1
|
Peng F, Chen X, Wu L, He J, Li Z, Hong Q, Zhao Q, Qian M, Wang X, Shen W, Qi T, Huang Y, Cai G, Zhang C, Chen X. Nitric oxide-primed engineered extracellular vesicles restore bioenergetics in acute kidney injury via mitochondrial transfer. Theranostics 2025; 15:5499-5517. [PMID: 40303326 PMCID: PMC12036870 DOI: 10.7150/thno.113741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/18/2025] [Indexed: 05/02/2025] Open
Abstract
Background: The disruption of mitochondrial homeostasis in acute kidney injury (AKI) is an important factor that drives persistent renal dysfunction. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have shown great therapeutic potential in AKI, but insufficient specificity of targeting the impaired mitochondrial function. Herein, we developed an engineered nitric oxide (NO)-primed MSC-EVs (pEVs) to restore mitochondrial homeostasis for AKI therapy. Methods: A cisplatin-induced AKI model was established to investigate the therapeutic effects of MSC-EVs. Proteomic and Western blot analyses compared mitochondrial cargos and functional assays included mitochondrial complex I activity and Adenosine triphosphate (ATP) quantification. Mitochondrial transfer was tracked using flow cytometry and confocal imaging. Mitochondrial dynamics, oxidative stress, and apoptosis were evaluated through ATP measurement, western blotting and rotenone-mediated respiratory chain inhibition. Results: Our data indicated that pEVs outperformed cEVs in restoring renal function and histopathology. Additionally, a reduction in mitochondria-associated oxidative stress and cell death was observed. Proteomic profiling revealed that NO priming enriched pEVs with mitochondrial complex I components, which directly enhanced their bioenergetic capacity, as evidenced by higher mitochondrial complex I activity and elevated ATP production compared to cEVs. In vivo tracking confirmed targeted delivery of pEV-derived mitochondrial contents to renal tubular cells, reducing mitochondrial reactive oxygen species (ROS) and restoring mitochondrial mass. Crucially, mitochondria-depleted pEVs abolished these therapeutic effects, establishing mitochondrial cargos as the primary therapeutic driver. Furthermore, pEVs activated a pro-survival cascade in recipient cells, showing superior efficacy in promoting mitochondrial biogenesis, dynamics, and mitophagy, thereby restoring renal mitochondrial homeostasis. Conclusion: Our study elucidated a mitochondria-targeted therapeutic strategy enabled by engineered EVs that deliver functional cargo to restore mitochondrial homeostasis. These advances provide transformative potential for AKI and other mitochondrial disorders.
Collapse
Affiliation(s)
- Fei Peng
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xiaoniao Chen
- Department of Ophthalmology, Third Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Jiayi He
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Qiang Zhao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Qian
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Tingting Qi
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Yiyu Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Chuyue Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Department of Nephrology and Institute of Kidney Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangmei Chen
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| |
Collapse
|
2
|
Zhang X, Chen Z, Xiong Y, Zhou Q, Zhu LQ, Liu D. The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia. Neural Regen Res 2025; 20:402-415. [PMID: 38819044 PMCID: PMC11317957 DOI: 10.4103/nrr.nrr-d-23-01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024] Open
Abstract
With an increase in global aging, the number of people affected by cerebrovascular diseases is also increasing, and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate. However, few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients. Similarly in Alzheimer's disease and other neurological disorders, synaptic dysfunction is recognized as the main reason for cognitive decline. Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system. Recently, nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia. This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction, neuroinflammation, oxidative stress, and blood-brain barrier dysfunction that underlie the progress of vascular dementia. Additionally, we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiangxi Province, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Qin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Kots AY, Bian K. Regulation and Pharmacology of the Cyclic GMP and Nitric Oxide Pathway in Embryonic and Adult Stem Cells. Cells 2024; 13:2008. [PMID: 39682756 PMCID: PMC11639989 DOI: 10.3390/cells13232008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review summarizes recent advances in understanding the role of the nitric oxide (NO) and cyclic GMP (cGMP) pathway in stem cells. The levels of expression of various components of the pathway are changed during the differentiation of pluripotent embryonic stem cells. In undifferentiated stem cells, NO regulates self-renewal and survival predominantly through cGMP-independent mechanisms. Natriuretic peptides influence the growth of undifferentiated stem cells by activating particulate isoforms of guanylyl cyclases in a cGMP-mediated manner. The differentiation, recruitment, survival, migration, and homing of partially differentiated precursor cells of various types are sensitive to regulation by endogenous levels of NO and natriuretic peptides produced by stem cells, within surrounding tissues, and by the application of various pharmacological agents known to influence the cGMP pathway. Numerous drugs and formulations target various components of the cGMP pathway to influence the therapeutic efficacy of stem cell-based therapies. Thus, pharmacological manipulation of the cGMP pathway in stem cells can be potentially used to develop novel strategies in regenerative medicine.
Collapse
Affiliation(s)
- Alexander Y. Kots
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| | | |
Collapse
|
4
|
Song HH, Choi H, Kim S, Kim HG, An S, Kim S, Jang H. Nitrogen-doped carbon quantum dot regulates cell proliferation and differentiation by endoplasmic reticulum stress. Anim Cells Syst (Seoul) 2024; 28:481-494. [PMID: 39364144 PMCID: PMC11448352 DOI: 10.1080/19768354.2024.2409452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 10/05/2024] Open
Abstract
Quantum dots have diverse biomedical applications, from constructing biological infrastructures like medical imaging to advancing pharmaceutical research. However, concerns about human health arise due to the toxic potential of quantum dots based on heavy metals. Therefore, research on quantum dots has predominantly focused on oxidative stress, cell death, and other broader bodily toxicities. This study investigated the toxicity and cellular responses of mouse embryonic stem cells (mESCs) and mouse adult stem cells (mASCs) to nitrogen-doped carbon quantum dots (NCQDs) made of non-metallic materials. Cells were exposed to NCQDs, and we utilized a fluorescent ubiquitination-based cell system to verify whether NCQDs induce cytotoxicity. Furthermore, we validated the differentiation-inducing impact of NCQDs by utilizing embryonic stem cells equipped with the Oct4 enhancer-GFP reporter system. By analyzing gene expression including Crebzf, Chop, and ATF6, we also observed that NCQDs robustly elicited endoplasmic reticulum (ER) stress. We confirmed that NCQDs induced cytotoxicity and abnormal differentiation. Interestingly, we also confirmed that low concentrations of NCQDs stimulated cell proliferation in both mESCs and mASCs. In conclusion, NCQDs modulate cell death, proliferation, and differentiation in a concentration-dependent manner. Indiscriminate biological applications of NCQDs have the potential to cause cancer development by affecting normal cell division or to fail to induce normal differentiation by affecting embryonic development during pregnancy. Therefore, we propose that future biomedical applications of NCQDs necessitate comprehensive and diverse biological studies.
Collapse
Affiliation(s)
- Hyun Hee Song
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyunwoo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Seonghan Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hwan Gyu Kim
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangmin An
- Department of Physics, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sejung Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hoon Jang
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
- Quantabiom Co., Ltd., Jeonju, Republic of Korea
| |
Collapse
|
5
|
Khaledi F, Dehkordi HT, Zarean E, Shahrani M, Amini-Khoei H. Possible role of NO/NMDA pathway in the autistic-like behaviors induced by maternal separation stress in mice. PLoS One 2023; 18:e0292631. [PMID: 37815997 PMCID: PMC10564128 DOI: 10.1371/journal.pone.0292631] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Maternal separation (MS) stress is an established model of early-life stress associated with autistic-like behaviors. Altered glutamatergic and nitrergic neurotransmissions may contribute to the pathophysiology of ASD. However, the specific mechanisms underlying these alterations and their relationship to MS-induced autistic-like behaviors remain unclear. Addressing this knowledge gap, this study aims to elucidate the involvement of the nitric oxide (NO)/ N-methyl-D-aspartate (NMDA) pathway in MS-induced autistic-like behaviors in mice. This knowledge has the potential to guide future research, potentially leading to the development of targeted interventions or treatments aimed at modulating the NO/NMDA pathway to ameliorate ASD symptoms. Ninety male Naval Medical Research Institute (NMRI) mice were assigned to six groups (n = 15) comprising a control group (treated with saline) and five groups subjected to MS and treated with saline, ketamine, NMDA, L-NAME, and L-arginine. Behavioral tests were conducted, including the three-chamber test, shuttle box, elevated plus-maze, and marble burying test. Gene expression of iNOS, nNOS, and NMDA-R subunits (NR2A and NR2B), along with nitrite levels, was evaluated in the hippocampus. The findings demonstrated that MS induced autistic-like behaviors, accompanied by increased gene expression of iNOS, nNOS, NR2B, NR2A, and elevated nitrite levels in the hippocampus. Modulation of the NO/NMDA pathway with activators and inhibitors altered the effects of MS. These results suggest that the NO/NMDA pathway plays a role in mediating the negative effects of MS and potentially contributes to the development of autistic-like behaviors in maternally separated mice.
Collapse
Affiliation(s)
- Fatemeh Khaledi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Zarean
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Shahrani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Li D, Liu L, Li F, Ma C, Ge K. Nifuroxazide induces the apoptosis of human non‑small cell lung cancer cells through the endoplasmic reticulum stress PERK signaling pathway. Oncol Lett 2023; 25:248. [PMID: 37153034 PMCID: PMC10161345 DOI: 10.3892/ol.2023.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/26/2023] [Indexed: 05/09/2023] Open
Abstract
The aim of the present study was to investigate the molecular mechanism of nifuroxazide (NFZ) in the induction of apoptosis of NCI-H1299 human non-small cell lung cancer (NSCLC) cells through the reactive oxygen species (ROS)/Ca2+/protein kinase R-like ER kinase (PERK)-activating transcription factor 4 (ATF4)-DNA damage inducible transcript 3 (CHOP) signaling pathway. Morphological changes of cells were observed by microscopy, and the apoptosis and intracellular ROS levels of cells were observed by inverted fluorescence microscopy. Cell viability after the addition of the PERK inhibitor, GSK2606414, were detected by Cell Counting Kit-8 assay. Annexin V-FITC was used to detect cell apoptosis, Brite 670 was used to detect intracellular ROS and Fura Red AM was used to detect Ca2+ content. Western blotting was used to detect PERK, phosphorylated (P)-PERK, ATF4, CHOP, P-Janus kinase 2 and P-signal transducer and activator of transcription 3 expression levels. Compared with the dimethyl sulfoxide control group, NFZ inhibited the survival activity in the H1299 NSCLC cell line, in a time- and dose-dependent manner. However, GSK2606414 inhibited the NFZ-induced apoptosis of H1299 cells. GSK2606414 also inhibited the increase in ROS and Ca2+ in H1299 cells induced by NFZ. Western blotting results demonstrated that NFZ significantly increased the expression levels of P-PERK, ATF4 and CHOP, whereas GSK2606414 significantly reduced the NFZ-induced increase in these protein expression levels. In conclusion, NFZ may induce the apoptosis of H1299 NSCLC cells through the ROS/Ca2+/PERK-ATF4-CHOP signaling pathway.
Collapse
Affiliation(s)
- Deliang Li
- The First Clinical Medical College, Medicine College, Qingdao University, Qingdao, Shandong 266023, P.R. China
- Emergency Department, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Liping Liu
- The First Clinical Medical College, Medicine College, Qingdao University, Qingdao, Shandong 266023, P.R. China
| | - Feng Li
- Traditional Chinese Medicine Department, Zibo Wanjie Cancer Hospital, Zibo, Shandong 255200, P.R. China
| | - Chengshan Ma
- Orthopedic SurgeryDepartment, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
- Dr Chengshan Ma, Orthopedic Surgery Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 9677 Jingshi Road, Lixia, Jinan, Shandong 250000, P.R. China, E-mail:
| | - Keli Ge
- School of Basic Medicine, Medical College, Qingdao University, Qingdao, Shandong 266023, P.R. China
- Correspondence to: Dr Keli Ge, School of Basic Medicine, Medical College, Qingdao University, 38 Dengzhou Road, Qingdao, Shandong 266023, P.R. China, E-mail:
| |
Collapse
|
7
|
METTL3 Regulates Osteoclast Biological Behaviors via iNOS/NO-Mediated Mitochondrial Dysfunction in Inflammatory Conditions. Int J Mol Sci 2023; 24:ijms24021403. [PMID: 36674918 PMCID: PMC9862541 DOI: 10.3390/ijms24021403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023] Open
Abstract
Excessive differentiation of osteoclasts contributes to the disruption of bone homeostasis in inflammatory bone diseases. Methyltransferase-like 3 (METTL3), the core methyltransferase that installs an N6-methyladenosine (m6A) modification on RNA, has been reported to participate in bone pathophysiology. However, whether METTL3-mediated m6A affects osteoclast differentiation in inflammatory conditions remains unelucidated. In this study, we observed that the total m6A content and METTL3 expression decreased during LPS-induced osteoclastogenesis. After knocking down METTL3, we found reduced levels of the number of osteoclasts, osteoclast-related gene expression and bone resorption area. A METTL3 deficiency increased osteoclast apoptosis and pro-apoptotic protein expression. RNA sequencing analysis showed that differentially expressed genes in METTL3-deficient cells were mainly associated with the mitochondrial function. The expression of the mitochondrial function-related genes, ATP production and mitochondrial membrane potential decreased after METTL3 knockdown. Moreover, the most obviously upregulated gene in RNA-Seq was Nos2, which encoded the iNOS protein to induce nitric oxide (NO) synthesis. METTL3 knockdown increased the levels of Nos2 mRNA, iNOS protein and NO content. NOS inhibitor L-NAME rescued the inhibited mitochondrial function and osteoclast formation while suppressing osteoclast apoptosis in METTL3-silenced cells. Mechanistically, a METTL3 deficiency promoted the stability and expression of Nos2 mRNA, and similar results were observed after m6A-binding protein YTHDF1 knockdown. Further in vivo evidence revealed that METTL3 knockdown attenuated the inflammatory osteolysis of the murine calvaria and suppressed osteoclast formation. In conclusion, these data suggested that METTL3 knockdown exacerbated iNOS/NO-mediated mitochondrial dysfunction by promoting a Nos2 mRNA stability in a YTHDF1-dependent manner and further inhibited osteoclast differentiation and increased osteoclast apoptosis in inflammatory conditions.
Collapse
|
8
|
The Mito-Hormetic Mechanisms of Ozone in the Clearance of SARS-CoV2 and in the COVID-19 Therapy. Biomedicines 2022; 10:biomedicines10092258. [PMID: 36140358 PMCID: PMC9496465 DOI: 10.3390/biomedicines10092258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
An increasing body of evidence in the literature is reporting the feasibility of using medical ozone as a possible alternative and adjuvant treatment for COVID-19 patients, significantly reducing hospitalization time, pro-inflammatory indicators, and coagulation markers and improving blood oxygenation parameters. In addition to the well-described ability of medical ozone in counteracting oxidative stress through the upregulation of the main anti-oxidant and scavenging enzymes, oxygen–ozone (O2–O3) therapy has also proved effective in reducing chronic inflammation and the occurrence of immune thrombosis, two key players involved in COVID-19 exacerbation and severity. As chronic inflammation and oxidative stress are also reported to be among the main drivers of the long sequelae of SARS-CoV2 infection, a rising number of studies is investigating the potential of O2–O3 therapy to reduce and/or prevent the wide range of post-COVID (or PASC)-related disorders. This narrative review aims to describe the molecular mechanisms through which medical ozone acts, to summarize the clinical evidence on the use of O2–O3 therapy as an alternative and adjuvant COVID-19 treatment, and to discuss the emerging potential of this approach in the context of PASC symptoms, thus offering new insights into effective and safe nonantiviral therapies for the fighting of this devastating pandemic.
Collapse
|
9
|
Ligustilide Improves Cognitive Impairment via Regulating the SIRT1/IRE1α/XBP1s/CHOP Pathway in Vascular Dementia Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6664990. [PMID: 36017237 PMCID: PMC9398841 DOI: 10.1155/2022/6664990] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
Abstract
Vascular dementia (VaD), the second cause of dementia, is caused by chronic cerebral hypoperfusion, producing progressive damage to cerebral cortex, hippocampus, and white matter. Ligustilide (LIG), one of the main active ingredients of Angelica sinensis, exerts the neuroprotective effect on neurodegenerative diseases. However, the mechanism remains unclear. An in vivo model of bilateral common carotid artery occlusion and in vitro model of oxygen glucose deprivation (OGD) were employed in this study. LIG (20 or 40 mg/kg/day) was intragastrically administered to the VaD rats for four weeks. The results of the Morris water maze test demonstrated that LIG effectively ameliorated learning and memory deficiency in VaD rats. LIG obviously relieved neuronal oxidative stress damage by increasing the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) and decreasing the level of malondialdehyde (MDA) in VaD rats. Nissl staining showed that LIG increased the number of the Nissl body in VaD rats. After LIG administration, the apoptotic-related protein, Bax, was decreased and Bcl-2 was increased in the hippocampus of VaD rats. Moreover, the expressions of sirtuin 1 (SIRT1) and protein disulfide isomerase (PDI) were decreased, binding immunoglobulin protein (BIP) and phospho-inositol-requiring enzyme-1α (P-IRE1α), X-box binding protein 1 (XBP1s), and C/EBP-homologous protein (CHOP) were increased in VaD rats. After LIG treatment, these changes were reversed. The immunofluorescence results further showed that LIG upregulated the expression of SIRT1 and downregulated the expression of P-IRE1α in VaD rats. In addition, in vitro experiment showed that EX-527 (SIRT1 inhibitor) partly abolished the inhibitory effect of LIG on the IRE1α/XBP1s/CHOP pathway. In conclusion, these studies indicated that LIG could improve cognitive impairment by regulating the SIRT1/IRE1α/XBP1s/CHOP pathway in VaD rats.
Collapse
|
10
|
Xu L, Lin X, Li X, Hu Z, Hou Q, Wang Y, Wang Z. Metabolic profilings of rat INS-1 β-cells under changing levels of essential amino acids. Sci Data 2022; 9:299. [PMID: 35701423 PMCID: PMC9198089 DOI: 10.1038/s41597-022-01436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Application of mass spectrometry enables the detection of metabolic differences between organisms with different nutritional settings. Divergence in the metabolic fingerprints of rat pancreatic INS-1 β-cells were systematically captured with regard to ten individual essential amino acid (EAA) availability. A high-resolution tandem mass spectrometry system coupled to liquid chromatography produced a horizontal comparison of metabolic profilings of β-cells with individual EAA elevated to 10 mmol/L by turn or removal individual EAA from the medium one by one. Quality control samples were injected at regular intervals throughout the analytical run to monitor and evaluate the stability of the system. The raw data of samples and reference compounds including study protocols have been deposited in the open metabolomics database MetaboLights to enable efficient reuse of the datasets, such as investigating the difference in metabolic process between diverse EAAs as well as screening and verifying potential metabolites affecting insulin secretion and β-cell function.
Collapse
Affiliation(s)
- Lianbin Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Xueyan Lin
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Xiuli Li
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P. R. China
| | - Zhiyong Hu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Qiuling Hou
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Yun Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Zhonghua Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, P. R. China.
| |
Collapse
|
11
|
Peng D, Qing X, Guan L, Li HY, Qiao L, Chen YB, Cai YF, Wang Q, Zhang SJ. Carnosine improves cognitive impairment through promoting SIRT6 expression and inhibiting ER stress in a diabetic encephalopathy model. Rejuvenation Res 2022; 25:79-88. [PMID: 35302398 DOI: 10.1089/rej.2022.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetic encephalopathy is one of complications of diabetes mellitus. Carnosine is a dipeptide composed of β-alanine and L-histidine. Study has shown that carnosine could ameliorate cognitive impairment in animal model with diabetes mellitus. However, the mechanism remains unclear. An animal model of type 2 diabetes (db/db mice) was used in this study. The animals were treated with 0.9 % saline or carnosine (100 mg/kg) for 8 weeks. Morris water maze was tested after drug administration. Oxidative stress-related factors malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and pro-inflammatory factors inducible nitric oxide synthase (iNOS) were measured. Synapse-related protein postsynapticdensity 95 (PSD95) and brain-derived neurotrophic factor (BDNF) were detected by western blot. Besides, the expressions of sirtuin 6 (SIRT6), binding immunoglobulin protein (BIP), protein kinase R-like endoplasmic reticulum kinase (PERK), phospho-protein kinase R-like endoplasmic reticulum kinase (P-PERK), inositol-requiring enzyme-1α (IRE1α), phospho-inositol-requiring enzyme-1α (P-IRE1α), activating transcription factor 6 (ATF6), C/EBP-homologous protein (CHOP) in the hippocampus of the brain were detected. The results showed that treatment with carnosine ameliorated cognitive impairment in db/db mice. Carnosine reduced neuronal oxidative stress damage and iNOS expression in db/db mice. Meanwhile, carnosine relieved neurodegeneration in the hippocampus of db/db mice. Furthermore, carnosine promoted the expression of SIRT6 and reduced the expressions of endoplasmic reticulum (ER) related factors (BIP, P-PERK, P-IRE1α, ATF6, CHOP). In conclusion, these data suggested that the protective effect of carnosine against diabetic encephalopathy might be related to SIRT6/ER stress pathway.
Collapse
Affiliation(s)
- Dong Peng
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Xia Qing
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Li Guan
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, China;
| | - Hong-Ying Li
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Lijun Qiao
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Yun-Bo Chen
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Ye-Feng Cai
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Qi Wang
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, China;
| | - Shi-Jie Zhang
- Guangzhou University of Chinese Medicine, 47879, Guangzhou University of Chinese Medicine, Guangzhou, China, 510006;
| |
Collapse
|
12
|
Xu L, Lin X, Li X, Hu Z, Hou Q, Wang Y, Wang Z. Integration of transcriptomics and metabolomics provides metabolic and functional insights into reduced insulin secretion in MIN6 β-cells exposed to deficient and excessive arginine. FASEB J 2022; 36:e22206. [PMID: 35199385 DOI: 10.1096/fj.202101723r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 01/17/2023]
Abstract
Previous work demonstrated that arginine is one of the strongest insulin secretagogues. However, knowledge of the mechanisms linking chronic arginine metabolism with β-cell function and insulin secretion is relatively limited. After preliminary selection of concentration according to the cell proliferation, the MIN6 pancreatic β-cells were randomly assigned to culture in 0.04 mM (low-arginine, LA), 0.4 mM (standard-arginine, SA), or 8 mM arginine (high-arginine, HA) for 24 h. Following the treatment, a combination of transcriptomics and metabolomics, together with a series of molecular biological tests were performed to investigate the responses of β-cells to varied arginine availability. Our results showed that HA treatment reduced the chronic insulin releases, and LA and HA treatments decreased the glucose-stimulated insulin secretions (GSIS) of β-cells relative to the SA group (p < .05). Transcriptomics analysis indicated that LA administration significantly inhibited oxidative phosphorylation and ATP metabolic process but promoted DNA repair and mRNA processing in β-cells, while HA administration affected ammonium ion metabolic process and mRNA export (p < .05). Both LA and HA regulated the expressions of genes involved in DNA replication, cell-cycle phase transition, and response to oxidative stress (p < .05). Protein-protein interaction and transcription factor analyses suggested that Trp53 and Nr4a2 genes may play key roles during arginine stimulation. On the contrary, metabolomics analysis demonstrated that the differentially expressed metabolites (DEM) of MIN6 β-cells induced by LA were mainly enriched in glycerophospholipid metabolism, linoleic acid metabolism, and purine metabolism, while most DEMs between LA vs. SA comparison belonged to amino acid metabolism. When combined the three groups, co-expression analysis suggested that insulin secretions had strong associations with L-pyroglutamic acid, L-glutamate, and creatine concentrations, while intracellular insulin contents were mainly correlated to L-arginine, argininosuccinic acid, and phosphorylcholine. At last, integrated analysis of transcriptomics and metabolomics showed that glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids, and amino acid metabolism were the most relevant pathways in β-cells exposed to abnormal arginine supply. This descriptive bioinformatics analysis suggested that the disturbed carbohydrate, lipid, and amino acid metabolisms, as well as the increased apoptosis and elevated oxidative stress, contributed to the reduced insulin secretion and lower GSIS in β-cells induced by LA or HA treatments, while some underlying mechanisms need to be further explored.
Collapse
Affiliation(s)
- Lianbin Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Xueyan Lin
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Xiuli Li
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Zhiyong Hu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Qiuling Hou
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Yun Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Zhonghua Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| |
Collapse
|
13
|
Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells. Stem Cell Rev Rep 2022; 18:1789-1808. [PMID: 35141862 DOI: 10.1007/s12015-022-10338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells (iPSCs), can be applicable for regenerative medicine. They strangely rely on glycolysis metabolism akin to aerobic glycolysis in cancer cells. Upon differentiation, PSCs undergo a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS). The metabolic shift depends on organelles maturation, transcriptome modification, and metabolic switching. Besides, metabolism-driven chromatin regulation is necessary for cell survival, self-renewal, proliferation, senescence, and differentiation. In this respect, mitochondria may serve as key organelle to adapt environmental changes with metabolic intermediates which are necessary for maintaining PSCs identity. The endoplasmic reticulum (ER) is another organelle whose role in cellular identity remains under-explored. The purpose of our article is to highlight the recent progress on these two organelles' role in maintaining PSCs redox status focusing on metabolism. Topics include redox status, metabolism regulation, mitochondrial dynamics, and ER stress in PSCs. They relate to the maintenance of stem cell properties and subsequent differentiation of stem cells into specific cell types.
Collapse
Affiliation(s)
- Shahnaz Babaei-Abraki
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
14
|
He E, Ma Y, Kong L, Huang Y, Huang C, Yang W, Yi J, Zhu L. Suppression of endoplasmic reticulum stress-associated pathways and hepatocyte apoptosis participates in the attenuation of betulinic acid on alcohol-provoked liver injury in mice. Food Funct 2022; 13:11489-11502. [DOI: 10.1039/d2fo01042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BA protects against alcohol-induced liver damage through the alleviation of oxidative stress and suppression of ERS-induced apoptosis.
Collapse
Affiliation(s)
- Enqi He
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yurong Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Changsha University of Science & Technology, Changsha 410114, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
15
|
Inhibitory effects of sulforaphane on NLRP3 inflammasome activation. Mol Immunol 2021; 140:175-185. [PMID: 34717147 DOI: 10.1016/j.molimm.2021.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023]
Abstract
SFN, a dietary phytochemical, is a significant member of isothiocyanates present in cruciferous vegetables at high levels in broccoli. It is a well-known activator of the Nrf2/ARE antioxidant pathway. Long since, the therapeutic effects of SFN have been widely studied in several different diseases. Other than the antioxidant effect, SFN also exhibits an anti-inflammatory effect through suppression of various mechanisms, including inflammasome activation. Considerably, SFN has been demonstrated to inhibit multiple inflammasomes, including NLRP3 inflammasome. NLRP3 inflammasome induces secretion of pro-inflammatory cytokines and promotes inflammatory cell death. The release of pro-inflammatory cytokines enhances the inflammatory response, in turn leading to tissue damage. These self-propelling inflammatory responses would need modulation with exogenous therapeutic agents to suppress them. SFN is a promising candidate molecule for the mitigation of NLRP3 inflammasome activation, which has been related to the pathogenesis of numerous disorders. In this review, we have provided fundamental knowledge about Sulforaphane, elaborated its characteristics, and evidentially focused on its mechanisms of action with regard to its anti-inflammatory, anti-oxidative, and neuroprotective features. Thereafter, we have summarized both in vitro and in vivo studies regarding SFN effect on NLRP3 inflammasome activation.
Collapse
|
16
|
Caballano-Infantes E, Díaz I, Hitos AB, Cahuana GM, Martínez-Ruiz A, Soria-Juan B, Rodríguez-Griñolo R, Hmadcha A, Martín F, Soria B, Tejedo JR, Bedoya FJ. Stemness of Human Pluripotent Cells: Hypoxia-Like Response Induced by Low Nitric Oxide. Antioxidants (Basel) 2021; 10:antiox10091408. [PMID: 34573040 PMCID: PMC8472328 DOI: 10.3390/antiox10091408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
The optimization of conditions to promote the stemness of pluripotent cells in vitro is instrumental for their use in advanced therapies. We show here that exposure of human iPSCs and human ESCs to low concentrations of the chemical NO donor DETA/NO leads to stabilization of hypoxia-inducible factors (HIF-1α and HIF-2α) under normoxia, with this effect being dependent on diminished Pro 402 hydroxylation and decreased degradation by the proteasome. Moreover, the master genes of pluripotency, NANOG and OCT-4, were upregulated. NO also induces a shift in the metabolic profile of PSCs, with an increased expression of hypoxia response genes in glycolysis. Furthermore, a reduction in the mitochondrial membrane potential with lower oxygen consumption and increased expression of mitochondrial fusion regulators, such as DRP1, was observed. The results reported here indicate that NO mimics hypoxia response in human PSCs and enhances their stemness properties when cultured under normoxic conditions.
Collapse
Affiliation(s)
- Estefanía Caballano-Infantes
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain; (I.D.); (A.B.H.); (A.H.); (F.M.); (J.R.T.)
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain;
- Correspondence: (E.C.-I.); (F.J.B.)
| | - Irene Díaz
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain; (I.D.); (A.B.H.); (A.H.); (F.M.); (J.R.T.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 08036 Madrid, Spain;
| | - Ana Belén Hitos
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain; (I.D.); (A.B.H.); (A.H.); (F.M.); (J.R.T.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 08036 Madrid, Spain;
| | - Gladys Margot Cahuana
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain;
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 08036 Madrid, Spain;
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28009 Madrid, Spain;
| | | | - Rosario Rodríguez-Griñolo
- Departamento de Economía, Métodos Cuantitativo e Historia Económica, Universidad Pablo de Olavide, 41013 Seville, Spain;
| | - Abdelkrim Hmadcha
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain; (I.D.); (A.B.H.); (A.H.); (F.M.); (J.R.T.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 08036 Madrid, Spain;
| | - Franz Martín
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain; (I.D.); (A.B.H.); (A.H.); (F.M.); (J.R.T.)
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain;
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 08036 Madrid, Spain;
| | - Bernat Soria
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 08036 Madrid, Spain;
- ISABIAL and Institute of Bioengineering, University Miguel Hernández de Elche, 03010 Alicante, Spain
| | - Juan R. Tejedo
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain; (I.D.); (A.B.H.); (A.H.); (F.M.); (J.R.T.)
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain;
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 08036 Madrid, Spain;
| | - Francisco Javier Bedoya
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain; (I.D.); (A.B.H.); (A.H.); (F.M.); (J.R.T.)
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain;
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 08036 Madrid, Spain;
- Correspondence: (E.C.-I.); (F.J.B.)
| |
Collapse
|
17
|
Oghbaei H, Hosseini L, Farajdokht F, Rahigh Aghsan S, Majdi A, Sadigh-Eteghad S, Sandoghchian Shotorbani S, Mahmoudi J. Heat stress aggravates oxidative stress, apoptosis, and endoplasmic reticulum stress in the cerebellum of male C57 mice. Mol Biol Rep 2021; 48:5881-5887. [PMID: 34338963 DOI: 10.1007/s11033-021-06582-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The current study was set to assess the effect of heat stress exposure on oxidative stress, apoptosis, and endoplasmic reticulum stress markers in the cerebellum of male mice. METHODS Fifty male C57BL/6 mice were assigned to five groups of (I) control, (II) heat stress (HS)7, (III) HS14, (IV) HS21, and (V) HS42 groups. Animals in the control group were not exposed to HS. Mice in the II-V groups were exposed to HS once a day over 7, 14, 21, and 42 days, respectively. Cerebellar reactive oxygen species (ROS) levels, expression of heat shock protein (HSP)70 and caspase 3 as well as endoplasmic reticulum stress-related proteins (PERK, p-PERK, CHOP, and Full-length ATF-6) expression were determined on the 7th, 14th, 21st, and 42nd days. RESULTS ROS levels and HSP70 expression increased following HS on the 14th, 21st, and 42nd days and the 7th, and 14th days with a peak level of expression on the 14th day following HS. HSP70 levels decreased afterward on the 21st and 42nd days compared with the control group. Besides, exposure to HS for 14, 21, and 42 days resulted in a significant increase in the CHOP and p-PERK levels in the cerebellum compared with the control group. Heat exposure also increased protein expression of cleaved caspase 3 and active ATF-6/Full-length ATF-6 on the 21st and 42nd days in the cerebellum compared with the control animals. CONCLUSION These findings indicated that chronic HS augmented oxidative stress, endoplasmic reticulum stress, and apoptosis pathways in the cerebellum of mice.
Collapse
Affiliation(s)
- Hajar Oghbaei
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.,Deptartment of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.,Deptartment of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.,Deptartment of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Rahigh Aghsan
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.
| |
Collapse
|
18
|
NLRP3 Inflammasome and Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4063562. [PMID: 32148650 PMCID: PMC7049400 DOI: 10.1155/2020/4063562] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Almost all human diseases are strongly associated with inflammation, and a deep understanding of the exact mechanism is helpful for treatment. The NLRP3 inflammasome composed of the NLRP3 protein, procaspase-1, and ASC plays a vital role in regulating inflammation. In this review, NLRP3 regulation and activation, its proinflammatory role in inflammatory diseases, interactions with autophagy, and targeted therapeutic approaches in inflammatory diseases will be summarized.
Collapse
|
19
|
Ma AG, Yu LM, Zhao H, Qin CW, Tian XY, Wang Q. PSMD4 regulates the malignancy of esophageal cancer cells by suppressing endoplasmic reticulum stress. Kaohsiung J Med Sci 2019; 35:591-597. [PMID: 31162820 DOI: 10.1002/kjm2.12093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Proteasome 26S subunit non-ATPase 4 (PSMD4) is an important proteasome ubiquitin receptor and plays a key role in endoplasmic reticulum stress (ERS). However, the study of PSMD4 in esophageal cancer (EC) is relatively rare. Here, we found that the expression of PSMD4 was markedly enhanced in EC tissues and cell lines. The cell counting kit-8 (CCK-8) assay showed that overexpression of PSMD4 significantly enhanced Eca109 cell viability, while inhibition of PSMD4 reduced Eca109 cell viability. Knockdown of PSMD4 induced Eca109 cell apoptosis and cell cycle arrest. More importantly, knockdown of PSMD4 significantly enhanced the expression of glucose regulated protein 78, activating transcription factor 6, and p-protein kinase R-like ER kinase, indicating an enhanced ERS response in esophageal cancer cells. Compared with the control cells, brefeldin A significantly inhibited the expression of PSMD4 and increased the expression of p53-upregulated modulator of apoptosis. However, such effects were largely reversed after overexpressing PSMD4 in Eca109 cells, suggesting that silencing PSMD4 could enhance ERS-induced cell apoptosis. In summary, upregulation of PSMD4 promoted the progression of esophageal cancer mainly by reducing ERS-induced cell apoptosis.
Collapse
Affiliation(s)
- Ai-Guo Ma
- Department of Thoracic Surgery, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, PR China
| | - Li-Mei Yu
- Department of Critical Care Medicine, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, PR China
| | - Hong Zhao
- Department of Thoracic Surgery, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, PR China
| | - Cun-Wei Qin
- Department of Thoracic Surgery, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, PR China
| | - Xiang-Yu Tian
- Imaging Center, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, PR China
| | - Qing Wang
- Department of Thoracic Surgery, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, PR China
| |
Collapse
|