCs) exert their neuroprotective and neurorestorative efficacy via the secretion of neurotrophic factors. Based on these studies, many clinical trials using MSCs for the treatment of neurological disorders have been conducted, and results regarding their feasibility and efficacy have been reported. The present review aims to highlight the characteristics and basic research regarding the role of MSCs in neurological disease and to discuss the recent progress in clinical trials using MSCs to treat various neurological disorders.
Collapse
Affiliation(s)
- Takeo Mukai
- Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; (K.S.); (T.N.-I.)
- Correspondence: ; Tel.: +81-3-3815-5411; Fax: 81-3-5449-5452
| | - Kenshi Sei
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; (K.S.); (T.N.-I.)
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; (K.S.); (T.N.-I.)
| |
Collapse
|
8
|
Beard K, Meaney DF, Issadore D. Clinical Applications of Extracellular Vesicles in the Diagnosis and Treatment of Traumatic Brain Injury. J Neurotrauma 2020; 37:2045-2056. [PMID: 32312151 PMCID: PMC7502684 DOI: 10.1089/neu.2020.6990] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have emerged as key mediators of cell-cell communication during homeostasis and in pathology. Central nervous system (CNS)-derived EVs contain cell type-specific surface markers and intralumenal protein, RNA, DNA, and metabolite cargo that can be used to assess the biochemical and molecular state of neurons and glia during neurological injury and disease. The development of EV isolation strategies coupled with analysis of multi-plexed biomarker and clinical data have the potential to improve our ability to classify and treat traumatic brain injury (TBI) and resulting sequelae. Additionally, their ability to cross the blood-brain barrier (BBB) has implications for both EV-based diagnostic strategies and for potential EV-based therapeutics. In the present review, we discuss encouraging data for EV-based diagnostic, prognostic, and therapeutic strategies in the context of TBI monitoring and management.
Collapse
Affiliation(s)
- Kryshawna Beard
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Huang Q, Liu B, Jiang R, Liao S, Wei Z, Bi Y, Liu X, Deng R, Jin Y, Tan Y, Yang Y, Qin A. G-CSF-mobilized peripheral blood mononuclear cells combined with platelet-rich plasma accelerate restoration of ovarian function in cyclophosphamide-induced POI rats†. Biol Reprod 2020; 101:91-101. [PMID: 31034039 DOI: 10.1093/biolre/ioz077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/21/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) are rich in hematopoietic cells and mesenchymal stem cells. Platelet-rich plasma (PRP) is rich in various growth factors. PBMCs and PRP have been suggested, individually, to restore ovarian function by improving the local microenvironment. The current study investigated the effect of granulocyte colony-stimulating factor (G-CSF)-mobilized PBMCs combined with PRP on restoring ovarian function in rats with primary ovarian insufficiency (POI). Thirty adult female rats were randomly subdivided into five groups: normal control (control), cyclophosphamide (CTX) plus subsequent PBS (POI + PBS), CTX plus subsequent PRP (POI + PRP), CTX plus subsequent G-CSF-mobilized PBMCs (POI + PBMCs), and CTX plus subsequent G-CSF-mobilized PBMCs combined with PRP (POI + PBMCs + PRP). CTX exposure induced the typical POI phenotype with increased diestrus; shortened estrus; follicle arrest at all stages; decreased serum levels of estradiol-17β (E2) and anti-Mullerian hormone (AMH); and increased levels of follicle-stimulating hormone (FSH). Transplantation of mobilized PBMCs with PRP resulted in a much earlier restoration of the estrous cycle, sex hormone levels, and preantral follicle growth in POI rats. Expression of the male-specific Sry gene in the ovarian tissues of POI + PBMCs + PRP female recipient rats was evident at 5, 10, and 20 days posttransplantation along with significant increases in the expression of angiogenesis markers CD34+ and VEGF and folliculogenesis markers AMH and FSHR. Additionally, PBMCs in combination with PRP mitigated granulosa cell apoptosis by downregulating BAX and upregulating BCL-2. These results demonstrate that G-CSF-mobilized PBMCs combined with PRP accelerate the restoration of ovarian function in POI rats by increasing ovarian neovascularization, reducing granulosa cell apoptosis, and promoting folliculogenesis.
Collapse
Affiliation(s)
- Qiuyan Huang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bo Liu
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rufang Jiang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shengbin Liao
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiyao Wei
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yin Bi
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xueyuan Liu
- Center of Reproductive Medicine, The Guangxi Zhuang Autonomous Region Family Planning Research Center, Nanning, Guangxi, China
| | - Rong Deng
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yufu Jin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ying Tan
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yihua Yang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Aiping Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Chowdhury SR, Lu HP. Spontaneous Rupture and Entanglement of Human Neuronal Tau Protein Induced by Piconewton Compressive Force. ACS Chem Neurosci 2019; 10:4061-4067. [PMID: 31423763 DOI: 10.1021/acschemneuro.9b00295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mechanical force vector fluctuations in living cells can have a significant impact on protein behavior and functions. Here we report that a human tau protein tertiary structure can abruptly and spontaneously rupture, like a balloon, under biologically available piconewton compressive force, using a home-modified atomic force microscopy single-molecule manipulation. The rupture behavior is dependent on the physiological level of presence of ions, such as K+ and Mg2+. We observed rupture events in the presence of K+ but not in the presence of Mg2+ ions. We have also explored the entangled protein state formed following the events of the multiple and simultaneous protein ruptures under crowding. Crowded proteins simultaneously rupture and then spontaneously refold to an entangled folding state, different from either folded and unfolded states of the tau protein, which can be a plausible pathway for the tau protein aggregation that is related to a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- S. Roy Chowdhury
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - H. Peter Lu
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
11
|
Cucarián JD, Berrío JP, Rodrigues C, Zancan M, Wink MR, de Oliveira A. Physical exercise and human adipose-derived mesenchymal stem cells ameliorate motor disturbances in a male rat model of Parkinson's disease. J Neurosci Res 2019; 97:1095-1109. [PMID: 31119788 DOI: 10.1002/jnr.24442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD) is a disabling and highly costly neurodegenerative condition with worldwide prevalence. Despite advances in treatments that slow progression and minimize locomotor impairments, its clinical management is still a challenge. Previous preclinical studies, using mesenchymal stem cell (MSC) transplantation and isolated physical exercise (EX), reported beneficial results for treatment of PD. Therefore, this experimental randomized study aimed to elucidate the therapeutic potential of combined therapy using adipose-derived human MSCs (ADSCs) grafted into the striatum in conjunction with aerobic treadmill training, specifically in terms of locomotor performance in a unilateral PD rat model induced by 6-hydroxydopamine (6-OHDA). Forty-one male Wistar rats were categorized into five groups in accordance with the type of treatment to which they were subjected (Sham, 6-OHDA - injury, 6-OHDA + exercise, 6-OHDA + cells, and 6-OHDA + combined). Subsequently, dopaminergic depletion was assessed by the methylphenidate challenge and the specified therapeutic intervention was conducted in each group. The foot fault task was performed at the end of the experiment to serve as an assessment of motor skills. The results showed that despite disturbances in motor balance and coordination, locomotor dysfunction was ameliorated in all treatment categories in comparison to the injury group (sign test, p < 0.001, effect size: 0.71). The exercise alone and combined groups were the categories that exhibited the best recovery in terms of movement performance (p < 0.001). Overall, this study confirms that exercise is a powerful option to improve motor function and a promising adjuvant intervention for stem cell transplantation in the treatment of PD motor symptoms. OPEN PRACTICES: This article has been awarded Open Data. All materials and data are publicly accessible at https://figshare.com/s/18a543c101a17a1d5560. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Collapse
Affiliation(s)
- Jaison D Cucarián
- Graduate Course in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Jenny P Berrío
- Graduate Course in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Cristiano Rodrigues
- Cell Biology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Mariana Zancan
- Graduate Course in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Márcia R Wink
- Cell Biology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Alcyr de Oliveira
- Graduate Course in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.,Graduate Course in Psychology and Health, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
12
|
Lo Furno D, Mannino G, Giuffrida R. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol 2017; 233:3982-3999. [PMID: 28926091 DOI: 10.1002/jcp.26192] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into not only cells of mesodermal lineages, but also into endodermal and ectodermal derived elements, including neurons and glial cells. For this reason, MSCs have been extensively investigated to develop cell-based therapeutic strategies, especially in pathologies whose pharmacological treatments give poor results, if any. As in the case of irreversible neurological disorders characterized by progressive neuronal death, in which behavioral and cognitive functions of patients inexorably decline as the disease progresses. In this review, we focus on the possible functional role exerted by MSCs in the treatment of some disabling neurodegenerative disorders such as Alzheimer's Disease, Amyotrophic Lateral Sclerosis, Huntington's Disease, and Parkinson's Disease. Investigations have been mainly performed in vitro and in animal models by using MSCs generally originated from umbilical cord, bone marrow, or adipose tissue. Positive results obtained have prompted several clinical trials, the number of which is progressively increasing worldwide. To date, many of them have been primarily addressed to verify the safety of the procedures but some improvements have already been reported, fortunately. Although the exact mechanisms of MSC-induced beneficial activities are not entirely defined, they include neurogenesis and angiogenesis stimulation, antiapoptotic, immunomodulatory, and anti-inflammatory actions. Most effects would be exerted through their paracrine expression of neurotrophic factors and cytokines, mainly delivered at damaged regions, given the innate propensity of MSCs to home to injured sites. Hopefully, in the near future more efficacious cell-replacement therapies will be developed to substantially restore disease-disrupted brain circuitry.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Parga JA, García-Garrote M, Martínez S, Raya Á, Labandeira-García JL, Rodríguez-Pallares J. Prostaglandin EP2 Receptors Mediate Mesenchymal Stromal Cell-Neuroprotective Effects on Dopaminergic Neurons. Mol Neurobiol 2017; 55:4763-4776. [DOI: 10.1007/s12035-017-0681-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022]
|
14
|
Combining NT3-overexpressing MSCs and PLGA microcarriers for brain tissue engineering: A potential tool for treatment of Parkinson's disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:934-943. [PMID: 28482609 DOI: 10.1016/j.msec.2017.02.178] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/03/2017] [Accepted: 02/28/2017] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that characterized by destruction of substantia nigrostriatal pathway due to the loss of dopaminergic (DA) neurons. Regardless of substantial efforts for treatment of PD in recent years, an effective therapeutic strategy is still missing. In a multidisciplinary approach, bone marrow derived mesenchymal stem cells (BMSCs) are genetically engineered to overexpress neurotrophin-3 (nt-3 gene) that protect central nervous system tissues and stimulates neuronal-like differentiation of BMSCs. Poly(lactic-co-glycolic acid) (PLGA) microcarriers are designed as an injectable scaffold and synthesized via double emulsion method. The surface of PLGA microcarriers are functionalized by collagen as a bioadhesive agent for improved cell attachment. The results demonstrate effective overexpression of NT-3. The expression of tyrosine hydroxylase (TH) in transfected BMSCs reveal that NT-3 promotes the intracellular signaling pathway of DA neuron differentiation. It is also shown that transfected BMSCs are successfully attached to the surface of microcarriers. The presence of dopamine in peripheral media of cell/microcarrier complex reveals that BMSCs are successfully differentiated into dopaminergic neuron. Our approach that sustains presence of growth factor can be suggested as a novel complementary therapeutic strategy for treatment of Parkinson disease.
Collapse
|
15
|
Badawi GA, Abd El Fattah MA, Zaki HF, El Sayed MI. Sitagliptin and liraglutide reversed nigrostriatal degeneration of rodent brain in rotenone-induced Parkinson’s disease. Inflammopharmacology 2017; 25:369-382. [DOI: 10.1007/s10787-017-0331-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/19/2017] [Indexed: 10/20/2022]
|