1
|
Fernandes MF, Aristizabal-Henao JJ, Marvyn PM, M'Hiri I, Wiens MA, Hoang M, Sebastian M, Nachbar R, St-Pierre P, Diaguarachchige De Silva K, Wood GA, Joseph JW, Doucette CA, Marette A, Stark KD, Duncan RE. Renal tubule-specific Atgl deletion links kidney lipid metabolism to glucagon-like peptide 1 and insulin secretion independent of renal inflammation or lipotoxicity. Mol Metab 2024; 81:101887. [PMID: 38280449 PMCID: PMC10850971 DOI: 10.1016/j.molmet.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
OBJECTIVE Lipotoxic injury from renal lipid accumulation in obesity and type 2 diabetes (T2D) is implicated in associated kidney damage. However, models examining effects of renal ectopic lipid accumulation independent of obesity or T2D are lacking. We generated renal tubule-specific adipose triglyceride lipase knockout (RT-SAKO) mice to determine if this targeted triacylglycerol (TAG) over-storage affects glycemic control and kidney health. METHODS Male and female RT-SAKO mice and their control littermates were tested for changes in glycemic control at 10-12 and 16-18 weeks of age. Markers of kidney health and blood lipid and hormone concentrations were analyzed. Kidney and blood lysophosphatidic acid (LPA) levels were measured, and a role for LPA in mediating impaired glycemic control was evaluated using the LPA receptor 1/3 inhibitor Ki-16425. RESULTS All groups remained insulin sensitive, but 16- to 18-week-old male RT-SAKO mice became glucose intolerant, without developing kidney inflammation or fibrosis. Rather, these mice displayed lower circulating insulin and glucagon-like peptide 1 (GLP-1) levels. Impaired first-phase glucose-stimulated insulin secretion was detected and restored by Exendin-4. Kidney and blood LPA levels were elevated in older male but not female RT-SAKO mice, associated with increased kidney diacylglycerol kinase epsilon. Inhibition of LPA-mediated signaling restored serum GLP-1 levels, first-phase insulin secretion, and glucose tolerance. CONCLUSIONS TAG over-storage alone is insufficient to cause renal tubule lipotoxicity. This work is the first to show that endogenously derived LPA modulates GLP-1 levels in vivo, demonstrating a new mechanism of kidney-gut-pancreas crosstalk to regulate insulin secretion and glucose homeostasis.
Collapse
Affiliation(s)
- Maria F Fernandes
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | | | - Phillip M Marvyn
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | - Iman M'Hiri
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | - Meghan A Wiens
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | - Monica Hoang
- School of Pharmacy, University of Waterloo, Ontario, Canada
| | - Manuel Sebastian
- Max Rady College of Medicine, University of Manitoba, Manitoba, Canada
| | - Renato Nachbar
- Québec Heart and Lung Institute, Department of Medicine, Laval University, Québec, Canada
| | - Philippe St-Pierre
- Québec Heart and Lung Institute, Department of Medicine, Laval University, Québec, Canada
| | | | - Geoffrey A Wood
- Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jamie W Joseph
- School of Pharmacy, University of Waterloo, Ontario, Canada
| | | | - André Marette
- Québec Heart and Lung Institute, Department of Medicine, Laval University, Québec, Canada
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | - Robin E Duncan
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada.
| |
Collapse
|
2
|
Allam MM, Ibrahim RM, El Gazzar WB, Said MA. Dipeptedyl peptidase-4 (DPP-4) inhibitor downregulates HMGB1/TLR4/NF-κB signaling pathway in a diabetic rat model of non-alcoholic fatty liver disease. Arch Physiol Biochem 2024; 130:87-95. [PMID: 34543583 DOI: 10.1080/13813455.2021.1975758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023]
Abstract
CONTEXT Inflammatory and immune pathways play a crucial role in the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Sitagliptin blocks the dipeptidyl peptidase-4 (DPP-4) enzyme, mechanisms that alter inflammatory pathways and the innate immune system, and by which Sitagliptin affects the pathogenesis of NAFLD weren't previously discussed. OBJECTIVE This study aims to understand the interaction between Sitagliptin and innate immune response in order to meliorate NAFLD. METHODS Thirty- two Wistar male albino rats were categorised into four groups. Rats have received a standard diet or a high-fat diet either with or without Sitagliptin. Serum HMGB1, protein and mRNA expressions of hepatic TLR4 and NF-κB, inflammatory cytokines, and histopathological changes were analysed. RESULTS An ameliorative action of Sitagliptin in NAFLD was demonstrated via decreasing HMGB1-mediated TLR4/NF-κB signalling in order to suppress inflammation and reduce insulin resistance. CONCLUSION Sitagliptin may in fact prove to be a beneficial therapeutic intervention in NAFLD.
Collapse
Affiliation(s)
- Mona M Allam
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Reham M Ibrahim
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Walaa Bayoumie El Gazzar
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Mona A Said
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Egypt
| |
Collapse
|
3
|
Sakasai-Sakai A, Takeda K, Takeuchi M. Involvement of Intracellular TAGE and the TAGE-RAGE-ROS Axis in the Onset and Progression of NAFLD/NASH. Antioxidants (Basel) 2023; 12:antiox12030748. [PMID: 36978995 PMCID: PMC10045097 DOI: 10.3390/antiox12030748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The repeated excessive intake of sugar, a factor that contributes to the onset of nonalcoholic fatty liver disease (NAFLD) and its progression to the chronic form of nonalcoholic steatohepatitis (NASH), markedly increases the hepatocyte content of glyceraldehyde (GA), a glucose/fructose metabolic intermediate. Toxic advanced glycation end-products (toxic AGEs, TAGE) are synthesized by cross-linking reactions between the aldehyde group of GA and the amino group of proteins, and their accumulation has been implicated in the development of NAFLD/NASH and hepatocellular carcinoma (HCC). Our previous findings not only showed that hepatocyte disorders were induced by the intracellular accumulation of TAGE, but they also indicated that extracellular leakage resulted in elevated TAGE concentrations in circulating fluids. Interactions between extracellular TAGE and receptor for AGEs (RAGE) affect intracellular signaling and reactive oxygen species (ROS) production, which may, in turn, contribute to the pathological changes observed in NAFLD/NASH. RAGE plays a role in the effects of the extracellular leakage of TAGE on the surrounding cells, which ultimately promote the onset and progression of NAFLD/NASH. This review describes the relationships between intracellular TAGE levels and hepatocyte and hepatic stellate cell (HSC) damage as well as the TAGE-RAGE-ROS axis in hepatocytes, HSC, and HCC cells. The "TAGE theory" will provide novel insights for future research on NAFLD/NASH.
Collapse
Affiliation(s)
- Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan
| | - Kenji Takeda
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan
| |
Collapse
|
4
|
Wada K, Nakashima Y, Yamakawa M, Hori A, Seishima M, Tanabashi S, Matsushita S, Tokimitsu N, Nagata C. Dietary advanced glycation end products and cancer risk in Japan: from the Takayama study. Cancer Sci 2022; 113:2839-2848. [PMID: 35662347 PMCID: PMC9357612 DOI: 10.1111/cas.15455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022] Open
Abstract
Few large epidemiological studies have evaluated the association between dietary advanced glycation end products (AGEs) and cancer risk. We evaluated the relationship between dietary AGE intake and the incidence of total cancer and site‐specific cancers in a population‐based prospective study in Japan. Participants were 14,173 men and 16,549 women who were 35 years of age or older in 1992. Dietary intake was assessed via a validated food frequency questionnaire. Intake of the AGE Nε‐carboxymethyl‐lysine (CML) was estimated using databases of CML content in foods determined using ultraperformance liquid chromatography–tandem mass spectrometry. Cancer incidence was confirmed through regional population‐based cancer registries. During a mean follow‐up period of 13.3 years, 1954 men and 1477 women developed cancer. We did not observe a significant association between CML intake and the risk of total cancer in men or women. In men, compared with the lowest quartile of CML intake, the hazard ratios of liver cancer for the second, third, and highest quartiles were 1.69 (95% CI: 0.92–3.10), 1.48 (95% CI: 0.77–2.84), and 2.10 (95% CI: 1.10–3.98; trend p = 0.04). Conversely, a decreased relative risk of male stomach cancer was observed for the second and highest quartiles of CML intake versus the lowest quartile, with hazard ratios of 0.73 and 0.67, respectively (trend p = 0.08). Our finding on the potential harmfulness of consuming AGEs on liver cancer risk is intriguing and warrants further study.
Collapse
Affiliation(s)
- Keiko Wada
- Department of Epidemiology and Preventive Medicine Gifu University Graduate School of Medicine Gifu Japan
| | - Yuma Nakashima
- Department of Epidemiology and Preventive Medicine Gifu University Graduate School of Medicine Gifu Japan
| | - Michiyo Yamakawa
- Department of Epidemiology and Preventive Medicine Gifu University Graduate School of Medicine Gifu Japan
| | | | - Mitsuru Seishima
- Department of Internal Medicine, Takayama Red Cross Hospital Gifu Japan
| | - Shinobu Tanabashi
- Department of Internal Medicine, Takayama Red Cross Hospital Gifu Japan
| | | | - Naoki Tokimitsu
- Department of Internal Medicine, Takayama Red Cross Hospital Gifu Japan
| | - Chisato Nagata
- Department of Epidemiology and Preventive Medicine Gifu University Graduate School of Medicine Gifu Japan
| |
Collapse
|
5
|
Higher hepatic advanced glycation end products and liver damage markers are associated with non-alcoholic steatohepatitis. Nutr Res 2022; 104:71-81. [PMID: 35635899 DOI: 10.1016/j.nutres.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/01/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022]
|
6
|
Garlic Extract: Inhibition of Biochemical and Biophysical Changes in Glycated HSA. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112211028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycation of various biomolecules contributes to structural changes and formation of several high molecular weight fluorescent and non-fluorescent, advanced glycation end products (AGEs). AGEs and glycation are involved in various health complications. Synthetic medicines, including metformin, have several adverse effects. Natural products and their derivatives are used in the treatment of various diseases due to their significant therapeutic qualities. Allium sativum (garlic) is used in traditional medicines because of its antioxidant, anti-inflammatory, and anti-diabetic properties. This study aimed to determine the anti-glycating and AGEs inhibitory activities of garlic. Biochemical and biophysical analyses were performed for in vitro incubated human serum albumin (HSA) with 0.05 M of glucose for 1, 5, and 10 weeks. Anti-glycating and AGEs inhibitory effect of garlic was investigated in glycated samples. Increased biochemical and biophysical changes were observed in glycated HSA incubated for 10 weeks (G-HSA-10W) as compared to native HSA (N-HSA) as well as glycated HSA incubated for 1 (G-HSA-1W) and 5 weeks (G-HSA-5W). Garlic extract with a concentration of ≥6.25 µg/mL exhibited significant inhibition in biophysical and biochemical changes of G-HSA-10W. Our findings demonstrated that garlic extract has the ability to inhibit biochemical and biophysical changes in HSA that occurred due to glycation. Thus, garlic extract can be used against glycation and AGE-related health complications linked with chronic diseases in diabetic patients due to its broad therapeutic potential.
Collapse
|
7
|
Xanthohumol alleviates T2DM-induced liver steatosis and fibrosis by mediating the NRF2/RAGE/NF-κB signaling pathway. Future Med Chem 2021; 13:2069-2081. [PMID: 34551612 DOI: 10.4155/fmc-2021-0241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hyperglycemia-associated advanced glycation end products (AGEs) and the receptor for AGE (RAGE) contribute to nonalcoholic fatty liver disease (NAFLD). Xanthohumol (XH) exhibits protective activities against liver diseases. Aim: To investigate the effects of XH on Type II diabetes mellitus (T2DM)-induced liver steatosis and fibrosis. Methods: NAFLD rat models were duplicated. Biomolecular markers were detected. Quantitative real-time PCR (RT-PCR) and western blot were used to detect mRNA and protein expression. Immunofluorescence assays were employed to identify the subcellular locations. Results: XH significantly ameliorated hyperglycemia and hyperlipidemia in rats. XH attenuated the expression of RAGE and NF-κB signaling. XH significantly alleviated inflammation and oxidation by upregulating NRF2 expression. Knockdown of NRF2 blocked XH protection in hepatocytes. Conclusion: XH protected against T2DM-induced liver steatosis and fibrosis by mediating NRF2/AGE/RAGE/NF-κB signaling.
Collapse
|
8
|
Takeuchi M, Sakasai-Sakai A, Takata T, Takino JI, Koriyama Y, Kikuchi C, Furukawa A, Nagamine K, Hori T, Matsunaga T. Intracellular Toxic AGEs (TAGE) Triggers Numerous Types of Cell Damage. Biomolecules 2021; 11:biom11030387. [PMID: 33808036 PMCID: PMC8001776 DOI: 10.3390/biom11030387] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The habitual intake of large amounts of sugar, which has been implicated in the onset/progression of lifestyle-related diseases (LSRD), induces the excessive production of glyceraldehyde (GA), an intermediate of sugar metabolism, in neuronal cells, hepatocytes, and cardiomyocytes. Reactions between GA and intracellular proteins produce toxic advanced glycation end-products (toxic AGEs, TAGE), the accumulation of which contributes to various diseases, such as Alzheimer’s disease, non-alcoholic steatohepatitis, and cardiovascular disease. The cellular leakage of TAGE affects the surrounding cells via the receptor for AGEs (RAGE), thereby promoting the onset/progression of LSRD. We demonstrated that the intracellular accumulation of TAGE triggered numerous cellular disorders, and also that TAGE leaked into the extracellular space, thereby increasing extracellular TAGE levels in circulating fluids. Intracellular signaling and the production of reactive oxygen species are affected by extracellular TAGE and RAGE interactions, which, in turn, facilitate the intracellular generation of TAGE, all of which may contribute to the pathological changes observed in LSRD. In this review, we discuss the relationships between intracellular TAGE levels and numerous types of cell damage. The novel concept of the “TAGE theory” is expected to open new perspectives for research into LSRD.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan; (A.S.-S.); (T.T.)
- Correspondence: ; Tel.: +81-76-218-8456
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan; (A.S.-S.); (T.T.)
| | - Takanobu Takata
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan; (A.S.-S.); (T.T.)
| | - Jun-ichi Takino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (J.-i.T.); (T.H.)
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka, Mie 513-8670, Japan; (Y.K.); (A.F.)
| | - Chigusa Kikuchi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (C.K.); (T.M.)
| | - Ayako Furukawa
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka, Mie 513-8670, Japan; (Y.K.); (A.F.)
| | - Kentaro Nagamine
- Department of Clinical Nutrition, Faculty of Health Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan;
| | - Takamitsu Hori
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (J.-i.T.); (T.H.)
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (C.K.); (T.M.)
| |
Collapse
|
9
|
RasGRP2 inhibits glyceraldehyde-derived toxic advanced glycation end-products from inducing permeability in vascular endothelial cells. Sci Rep 2021; 11:2959. [PMID: 33536515 PMCID: PMC7859393 DOI: 10.1038/s41598-021-82619-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/22/2021] [Indexed: 01/17/2023] Open
Abstract
Advanced glycation end-products (AGEs) are formed by the non-enzymatic reaction of sugars and proteins. Among the AGEs, glyceraldehyde-derived toxic AGEs (TAGE) are associated with various diseases, including diabetic complications such as diabetic retinopathy (DR). The risk of developing DR is strongly associated with poor glycemic control, which causes AGE accumulation and increases AGE-induced vascular permeability. We previously reported that Ras guanyl nucleotide releasing protein 2 (RasGRP2), which activates small G proteins, may play an essential role in the cell response to toxicity when exposed to various factors. However, it is not known whether RasGRP2 prevents the adverse effects of TAGE in vascular endothelial cells. This study observed that TAGE enhanced vascular permeability by disrupting adherens junctions and tight junctions via complex signaling, such as ROS and non-ROS pathways. In particular, RasGRP2 protected adherens junction disruption, thereby suppressing vascular hyper-permeability. These results indicate that RasGRP2 is an essential protective factor of vascular permeability and may help develop novel therapeutic strategies for AGE-induced DR.
Collapse
|
10
|
Takeuchi M. Toxic AGEs (TAGE) theory: a new concept for preventing the development of diseases related to lifestyle. Diabetol Metab Syndr 2020; 12:105. [PMID: 33292465 PMCID: PMC7708159 DOI: 10.1186/s13098-020-00614-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The habitual excessive intake of sugar (i.e., sucrose and high-fructose corn syrup), which has been implicated in the onset of diabetes mellitus, induces excessive production of glyceraldehyde, a metabolite produced during glucose and fructose metabolism, in hepatocytes, neuronal cells, and cardiomyocytes. MAIN TEXT Toxic advanced glycation end-products (toxic AGEs, TAGE) are formed from reactions between glyceraldehyde and intracellular proteins, and their accumulation contributes to various cellular disorders. TAGE leakage from cells affects the surrounding cells and increases serum TAGE levels, promoting the onset and/or development of lifestyle-related diseases (LSRD). Therefore, serum TAGE levels have potential as a novel biomarker for predicting the onset and/or progression of LSRD, and minimizing the effects of TAGE might help to prevent the onset and/or progression of LSRD. Serum TAGE levels are closely related to LSRD associated with the excessive ingestion of sugar and/or dietary AGEs. CONCLUSIONS The TAGE theory is also expected to open new perspectives for research into numerous other diseases.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan.
| |
Collapse
|
11
|
Hassan NF, Nada SA, Hassan A, El-Ansary MR, Al-Shorbagy MY, Abdelsalam RM. Saroglitazar Deactivates the Hepatic LPS/TLR4 Signaling Pathway and Ameliorates Adipocyte Dysfunction in Rats with High-Fat Emulsion/LPS Model-Induced Non-alcoholic Steatohepatitis. Inflammation 2019; 42:1056-1070. [PMID: 30737662 DOI: 10.1007/s10753-019-00967-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The most epidemic liver disorder non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis and inflammation with hepatocellular damage. Recently, it is predictable to be the extensive cause for liver transplantation. The absence of an approved therapeutic agent for NASH is the reason for investigating saroglitazar (SAR) which showed promising effects as a dual PPAR-α/γ agonist in recent studies on NASH. Here, we aimed to investigate the effect of SAR on NASH induced in rats by the administration of high-fat emulsion (HFE) and small doses of lipopolysaccharides (LPS) for 5 weeks. Rats were divided into three groups: negative control group (saline and standard rodent chow), model group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p)), and SAR-treated group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p.) + SAR(4 mg/kg/day, oral gavage) starting at week 3.Treatment with SAR successfully ameliorated the damaging effects of HFE with LPS, by counteracting body weight gain and biochemically by normalization of liver function parameters activity, glucose, insulin, homeostasis model of assessment (HOMA-IR) score, lipid profile levels, and histopathological examination. Significant changes in adipokine levels were perceived, resulting in a significant decline in serum leptin and tumor necrosis factor-α (TNF-α) level concurrent with adiponectin normalization. The positive effects observed for SAR on NASH are due to the downregulation of the LPS/TLR4 pathway, as indicated by the suppression of hepatic Toll-like receptor 4 (TLR4), NF-κB, TNF-α, and transforming growth factor-β1 (TGF-β1) expression. In conclusion, this work verified that SAR ameliorates NASH through deactivation of the hepatic LPS/TLR4 pathway and inhibition of adipocyte dysfunction.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Somaia A Nada
- Department of Pharmacology and Toxicology, National Research Centre, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Al-Mokattam, Cairo, Egypt.
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Evidence for Toxic Advanced Glycation End-Products Generated in the Normal Rat Liver. Nutrients 2019; 11:nu11071612. [PMID: 31315223 PMCID: PMC6683103 DOI: 10.3390/nu11071612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
Glucose/fructose in beverages/foods containing high-fructose corn syrup (HFCS) are metabolized to glyceraldehyde (GA) in the liver. We previously reported that GA-derived advanced glycation end-products (toxic AGEs, TAGE) are generated and may induce the onset/progression of non-alcoholic fatty liver disease (NAFLD). We revealed that the generation of TAGE in the liver and serum TAGE levels were higher in NAFLD patients than in healthy humans. Although we propose the intracellular generation of TAGE in the normal liver, there is currently no evidence to support this, and the levels of TAGE produced have not yet been measured. In the present study, male Wister/ST rats that drank normal water or 10% HFCS 55 (HFCS beverage) were maintained for 13 weeks, and serum TAGE levels and intracellular TAGE levels in the liver were analyzed. Rats in the HFCS group drank 127.4 mL of the HFCS beverage each day. Serum TAGE levels and intracellular TAGE levels in the liver both increased in the HFCS group. A positive correlation was observed between intracellular TAGE levels in the liver and serum TAGE levels. On the other hand, in male Wister/ST rats that drank Lactobacillus beverage for 12 weeks-a commercial drink that contains glucose, fructose, and sucrose- no increases were observed in intracellular TAGE or serum TAGE levels. Intracellular TAGE were generated in the normal rat liver, and their production was promoted by HFCS, which may increase the risk of NAFLD.
Collapse
|
13
|
Takata T, Sakasai-Sakai A, Ueda T, Takeuchi M. Intracellular toxic advanced glycation end-products in cardiomyocytes may cause cardiovascular disease. Sci Rep 2019; 9:2121. [PMID: 30765817 PMCID: PMC6375929 DOI: 10.1038/s41598-019-39202-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a lifestyle-related disease (LSRD) and one of the largest public health issues. Risk factors for CVD correlate with an excessive intake of glucose and/or fructose, which has been shown to induce the production of advanced glycation end-products (AGEs). We previously identified AGEs derived from glyceraldehyde and named them toxic AGEs (TAGE) due to their cytotoxicities and relationship with LSRD. We also reported that extracellular TAGE in the vascular system may promote CVD and that serum TAGE levels are associated with risk factors for CVD. The mechanisms responsible for the onset and/or progression of CVD by extracellular TAGE or the above risk factors involve vascular disorders. In the present study, we revealed that rat primary cultured cardiomyocytes generated intracellular TAGE, which decreased beating rates and induced cell death. LC3-II/LC3-I, a factor of autophagy, also decreased. Although intracellular TAGE may be targets of degradation as cytotoxic proteins via autophagy, they may inhibit autophagy. Furthermore, the mechanisms by which intracellular TAGE decrease beating rates and induce cell death may involve the suppression of autophagy. The present results suggest that intracellular TAGE are generated in cardiomyocytes and directly damage them, resulting in CVD.
Collapse
Affiliation(s)
- Takanobu Takata
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan.
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan
| | - Tadashi Ueda
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan
| |
Collapse
|
14
|
Anderson EJ, Vistoli G, Katunga LA, Funai K, Regazzoni L, Monroe TB, Gilardoni E, Cannizzaro L, Colzani M, De Maddis D, Rossoni G, Canevotti R, Gagliardi S, Carini M, Aldini G. A carnosine analog mitigates metabolic disorders of obesity by reducing carbonyl stress. J Clin Invest 2018; 128:5280-5293. [PMID: 30226473 DOI: 10.1172/jci94307] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Sugar- and lipid-derived aldehydes are reactive carbonyl species (RCS) frequently used as surrogate markers of oxidative stress in obesity. A pathogenic role for RCS in metabolic diseases of obesity remains controversial, however, partly because of their highly diffuse and broad reactivity and the lack of specific RCS-scavenging therapies. Naturally occurring histidine dipeptides (e.g., anserine and carnosine) show RCS reactivity, but their therapeutic potential in humans is limited by serum carnosinases. Here, we present the rational design, characterization, and pharmacological evaluation of carnosinol, i.e., (2S)-2-(3-amino propanoylamino)-3-(1H-imidazol-5-yl)propanol, a derivative of carnosine with high oral bioavailability that is resistant to carnosinases. Carnosinol displayed a suitable ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile and was determined to have the greatest potency and selectivity toward α,β-unsaturated aldehydes (e.g., 4-hydroxynonenal, HNE, ACR) among all others reported thus far. In rodent models of diet-induced obesity and metabolic syndrome, carnosinol dose-dependently attenuated HNE adduct formation in liver and skeletal muscle, while simultaneously mitigating inflammation, dyslipidemia, insulin resistance, and steatohepatitis. These improvements in metabolic parameters with carnosinol were not due to changes in energy expenditure, physical activity, adiposity, or body weight. Collectively, our findings illustrate a pathogenic role for RCS in obesity-related metabolic disorders and provide validation for a promising new class of carbonyl-scavenging therapeutic compounds rationally derived from carnosine.
Collapse
Affiliation(s)
- Ethan J Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lalage A Katunga
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - T Blake Monroe
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Luca Cannizzaro
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Mara Colzani
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Danilo De Maddis
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giuseppe Rossoni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | | | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Cai J, Xu M, Zhang X, Li H. Innate Immune Signaling in Nonalcoholic Fatty Liver Disease and Cardiovascular Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:153-184. [PMID: 30230967 DOI: 10.1146/annurev-pathmechdis-012418-013003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The physiological significance of innate immune signaling lies primarily in its role in host defense against invading pathogens. It is becoming increasingly clear that innate immune signaling also modulates the development of metabolic diseases, especially nonalcoholic fatty liver disease and cardiovascular diseases, which are characterized by chronic, low-grade inflammation due to a disarrangement of innate immune signaling. Notably, recent studies indicate that in addition to regulating canonical innate immune-mediated inflammatory responses (or immune-dependent signaling-induced responses), molecules of the innate immune system regulate pathophysiological responses in multiple organs during metabolic disturbances (termed immune-independent signaling-induced responses), including the disruption of metabolic homeostasis, tissue repair, and cell survival. In addition, emerging evidence from the study of immunometabolism indicates that the systemic metabolic status may have profound effects on cellular immune function and phenotypes through the alteration of cell-intrinsic metabolism. We summarize how the innate immune system interacts with metabolic disturbances to trigger immune-dependent and immune-independent pathogenesis in the context of nonalcoholic fatty liver disease, as representative of metabolic diseases, and cardiovascular diseases.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; .,Institute of Model Animals of Wuhan University, Wuhan 430072, China.,Basic Medical School, Wuhan University, Wuhan 430071, China.,Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; .,Institute of Model Animals of Wuhan University, Wuhan 430072, China.,Basic Medical School, Wuhan University, Wuhan 430071, China
| | - Xiaojing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; .,Institute of Model Animals of Wuhan University, Wuhan 430072, China.,Basic Medical School, Wuhan University, Wuhan 430071, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; .,Institute of Model Animals of Wuhan University, Wuhan 430072, China.,Basic Medical School, Wuhan University, Wuhan 430071, China
| |
Collapse
|
16
|
Mehta R, Shaw G, Masschelin P, Felix S, Otgonsuren M, Baranova A, Goodman Z, Younossi Z. Polymorphisms in the receptor for advanced glycation end-products (RAGE) gene and circulating RAGE levels as a susceptibility factor for non-alcoholic steatohepatitis (NASH). PLoS One 2018; 13:e0199294. [PMID: 29928018 PMCID: PMC6013208 DOI: 10.1371/journal.pone.0199294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/05/2018] [Indexed: 01/14/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome and major cause of chronic liver disease in developed countries. Its prevalence is increasing in parallel with the prevalence of obesity and other components of the metabolic syndrome. As the liver is central to the clearance and catabolism of circulating advanced glycosylation end-products (AGEs), AGEs and their cognate receptors—RAGE (receptor for AGEs) system might be involved in NAFLD in obese patients. To examine this, we investigated four common polymorphisms of RAGE gene: 1704G/T (rs184003), G82S (rs2070600), -374T/A (rs1800624) and −429T/C (rs1800625) in 340 obese patients with metabolic syndrome. and protein levels of AGE and RAGE. This is the first study to describe association of 4 common polymorphisms with non-alcoholic steatohepatitis (NASH) as well as to examine protein levels of RAGE and AGE. Univariate analysis showed patients carrying the rs1800624 heterozygote genotype (AT) exhibited 2.36-fold increased risk of NASH (odds ratio (OR) = 2.36; 95% confidence interval (95% CI): 1.35–4.19) after adjusting for confounders. The minor allele -374 A has been shown to suppress the expression of RAGE protein. The protein levels of esRAGE, total sRAGE and AGE protein levels did not correlate with each other in obese patients with no liver disease, indicative of RAGE signaling playing an independent role in liver injury. In obese patients with non-NASH NAFLD and NASH respectively, esRAGE protein showed strong positive correlation with total sRAGE protein. Further, haplotype analysis of the 4 SNPs, indicated that haplotype G-A-T-G was significantly associated with 2-fold increased risk for NASH (OR = 2.08; 95% CI: 1.21–3.5; P = 0.006) after adjusting for confounders. In conclusion, the presented data indicate that the G-A-T-G haplotype containing minor allele at position −374 A and major allele at position −429T, 1704G, and G82S G could be regarded as a marker for NASH.
Collapse
Affiliation(s)
- Rohini Mehta
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus, Falls Church, Virginia, United States of America
| | - Gladys Shaw
- Center for the Study of Chronic Metabolic Diseases, George Mason University, Fairfax, Virginia, United States of America
| | - Peter Masschelin
- Center for the Study of Chronic Metabolic Diseases, George Mason University, Fairfax, Virginia, United States of America
| | - Sean Felix
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus, Falls Church, Virginia, United States of America
| | - Munkzhul Otgonsuren
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus, Falls Church, Virginia, United States of America
| | - Ancha Baranova
- Center for the Study of Chronic Metabolic Diseases, George Mason University, Fairfax, Virginia, United States of America
| | - Zachary Goodman
- Center for Liver Disease, Department of Medicine, Inova Fairfax Hospital, Falls Church, Virginia, United States of America
| | - Zobair Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus, Falls Church, Virginia, United States of America
- Center for Liver Disease, Department of Medicine, Inova Fairfax Hospital, Falls Church, Virginia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lonardo A, Nascimbeni F, Mantovani A, Targher G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J Hepatol 2018; 68:335-352. [PMID: 29122390 DOI: 10.1016/j.jhep.2017.09.021] [Citation(s) in RCA: 522] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Accepted: 09/23/2017] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common forms of chronic liver disease worldwide and its prevalence is expected to continue rising. NAFLD has traditionally been considered a consequence of metabolic syndrome (MetS). However, the link between NAFLD and MetS components, especially type 2 diabetes mellitus (T2DM), hypertension (HTN), and cardiovascular disease (CVD) is more complex than previously thought. Indeed, the adverse effects of NAFLD extend far beyond the liver, with a large body of clinical evidence now suggesting that NAFLD may precede and/or promote the development of T2DM, HTN and atherosclerosis/CVD. The risk of developing these cardiometabolic diseases parallels the underlying severity of NAFLD. Accumulating evidence suggests that the presence and severity of NAFLD is associated with an increased risk of incident T2DM and HTN. Moreover, long-term prospective studies indicate that the presence and severity of NAFLD independently predicts fatal and nonfatal CVD events. In this review, we critically discuss the rapidly expanding body of clinical evidence that supports the existence of a bi-directional relationship between NAFLD and various components of MetS, particularly T2DM and HTN, as well as the current knowledge regarding a strong association between NAFLD and CVD morbidity and mortality. Finally, we discuss the most updated putative biological mechanisms through which NAFLD may contribute to the development of HTN, T2DM and CVD.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Division of Internal Medicine, Department of Biomedical, Metabolic and Neural Sciences, Azienda Ospedaliero-Universitaria, Ospedale Civile di Baggiovara, Modena, Italy
| | - Fabio Nascimbeni
- Division of Internal Medicine, Department of Biomedical, Metabolic and Neural Sciences, Azienda Ospedaliero-Universitaria, Ospedale Civile di Baggiovara, Modena, Italy
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy.
| |
Collapse
|
18
|
Allam MM, El Gazzar WB. Exendin-4, a glucagon-like peptide-1 receptor agonist downregulates hepatic receptor for advanced glycation end products in non-alcoholic steatohepatitis rat model. Arch Physiol Biochem 2018; 124:10-17. [PMID: 28696785 DOI: 10.1080/13813455.2017.1348362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONTEXT Exendin-4, a glucagon-like peptide-1 receptor agonist has been shown to have curative effects on hepatic steatosis in murine models. OBJECTIVE The present study aimed to elucidate the effect of Exendin-4 on hepatic receptor for advanced glycation end products (RAGE) mRNA expression in non-alcoholic steatohepatitis (NASH) rat model induced by high-fat diet. METHODS NASH was induced by high-fat diet intake, and Exendin-4 was given in two different doses. After 12 weeks, liver enzyme levels, hepatic triglycerides, antioxidant enzymes and malondialdehyde (MDA) levels, and mRNA RAGE was detected using RT-PCR. RESULTS Exendin-4 in high dose reduced significantly liver enzymes activity, hepatic triglycerides, MDA levels and hepatic mRNA RAGE expression levels with significantly higher antioxidant enzymes activity. CONCLUSIONS Our results give further insights into the mechanisms underlying the curative role of Exendin-4 in NASH, suggesting that interference with RAGE may be a useful therapeutic approach to NASH.
Collapse
Affiliation(s)
- Mona M Allam
- a Physiology Department, Faculty of Medicine , Benha University , Benha , Egypt
| | - Walaa B El Gazzar
- b Biochemistry Department, Faculty of Medicine , Benha University , Benha , Egypt
| |
Collapse
|
19
|
Takeuchi M, Takino JI, Sakasai-Sakai A, Takata T, Tsutsumi M. Toxic AGE (TAGE) Theory for the Pathophysiology of the Onset/Progression of NAFLD and ALD. Nutrients 2017; 9:E634. [PMID: 28632197 PMCID: PMC5490613 DOI: 10.3390/nu9060634] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/06/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are among the most common causes of chronic liver diseases in the westernized world. NAFLD and ALD are frequently accompanied by extrahepatic complications, including hepatocellular carcinoma and cardiovascular diseases, which have a negative impact on patient survival. The chronic ingestion of an excessive daily diet containing sugar/high-fructose corn syrup increases the level of the fructose/glucose metabolite, glyceraldehyde (GA), while the chronic consumption of an excessive number of alcoholic beverages increases the level of the alcohol metabolite, acetaldehyde (AA) in the liver. GA and AA are known to react non-enzymatically with the ε- or α-amino groups of proteins, thereby generating advanced glycation end-products (AGEs, GA-AGEs, and AA-AGEs, respectively) in vivo. The interaction between GA-AGEs and the receptor for AGEs (RAGE) alters intracellular signaling, gene expression, and the release of pro-inflammatory molecules and also elicits the production of reactive oxygen species by human hepatocytes and hepatic stellate cells, all of which may contribute to the pathological changes associated with chronic liver diseases. We herein discuss the pathophysiological roles of GA-AGEs and AA-AGEs (toxic AGEs, TAGE) and a related novel theory for preventing the onset/progression of NAFLD and ALD.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | - Jun-Ichi Takino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan.
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | - Takanobu Takata
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| |
Collapse
|
20
|
Similarities and interactions between the ageing process and high chronic intake of added sugars. Nutr Res Rev 2017; 30:191-207. [PMID: 28511733 DOI: 10.1017/s0954422417000051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractIn our societies, the proportions of elderly people and of obese individuals are increasing. Both factors are associated with high health-related costs. During obesity, many authors suggest that it is a high chronic intake of added sugars (HCIAS) that triggers the shift towards pathology. However, the majority of studies were performed in young subjects and only a few were interested in the interaction with the ageing process. Our purpose was to discuss the metabolic effects of HCIAS, compare with the effects of ageing, and evaluate how deleterious the combined action of HCIAS and ageing could be. This effect of HCIAS seems mediated by fructose, targeting the liver first, which may lead to all subsequent metabolic alterations. The first basic alterations induced by fructose are increased oxidative stress, protein glycation, inflammation, dyslipidaemia and insulin resistance. These alterations are also present during the ageing process, and are closely related to each other, one leading to the other. These basic alterations are also involved in more complex syndromes, which are also favoured by HCIAS, and present during ageing. These include non-alcoholic fatty liver disease, hypertension, neurodegenerative diseases, sarcopenia and osteoporosis. Cumulative effects of ageing and HCIAS have been seldom tested and may not always be strictly additive. Data also suggest that some of the metabolic alterations that are more prevalent during ageing could be related more with nutritional habits than to intrinsic ageing. In conclusion, it is clear that HCIAS interacts with the ageing process, accelerates the accumulation of metabolic alterations, and that it should be avoided.
Collapse
|
21
|
Sun X, Zhang Y, Xie M. Review. The role of peroxisome proliferator-activated receptor in the treatment of non-alcoholic fatty liver disease. ACTA PHARMACEUTICA 2017; 67:1-13. [PMID: 28231052 DOI: 10.1515/acph-2017-0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 12/24/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been defined as a spectrum of histological abnormalities and is characterized by significant and excessive accumulation of triglycerides in the hepatocytes in patients without alcohol consumption or other diseases. Current studies are targeting new molecular mechanisms that underlie NAFLD and associated metabolic disorders. Many therapeutic targets have been found and used in clinical studies. Peroxisome proliferator-activated receptors (PPARs) are among the potential targets and have been demonstrated to exert a pivotal role in modulation of NAFLD. Many drugs developed so far are targeted at PPARs. Thus, the aim of this paper is to summarize the roles of PPARs in the treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Sun
- Department of Pharmacy Wuxi No. 2 People´s Hospital The Affiliated Hospital of Nanjing Medical University , Wuxi , Jiangsu 214002, China
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, The Affiliated Hospital of Nanjing Medical University , Wuxi , Jiangsu, 214002, China
- Department of Pharmacology College of Pharmaceutical Sciences Soochow University , Suzhou , Jiangsu 215123, China
| | - Meilin Xie
- Department of Pharmacology College of Pharmaceutical Sciences Soochow University , Suzhou , Jiangsu 215123, China
| |
Collapse
|
22
|
|
23
|
Takeuchi M. Serum Levels of Toxic AGEs (TAGE) May Be a Promising Novel Biomarker for the Onset/Progression of Lifestyle-Related Diseases. Diagnostics (Basel) 2016; 6:E23. [PMID: 27338481 PMCID: PMC4931418 DOI: 10.3390/diagnostics6020023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022] Open
Abstract
Advanced glycation end-products (AGEs) generated with aging or in the presence of diabetes mellitus, particularly AGEs derived from the glucose/fructose metabolism intermediate glyceraldehyde (Glycer-AGEs; termed toxic AGEs (TAGE)), were recently shown to be closely involved in the onset/progression of diabetic vascular complications via the receptor for AGEs (RAGE). TAGE also contribute to various diseases, such as cardiovascular disease; nonalcoholic steatohepatitis; cancer; Alzheimer's disease, and; infertility. This suggests the necessity of minimizing the influence of the TAGE-RAGE axis in order to prevent the onset/progression of lifestyle-related diseases (LSRD) and establish therapeutic strategies. Changes in serum TAGE levels are closely associated with LSRD related to overeating, a lack of exercise, or excessive ingestion of sugars/dietary AGEs. We also showed that serum TAGE levels, but not those of hemoglobin A1c, glucose-derived AGEs, or Nε-(carboxymethyl)lysine, have potential as a biomarker for predicting the progression of atherosclerosis and future cardiovascular events. We herein introduce the usefulness of serum TAGE levels as a biomarker for the prevention/early diagnosis of LSRD and the evaluation of the efficacy of treatments; we discuss whether dietary AGE/sugar intake restrictions reduce the generation/accumulation of TAGE, thereby preventing the onset/progression of LSRD.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Kahoku, Ishikawa 920-0293, Japan.
| |
Collapse
|
24
|
Iwamura A, Ito M, Mitsui H, Hasegawa J, Kosaka K, Kino I, Tsuda M, Nakajima M, Yokoi T, Kume T. Toxicological evaluation of acyl glucuronides utilizing half-lives, peptide adducts, and immunostimulation assays. Toxicol In Vitro 2015; 30:241-9. [DOI: 10.1016/j.tiv.2015.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/06/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022]
|
25
|
Takino JI, Nagamine K, Hori T, Sakasai-Sakai A, Takeuchi M. Contribution of the toxic advanced glycation end-products-receptor axis in nonalcoholic steatohepatitis-related hepatocellular carcinoma. World J Hepatol 2015; 7:2459-2469. [PMID: 26483867 PMCID: PMC4606201 DOI: 10.4254/wjh.v7.i23.2459] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/07/2015] [Accepted: 09/07/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. The main etiologies of HCC are hepatitis B virus and hepatitis C virus (HCV), and non-hepatitis B/non-hepatitis C HCC (NBNC-HCC) has also been identified as an etiological factor. Although the incidence of HCV-related HCC in Japan has decreased slightly in recent years, that of NBNC-HCC has increased. The onset mechanism of NBNC-HCC, which has various etiologies, remains unclear; however, nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease, is known to be an important risk factor for NBNC-HCC. Among the different advanced glycation end-products (AGEs) formed by the Maillard reaction, glyceraldehyde-derived AGEs, the predominant components of toxic AGEs (TAGE), have been associated with NASH and NBNC-HCC, including NASH-related HCC. Furthermore, the expression of the receptor for AGEs (RAGE) has been correlated with the malignant progression of HCC. Therefore, TAGE induce oxidative stress by binding with RAGE may, in turn, lead to adverse effects, such as fibrosis and malignant transformation, in hepatic stellate cells and tumor cells during NASH or NASH-related HCC progression. The aim of this review was to examine the contribution of the TAGE-RAGE axis in NASH-related HCC.
Collapse
|