1
|
Adugna A, Muche Y, Melkamu A, Jemal M, Belew H, Amare GA. Current updates on the molecular and genetic signals as diagnostic and therapeutic targets for hepatitis B virus-associated hepatic malignancy. Heliyon 2024; 10:e34288. [PMID: 39100497 PMCID: PMC11295980 DOI: 10.1016/j.heliyon.2024.e34288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Liver cancer caused by the hepatitis B virus (HBV) is the third most common cancer-related cause of death worldwide. Early detection of HBV-caused hepatic tumors increases the likelihood of a successful cure. Molecular and genetic signals are becoming more and more recognized as possible indicators of HBV-associated hepatic malignancy and of how well a treatment is working. As a result, we have discussed the current literature on molecular and genetic sensors, including extracellular vesicle microRNAs (EV-miRNAs), long non-coding circulating RNAs (lncRNAs), extracellular vesicles (EVs), and cell free circulating DNA (cfDNA), for the diagnosis and forecasting of HBV-related hepatic cancer. Extracellular vesicle microRNAs such as miR-335-5p, miR-172-5p, miR-1285-5p, miR-497-5p, miR-636, miR-187-5p, miR-223-3p, miR-21, miR-324-3p, miR-210-3p, miR-718, miR-122, miR-522, miR-0308-3p, and miR-375 are essential for the posttranscriptional regulation of oncogenes in hepatic cells as well as the epigenetic modulation of many internal and external signaling pathways in HBV-induced hepatic carcinogenesis. LncRNAs like lnc01977, HULC (highly up-regulated in liver cancer), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), and HOTAIR (hox transcript antisense intergenic RNA) have been demonstrated to control hepatic-tumors cell growth, relocation, encroachment, and cell death resiliency. They are also becoming more and more involved in immune tracking, hepatic shifting, vasculature oversight, and genomic destabilization. EVs are critical mediators involved in multiple aspects of liver-tumors like angiogenesis, immunology, tumor formation, and the dissemination of malignant hepatocytes. Furthermore, cfDNA contributes to signals associated with tumors, including mutations and abnormal epigenetic changes during HBV-related hepatic tumorigenesis.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
2
|
Ucdal M, Burus A, Celtikci B. Cross talk between genetics and biochemistry in the pathogenesis of hepatocellular carcinoma. HEPATOLOGY FORUM 2024; 5:150-160. [PMID: 39006147 PMCID: PMC11237245 DOI: 10.14744/hf.2023.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 07/16/2024]
Abstract
The liver is a crucial organ in the regulation of metabolism, signaling, and homeostasis. Using recent advanced sequencing technologies, several mutations of genes in major metabolic and signaling pathways have been discovered in the pathogenesis of hepatocellular carcinoma (HCC). These gene signatures alter expression and ultimately affect biochemical pathways by modifying enzyme/protein levels, resulting in numerous clinical outcomes related to HCC. It comes with varying forms of genetic and biochemical alterations, associated with carbohydrate, lipid, nucleic acid, and amino acid metabolism, as well as signaling pathways linked to tumorigenesis. Here, we aim to summarize the main components and mechanisms involved in the progression of HCC with a special focus on the metabolic regulation of key effectors of tumorigenesis, through the crosstalk between genetics and biochemistry. This paper provides an overview of hepatocellular carcinoma, underlying the fundamental effect of gene variations on metabolic and signaling pathways. Since there is still an unmet need for biomarkers and novel therapeutic targets, some of these signature genes or proteins can be used as novel biomarkers for diagnosis, prognosis, and novel potential therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Mete Ucdal
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkiye
| | - Ayse Burus
- Department of Medical Biochemistry, Hacettepe University, School of Medicine, Ankara, Turkiye
| | - Basak Celtikci
- Department of Medical Biochemistry, Hacettepe University, School of Medicine, Ankara, Turkiye
| |
Collapse
|
3
|
Wei H, Yang J, Chen X, Liu M, Zhang H, Sun W, Wang Y, Zhou Y. BAIAP2L2 is a novel prognostic biomarker related to migration and invasion of HCC and associated with cuprotosis. Sci Rep 2023; 13:8692. [PMID: 37248248 DOI: 10.1038/s41598-023-35420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and its pathophysiological mechanisms remain unknown. IRSp53 family members, such as BAIAP2L1, participate in the progression of multiple tumors. However, the role of BAIAP2L2 in HCC remains unclear. This study comprehensively analyzed the potential role of BAIAP2L2 in HCC using bioinformatic techniques. The expression of BAIAP2L2 in HCC was analyzed using The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), and Human Protein Atlas (HPA) databases and in vitro experiments. In addition, the prognostic value of BAIAP2L2 in HCC was analyzed using the TCGA database. TCGA and GEO database were used to analyze the role of BAIAP2L2 in immune features. We also explored the function of BAIAP2L2 in methylation and cuprotosis. The CellMiner database was used to analyze the relationship between BAIAP2L2 expression and drug sensitivity. Our study revealed that BAIAP2L2 is overexpressed in HCC and promotes the migration and invasion of HCC cells. BAIAP2L2 may affect the prognosis of HCC by regulating immunity, methylation, and cuprotosis. BAIAP2L2 is a novel HCC prognostic gene involved in immune infiltration associated with cuprotosis and may be a potential prognosis and therapeutic target for HCC.
Collapse
Affiliation(s)
- Hui Wei
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Jing Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xia Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Mengxiao Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Huiyun Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Weiming Sun
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yuping Wang
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yongning Zhou
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Relevance of HBx for Hepatitis B Virus-Associated Pathogenesis. Int J Mol Sci 2023; 24:ijms24054964. [PMID: 36902395 PMCID: PMC10003785 DOI: 10.3390/ijms24054964] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The hepatitis B virus (HBV) counts as a major global health problem, as it presents a significant causative factor for liver-related morbidity and mortality. The development of hepatocellular carcinomas (HCC) as a characteristic of a persistent, chronic infection could be caused, among others, by the pleiotropic function of the viral regulatory protein HBx. The latter is known to modulate an onset of cellular and viral signaling processes with emerging influence in liver pathogenesis. However, the flexible and multifunctional nature of HBx impedes the fundamental understanding of related mechanisms and the development of associated diseases, and has even led to partial controversial results in the past. Based on the cellular distribution of HBx-nuclear-, cytoplasmic- or mitochondria-associated-this review encompasses the current knowledge and previous investigations of HBx in context of cellular signaling pathways and HBV-associated pathogenesis. In addition, particular focus is set on the clinical relevance and potential novel therapeutic applications in the context of HBx.
Collapse
|
5
|
Braghini MR, Lo Re O, Romito I, Fernandez-Barrena MG, Barbaro B, Pomella S, Rota R, Vinciguerra M, Avila MA, Alisi A. Epigenetic remodelling in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:107. [PMID: 35331312 PMCID: PMC8943959 DOI: 10.1186/s13046-022-02297-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 04/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications.In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches.In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine.Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Ilaria Romito
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Barbara Barbaro
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Silvia Pomella
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy.
| |
Collapse
|
6
|
Varghese RS, Barefoot ME, Jain S, Chen Y, Zhang Y, Alley A, Kroemer AH, Tadesse MG, Kumar D, Sherif ZA, Ressom HW. Integrative Analysis of DNA Methylation and microRNA Expression Reveals Mechanisms of Racial Heterogeneity in Hepatocellular Carcinoma. Front Genet 2021; 12:708326. [PMID: 34557219 PMCID: PMC8453167 DOI: 10.3389/fgene.2021.708326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Pathologic alterations in epigenetic regulation have long been considered a hallmark of many cancers, including hepatocellular carcinoma (HCC). In a healthy individual, the relationship between DNA methylation and microRNA (miRNA) expression maintains a fine balance; however, disruptions in this harmony can aid in the genesis of cancer or the propagation of existing cancers. The balance between DNA methylation and microRNA expression and its potential disturbance in HCC can vary by race. There is emerging evidence linking epigenetic events including DNA methylation and miRNA expression to cancer disparities. In this paper, we evaluate the epigenetic mechanisms of racial heterogenity in HCC through an integrated analysis of DNA methylation, miRNA, and combined regulation of gene expression. Specifically, we generated DNA methylation, mRNA-seq, and miRNA-seq data through the analysis of tumor and adjacent non-tumor liver tissues from African Americans (AA) and European Americans (EA) with HCC. Using mixed ANOVA, we identified cytosine-phosphate-guanine (CpG) sites, mRNAs, and miRNAs that are significantly altered in HCC vs. adjacent non-tumor tissue in a race-specific manner. We observed that the methylome was drastically changed in EA with a significantly larger number of differentially methylated and differentially expressed genes than in AA. On the other hand, the miRNA expression was altered to a larger extent in AA than in EA. Pathway analysis functionally linked epigenetic regulation in EA to processes involved in immune cell maturation, inflammation, and vascular remodeling. In contrast, cellular proliferation, metabolism, and growth pathways are found to predominate in AA as a result of this epigenetic analysis. Furthermore, through integrative analysis, we identified significantly differentially expressed genes in HCC with disparate epigenetic regulation, associated with changes in miRNA expression for AA and DNA methylation for EA.
Collapse
Affiliation(s)
- Rency S. Varghese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Megan E. Barefoot
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Sidharth Jain
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Yifan Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Yunxi Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Amber Alley
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | | | - Mahlet G. Tadesse
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, United States
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, United States
| | - Zaki A. Sherif
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC, United States
| | - Habtom W. Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
7
|
Kosvyra A, Ntzioni E, Chouvarda I. Network analysis with biological data of cancer patients: A scoping review. J Biomed Inform 2021; 120:103873. [PMID: 34298154 DOI: 10.1016/j.jbi.2021.103873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND & OBJECTIVE Network Analysis (NA) is a mathematical method that allows exploring relations between units and representing them as a graph. Although NA was initially related to social sciences, the past two decades was introduced in Bioinformatics. The recent growth of the networks' use in biological data analysis reveals the need to further investigate this area. In this work, we attempt to identify the use of NA with biological data, and specifically: (a) what types of data are used and whether they are integrated or not, (b) what is the purpose of this analysis, predictive or descriptive, and (c) the outcome of such analyses, specifically in cancer diseases. METHODS & MATERIALS The literature review was conducted on two databases, PubMed & IEEE, and was restricted to journal articles of the last decade (January 2010 - December 2019). At a first level, all articles were screened by title and abstract, and at a second level the screening was conducted by reading the full text article, following the predefined inclusion & exclusion criteria leading to 131 articles of interest. A table was created with the information of interest and was used for the classification of the articles. The articles were initially classified to analysis studies and studies that propose a new algorithm or methodology. Each one of these categories was further screened by the following clustering criteria: (a) data used, (b) study purpose, (c) study outcome. Specifically for the studies proposing a new algorithm, the novelty presented in each one was detected. RESULTS & Conclusions: In the past five years researchers are focusing on creating new algorithms and methodologies to enhance this field. The articles' classification revealed that only 25% of the analyses are integrating multi-omics data, although 50% of the new algorithms developed follow this integrative direction. Moreover, only 20% of the analyses and 10% of the newly developed methodologies have a predictive purpose. Regarding the result of the works reviewed, 75% of the studies focus on identifying, prognostic or not, gene signatures. Concluding, this review revealed the need for deploying predictive and multi-omics integrative algorithms and methodologies that can be used to enhance cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- A Kosvyra
- Laboratory of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - E Ntzioni
- Laboratory of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - I Chouvarda
- Laboratory of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Gao S, Ni Q, Wu X, Cao T. GHR knockdown enhances the sensitivity of HCC cells to sorafenib. Aging (Albany NY) 2020; 12:18127-18136. [PMID: 32970612 PMCID: PMC7585089 DOI: 10.18632/aging.103625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/04/2020] [Indexed: 01/24/2023]
Abstract
Sorafenib is approved for treatment of advanced hepatocellular carcinoma (HCC) by the Drug Administration. However, the efficacy of sorafenib has become very limited because most tumors have developed resistance to this drug. In this study, we found that sorafenib stimulated GHR expression in HCC cell lines. Thus, GHR might be linked to sorafenib resistance. To verify this hypothesis, we researched the roles of GHR knockdown and sorafenib combination in cell viability, apoptosis, cycle, and migration. The results showed that GHR blockage enhanced sorafenib blocking of cell cycle progression, leading to inhibition of this drug on HCC cell viability, and the improved promoting ability of sorafenib on cell apoptosis. In addition, it was found that GHR knockdown enhanced sorafenib inhibition of cell migration. The synergistic antitumor effects of sorafenib and GHR knockdown combination may be attributed to inhibition of PI3K/AKT/ERK1/2 signaling pathway. In conclusion, the findings suggest that GHR knockdown enhances the sensitivity of HCC cells to sorafenib. and the inactivation of PI3K/AKT/ERK1/2 signaling pathway may be the underlying mechanisms. This highlights the absence of GHR as a promising way to enhance sorafenib efficacy in HCC.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Gastroenterology, The Third Affiliated Hospital of Naval Military Medical University, Shanghai 201800, China
| | - Qianwen Ni
- Department of Gastroenterology, Zhongshan Qingpu Hospital Fudan University, Shanghai 201799, China
| | - Xiuli Wu
- Department of Gastroenterology, Luoyang First People's Hospital, Luoyang 471000, China
| | - Tieliu Cao
- Department of Traditional Chinese Medicine, Minhang Branch, Shanghai Cancer Center, Fudan University, Shanghai 200240, China
| |
Collapse
|
9
|
Genome-Wide Open Chromatin Methylome Profiles in Colorectal Cancer. Biomolecules 2020; 10:biom10050719. [PMID: 32380793 PMCID: PMC7277229 DOI: 10.3390/biom10050719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
The methylome of open chromatins was investigated in colorectal cancer (CRC) to explore cancer-specific methylation and potential biomarkers. Epigenome-wide methylome of open chromatins was studied in colorectal cancer tissues using the Infinium DNA MethylationEPIC assay. Differentially methylated regions were identified using the ChAMP Bioconductor. Our stringent analysis led to the discovery of 2187 significant differentially methylated open chromatins in CRCs. More hypomethylated probes were observed and the trend was similar across all chromosomes. The majority of hyper- and hypomethylated probes in open chromatin were in chromosome 1. Our unsupervised hierarchical clustering analysis showed that 40 significant differentially methylated open chromatins were able to segregate CRC from normal colonic tissues. Receiver operating characteristic analyses from the top 40 probes revealed several significant, highly discriminative, specific and sensitive probes such as OPLAH cg26256223, EYA4 cg01328892, and CCNA1 cg11513637, among others. OPLAH cg26256223 hypermethylation is associated with reduced gene expression in the CRC. This study reports many open chromatin loci with novel differential methylation statuses, some of which with the potential as candidate markers for diagnostic purposes.
Collapse
|
10
|
Li A, Zhang R, Zhang Y, Liu X, Wang R, Liu J, Liu X, Xie Y, Cao W, Xu R, Ma Y, Cai W, Wu B, Cai S, Tang X. BEZ235 increases sorafenib inhibition of hepatocellular carcinoma cells by suppressing the PI3K/AKT/mTOR pathway. Am J Transl Res 2019; 11:5573-5585. [PMID: 31632530 PMCID: PMC6789287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sorafenib is an oral multi-kinase inhibitor that inhibits hepatocellular carcinoma (HCC) via the Ras/Raf/MAPK pathway. However, sorafenib loses effectiveness because most tumors acquire drug resistance over time. As the PI3K/AKT/mTOR signaling pathway is also activated abnormally in HCC, we evaluated the effect of sorafenib, in combination with a dual PI3K/mTOR inhibitor, BEZ235, on HCC cell proliferation and survival in vitro. MATERIALS AND METHODS Biological phenotypes were analysed in HCC cell lines, parental and sorafenib-resistant HepG2 cells (HepG2 and HepG2R), treated with sorafenib or BEZ235, alone or in combination. HCC cellular proliferation and apoptosis were investigated, and perturbations of the Ras/Raf/MAPK and PI3K/AKT/mTOR signaling/survival pathways were evaluated by western blot analysis. RESULTS BEZ235 enhanced sorafenib inhibition of cellular proliferation, migration, and promotion of apoptosis in HepG2 and HepG2R cells. The combined effects were associated with inhibition of phosphorylation of AKT, mTOR and S6K in the PI3K/AKT/mTOR pathway, whereas the combination of sorafenib and BEZ235 did not significantly alter the Ras/Raf/MAPK pathway compared with the effect of sorafenib alone. CONCLUSION Sorafenib/BEZ235 combination has potent anti-HCC cell activity. This anti-tumor activity is most likely multi-factorial, mainly involving PI3K down-regulation and AKT, mTOR and S6K dephosphorylation. Combined inhibition of PI3K/AKT/mTOR and Ras/Raf/MAPK pathways enhances sorafenib inhibition of HCC. The results of these in vitro studies suggest that trials of combined sorafenib and BEZ235 in the treatment of HCC should be considered.
Collapse
Affiliation(s)
- Amin Li
- Medical School, Anhui University of Science & TechnologyHuainan 232001, China
| | - Rongbo Zhang
- Medical School, Anhui University of Science & TechnologyHuainan 232001, China
| | - Yinci Zhang
- Medical School, Anhui University of Science & TechnologyHuainan 232001, China
| | - Xueke Liu
- Medical School, Anhui University of Science & TechnologyHuainan 232001, China
| | - Ruikai Wang
- First Affiliated Hospital, Anhui University of Science & TechnologyHuainan 232001, China
| | - Jiachang Liu
- First Affiliated Hospital, Anhui University of Science & TechnologyHuainan 232001, China
| | - Xinkuang Liu
- First Affiliated Hospital, Anhui University of Science & TechnologyHuainan 232001, China
| | - Yinghai Xie
- First Affiliated Hospital, Anhui University of Science & TechnologyHuainan 232001, China
| | - Weiya Cao
- Medical School, Anhui University of Science & TechnologyHuainan 232001, China
| | - Ruyue Xu
- Medical School, Anhui University of Science & TechnologyHuainan 232001, China
| | - Yongfang Ma
- Medical School, Anhui University of Science & TechnologyHuainan 232001, China
| | - Wenpeng Cai
- Medical School, Anhui University of Science & TechnologyHuainan 232001, China
| | - Binquan Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, China
| | - Shuyu Cai
- Medical School, Anhui University of Science & TechnologyHuainan 232001, China
| | - Xiaolong Tang
- Medical School, Anhui University of Science & TechnologyHuainan 232001, China
| |
Collapse
|
11
|
Toh TB, Lim JJ, Chow EKH. Epigenetics of hepatocellular carcinoma. Clin Transl Med 2019; 8:13. [PMID: 31056726 PMCID: PMC6500786 DOI: 10.1186/s40169-019-0230-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, large scale genomics and genome-wide studies using comprehensive genomic tools have reshaped our understanding of cancer evolution and heterogeneity. Hepatocellular carcinoma, being one of the most deadly cancers in the world has been well established as a disease of the genome that harbours a multitude of genetic and epigenetic aberrations during the process of liver carcinogenesis. As such, in depth understanding of the cancer epigenetics in cancer specimens and biopsy can be useful in clinical settings for molecular subclassification, prognosis, and prediction of therapeutic responses. In this review, we present a concise discussion on recent progress in the field of liver cancer epigenetics and some of the current works that contribute to the progress of liver cancer therapeutics.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, MD6 #12-01, Singapore, 117599, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, MD6 #12-01, Singapore, 117599, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, MD6 #12-01, Singapore, 117599, Singapore. .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Level 5, Singapore, 117597, Singapore.
| |
Collapse
|
12
|
Zhang J, Sun N, Guo W, Wu X, Yang X, Jin H, Zhang Y, Wu X, Zhang F, Hu L, Hu H, Gao Y. Identification of NPAC as a novel biomarker and regulator for hepatocellular carcinoma. J Cell Biochem 2019; 120:8228-8237. [PMID: 30474880 DOI: 10.1002/jcb.28106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) has a high morbidity and mortality around the world, yet the effective therapeutic option for HCC is still limited. NPAC, also known as glyoxylate reductase 1 homolog, is a new nuclear protein recently implicated in tumor biology. However, the role of NPAC in HCC remains unclear. The present study aimed to evaluate the clinical significance and potential role of NPAC in HCC. METHODS The NPAC expression in HCC tissues and matched adjacent normal tissues was detected by real-time polymerase chain reaction, immunohistochemistry (IHC), and Western blot analysis. The clinical significance of the expression of NPAC in HCC was assessed by the Kaplan-Meier survival curve and the Cox regression model. In addition, we established a doxiline-induced overexpression of the NPAC system. The effects of NPAC on HCC cell proliferation, migration, and apoptosis were checked by CCK-8 proliferation assays, transwell, and flow cytometry, respectively. RESULTS The NPAC expression was significantly downregulated in HCC tissues and HCC cell lines. NPAC reduction was significantly correlated with poorer survival among patients with HCC, and the multivariate analysis confirmed its independent prognostic value. Furthermore, overexpression of NPAC dramatically suppressed the proliferation of HCC cells and promoted HCC cells apoptosis. Besides, the levels of phosphorylation of janus kinase 2 (JAK2) and signal transduction and activator 3 (STAT3) were significantly reduced after overexpression of NPAC in HCC cell lines. CONCLUSIONS These results suggest that NPAC may play an important role in the development and progression of HCC, and can act as a novel potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jiecheng Zhang
- Department of PI-WEI, PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nannan Sun
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenfeng Guo
- Department of PI-WEI, PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojie Wu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiaoying Yang
- Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Haiyong Jin
- Department of Otolaryngology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yueling Zhang
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, China
| | - Xiaoting Wu
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, China
| | - Fenglian Zhang
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, China
| | - Ling Hu
- Department of PI-WEI, PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiling Hu
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Gao
- Department of PI-WEI, PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Molecular Mechanisms of Hepatocarcinogenesis Following Sustained Virological Response in Patients with Chronic Hepatitis C Virus Infection. Viruses 2018; 10:v10100531. [PMID: 30274202 PMCID: PMC6212901 DOI: 10.3390/v10100531] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
Despite the success of direct-acting antiviral (DAA) agents in treating chronic hepatitis C virus (HCV) infection, the number of cases of HCV-related hepatocellular carcinoma (HCC) is expected to increase over the next five years. HCC develops over the span of decades and is closely associated with fibrosis stage. HCV both directly and indirectly establishes a pro-inflammatory environment favorable for viral replication. Repeated cycles of cell death and regeneration lead to genomic instability and loss of cell cycle control. DAA therapy offers >90% sustained virological response (SVR) rates with fewer side effects and restrictions than interferon. While elimination of HCV helps to restore liver function and reverse mild fibrosis, post-SVR patients remain at elevated risk of HCC. A series of studies reporting higher than expected rates of HCC development among DAA-treated patients ignited debate over whether use of DAAs elevates HCC risk compared to interferon. However, recent prospective and retrospective studies based on larger patient cohorts have found no significant difference in risk between DAA and interferon therapy once other factors are taken into account. Although many mechanisms and pathways involved in hepatocarcinogenesis have been elucidated, our understanding of drivers specific to post-SVR hepatocarcinogenesis is still limited, and lack of suitable in vivo and in vitro experimental systems has hampered efforts to examine etiology-specific mechanisms that might serve to answer this question more thoroughly. Further research is needed to identify risk factors and biomarkers for post-SVR HCC and to develop targeted therapies based on more complete understanding of the molecules and pathways implicated in hepatocarcinogenesis.
Collapse
|