1
|
Huang J, Li T, Tang L, Hu Y, Hu Y, Gu Y. Development and Validation of an 18F-FDG PET/CT-based Radiomics Nomogram for Predicting the Prognosis of Patients with Esophageal Squamous Cell Carcinoma. Acad Radiol 2024; 31:5066-5077. [PMID: 38845294 DOI: 10.1016/j.acra.2024.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 05/16/2024] [Indexed: 11/30/2024]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to develop and validate a nomogram, integrating clinical factors and radiomics features, capable of predicting overall survival (OS) in patients diagnosed with esophageal squamous cell carcinoma (ESCC). METHODS In this study, we retrospectively analyzed the case data of 130 patients with ESCC who underwent 18F-FDG PET/CT before treatment. Radiomics features associated with OS were screened by univariate Cox regression (p < 0.05). Further selection was performed by applying the least absolute shrinkage and selection operator Cox regression to generate the weighted Radiomics-score (Rad-score). Independent clinical risk factors were obtained by multivariate Cox regression, and a nomogram was constructed by combining Rad-score and independent risk factors. The predictive performance of the model for OS was assessed using the time-dependent receiver operating characteristic curve, concordance index (C-index), calibration curve, and decision curve analysis. RESULTS Five radiomics features associated with prognosis were finally screened, and a Rad-score was established. Multivariate Cox regression analysis revealed that surgery and clinical M stage were identified as independent risk factors for OS in ESCC. The combined clinical-radiomics nomogram exhibited C-index values of 0.768 (95% CI: 0.699-0.837) and 0.809 (95% CI: 0.695-0.923) in the training and validation cohorts, respectively. Ultimately, calibration curves and decision curves for the 1-, 2-, and 3-year OS demonstrated the satisfactory prognostic prediction and clinical utility of the nomogram. CONCLUSION The developed nomogram, leveraging 18F-FDG PET/CT radiomics and clinically independent risk factors, demonstrates a reliable prognostic prediction for patients with ESCC, potentially serving as a valuable tool for guiding and optimizing clinical treatment decisions in the future.
Collapse
Affiliation(s)
- Jiahui Huang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Tiannv Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Lijun Tang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yuxiao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yingying Gu
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.
| |
Collapse
|
2
|
Bülbül HM, Burakgazi G, Kesimal U. Preoperative assessment of grade, T stage, and lymph node involvement: machine learning-based CT texture analysis in colon cancer. Jpn J Radiol 2024; 42:300-307. [PMID: 37874525 DOI: 10.1007/s11604-023-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE To investigate whether texture analysis of primary colonic mass in preoperative abdominal computed tomography (CT) scans of patients diagnosed with colon cancer could predict tumor grade, T stage, and lymph node involvement using machine learning (ML) algorithms. MATERIALS AND METHODS This retrospective study included 73 patients diagnosed with colon cancer. Texture features were extracted from contrast-enhanced CT images using LifeX software. First, feature reduction was performed by two radiologists through reproducibility analysis. Using the analysis of variance method, the parameters that best predicted lymph node involvement, grade, and T stage were determined. The predictive performance of these parameters was assessed using Orange software with the k-nearest neighbor (kNN), random forest, gradient boosting, and neural network models, and their area under the curve values were calculated. RESULTS There was excellent reproducibility between the two radiologists in terms of 49 of the 58 texture parameters that were subsequently subject to further analysis. Considering all four ML algorithms, the mean AUC and accuracy ranges were 0.557-0.800 and 47-76%, respectively, for the prediction of lymph node involvement; 0.666-0.846 and 68-77%, respectively, for the prediction of grade; and 0.768-0.962 and 81-88%, respectively, for the prediction of T stage. The best performance was achieved with the random forest model in the prediction of LN involvement, the kNN model for the prediction of grade, and the gradient boosting model for the prediction of T stage. CONCLUSION The results of this study suggest that the texture analysis of preoperative CT scans obtained for staging purposes in colon cancer can predict the presence of advanced-stage tumors, high tumor grade, and lymph node involvement with moderate specificity and sensitivity rates when evaluated using ML models.
Collapse
Affiliation(s)
- Hande Melike Bülbül
- Department of Radiology, Ministry of Health Recep Tayyip Erdoğan University Training and Research Hospital, Rize, Turkey.
| | - Gülen Burakgazi
- Department of Radiology, Ministry of Health Recep Tayyip Erdoğan University Training and Research Hospital, Rize, Turkey
| | - Uğur Kesimal
- Department of Radiology, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
3
|
Granata V, Fusco R, De Muzio F, Brunese MC, Setola SV, Ottaiano A, Cardone C, Avallone A, Patrone R, Pradella S, Miele V, Tatangelo F, Cutolo C, Maggialetti N, Caruso D, Izzo F, Petrillo A. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. LA RADIOLOGIA MEDICA 2023; 128:1310-1332. [PMID: 37697033 DOI: 10.1007/s11547-023-01710-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE The aim of this study was the evaluation radiomics analysis efficacy performed using computed tomography (CT) and magnetic resonance imaging in the prediction of colorectal liver metastases patterns linked to patient prognosis: tumor growth front; grade; tumor budding; mucinous type. Moreover, the prediction of liver recurrence was also evaluated. METHODS The retrospective study included an internal and validation dataset; the first was composed by 119 liver metastases from 49 patients while the second consisted to 28 patients with single lesion. Radiomic features were extracted using PyRadiomics. Univariate and multivariate approaches including machine learning algorithms were employed. RESULTS The best predictor to identify tumor growth was the Wavelet_HLH_glcm_MaximumProbability with an accuracy of 84% and to detect recurrence the best predictor was wavelet_HLH_ngtdm_Complexity with an accuracy of 90%, both extracted by T1-weigthed arterial phase sequence. The best predictor to detect tumor budding was the wavelet_LLH_glcm_Imc1 with an accuracy of 88% and to identify mucinous type was wavelet_LLH_glcm_JointEntropy with an accuracy of 92%, both calculated on T2-weigthed sequence. An increase statistically significant of accuracy (90%) was obtained using a linear weighted combination of 15 predictors extracted by T2-weigthed images to detect tumor front growth. An increase statistically significant of accuracy at 93% was obtained using a linear weighted combination of 11 predictors by the T1-weigthed arterial phase sequence to classify tumor budding. An increase statistically significant of accuracy at 97% was obtained using a linear weighted combination of 16 predictors extracted on CT to detect recurrence. An increase statistically significant of accuracy was obtained in the tumor budding identification considering a K-nearest neighbors and the 11 significant features extracted T1-weigthed arterial phase sequence. CONCLUSIONS The results confirmed the Radiomics capacity to recognize clinical and histopathological prognostic features that should influence the choice of treatments in colorectal liver metastases patients to obtain a more personalized therapy.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy.
| | | | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Alessandro Ottaiano
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Claudia Cardone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonio Avallone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Renato Patrone
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Fabiana Tatangelo
- Division of Pathological Anatomy and Cytopathology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084, Salerno, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Radiology Unit-Sant'Andrea University Hospital, Sapienza-University of Rome, 00189, Rome, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
4
|
Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Patrone R, Ottaiano A, Nasti G, Silvestro L, Cassata A, Grassi F, Avallone A, Izzo F, Petrillo A. Colorectal liver metastases patients prognostic assessment: prospects and limits of radiomics and radiogenomics. Infect Agent Cancer 2023; 18:18. [PMID: 36927442 PMCID: PMC10018963 DOI: 10.1186/s13027-023-00495-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
In this narrative review, we reported un up-to-date on the role of radiomics to assess prognostic features, which can impact on the liver metastases patient treatment choice. In the liver metastases patients, the possibility to assess mutational status (RAS or MSI), the tumor growth pattern and the histological subtype (NOS or mucinous) allows a better treatment selection to avoid unnecessary therapies. However, today, the detection of these features require an invasive approach. Recently, radiomics analysis application has improved rapidly, with a consequent growing interest in the oncological field. Radiomics analysis allows the textural characteristics assessment, which are correlated to biological data. This approach is captivating since it should allow to extract biological data from the radiological images, without invasive approach, so that to reduce costs and time, avoiding any risk for the patients. Several studies showed the ability of Radiomics to identify mutational status, tumor growth pattern and histological type in colorectal liver metastases. Although, radiomics analysis in a non-invasive and repeatable way, however features as the poor standardization and generalization of clinical studies results limit the translation of this analysis into clinical practice. Clear limits are data-quality control, reproducibility, repeatability, generalizability of results, and issues related to model overfitting.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, Napoli, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, Milan, 20122, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", Bari, 70124, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Alessandro Ottaiano
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Guglielmo Nasti
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Lucrezia Silvestro
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Antonio Cassata
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesca Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, 80138, Italy
| | - Antonio Avallone
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| |
Collapse
|
5
|
Caruso M, Stanzione A, Prinster A, Pizzuti LM, Brunetti A, Maurea S, Mainenti PP. Role of advanced imaging techniques in the evaluation of oncological therapies in patients with colorectal liver metastases. World J Gastroenterol 2023; 29:521-535. [PMID: 36688023 PMCID: PMC9850941 DOI: 10.3748/wjg.v29.i3.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
In patients with colorectal liver metastasis (CRLMs) unsuitable for surgery, oncological treatments, such as chemotherapy and targeted agents, can be performed. Cross-sectional imaging [computed tomography (CT), magnetic resonance imaging (MRI), 18-fluorodexoyglucose positron emission tomography with CT/MRI] evaluates the response of CRLMs to therapy, using post-treatment lesion shrinkage as a qualitative imaging parameter. This point is critical because the risk of toxicity induced by oncological treatments is not always balanced by an effective response to them. Consequently, there is a pressing need to define biomarkers that can predict treatment responses and estimate the likelihood of drug resistance in individual patients. Advanced quantitative imaging (diffusion-weighted imaging, perfusion imaging, molecular imaging) allows the in vivo evaluation of specific biological tissue features described as quantitative parameters. Furthermore, radiomics can represent large amounts of numerical and statistical information buried inside cross-sectional images as quantitative parameters. As a result, parametric analysis (PA) translates the numerical data contained in the voxels of each image into quantitative parameters representative of peculiar neoplastic features such as perfusion, structural heterogeneity, cellularity, oxygenation, and glucose consumption. PA could be a potentially useful imaging marker for predicting CRLMs treatment response. This review describes the role of PA applied to cross-sectional imaging in predicting the response to oncological therapies in patients with CRLMs.
Collapse
Affiliation(s)
- Martina Caruso
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Napoli 80131, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Napoli 80131, Italy
| | - Anna Prinster
- Institute of Biostructures and Bioimaging, National Research Council, Napoli 80131, Italy
| | - Laura Micol Pizzuti
- Institute of Biostructures and Bioimaging, National Research Council, Napoli 80131, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Napoli 80131, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Napoli 80131, Italy
| | - Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging, National Research Council, Napoli 80131, Italy
| |
Collapse
|
6
|
Magnetic Resonance Features of Liver Mucinous Colorectal Metastases: What the Radiologist Should Know. J Clin Med 2022; 11:jcm11082221. [PMID: 35456314 PMCID: PMC9027866 DOI: 10.3390/jcm11082221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose: The aim of this study is to assess MRI features of mucinous liver metastases compared to non-mucinous metastases and hepatic hemangioma. Methods: A radiological archive was assessed from January 2017 to June 2021 to select patients subjected to liver resection for CRCLM and MRI in the staging phase. We selected 20 patients with hepatic hemangioma (study group B). We evaluated (a) the maximum diameter of the lesions, in millimeters, on T1-W flash 2D in phase and out phase, on axial HASTE T2-W and on portal phase axial VIBE T1 W; and (b) the signal intensity (SI) in T1-W sequences, in T2-W sequences, Diffusion-Weighted Imaging (DWI) sequences and apparent diffusion coefficient (ADC) maps so as to observe (c) the presence and the type of contrast enhancement during the contrast study. The chi-square test was employed to analyze differences in percentage values of the categorical variable, while the non-parametric Kruskal−Wallis test was used to test for statistically significant differences between the median values of the continuous variables. A p-value < 0.05 was considered statistically significant. Results: The final study population included 52 patients (33 men and 19 women) with 63 years of median age (range 37−82 years) and 157 metastases. In 35 patients, we found 118 non-mucinous type metastases (control group), and in 17 patients, we found 39 mucinous type metastases (study group A). During follow-up, recurrence occurred in 12 patients, and three exhibited mucinous types among them. In the study group, all lesions (100%) showed hypointense SI on T1-W, very high SI (similar to hepatic hemangioma) in T2-W with restricted diffusion and iso-hypointense signals in the ADC map. During the contrast study, the main significant feature is the peripheral progressive enhancement.
Collapse
|