1
|
Adida S, Taori S, Tirmizi Z, Bayley JC, Zinn PO, Flickinger JC, Burton SA, Choi S, Sefcik RK, Gerszten PC. Stereotactic body radiation therapy for spinal metastases from gastrointestinal primary cancers. J Neurooncol 2025:10.1007/s11060-025-05033-w. [PMID: 40227554 DOI: 10.1007/s11060-025-05033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025]
Abstract
PURPOSE Metastases from gastrointestinal (GI) primary cancers are considered relatively radioresistant. This study is one of the largest to evaluate outcomes following stereotactic body radiation therapy (SBRT) for GI cancer spinal metastases and supplements its findings with a review of the literature. METHODS A prospectively maintained single-institution database of spinal metastases treated with SBRT was analyzed. Seventy-five patients with 106 GI primary cancer spinal metastases were identified. The median single-fraction dose was 16 Gy (interquartile range (IQR): 14-16). Multi-fraction regimens ranged from 18 to 35 Gy over 2-5 fractions. RESULTS Median follow-up was 5 months (IQR: 1-13). Cumulative incidence rates of 3-, 6-, and 12-month local failure (LF) were 5%, 9%, and 10%, respectively. Rates of 12-month LF were 6% for gastroesophageal, 10% for hepatobiliary, and 13% for colorectal cancers. Multilevel tumors ≥ 2 vertebrae were associated with LF (p = 0.006, HR: 5.61, 95% CI: 1.61-19.5). Rates of 3-, 6-, and 12-month overall survival (OS) were 68%, 50%, and 41%, respectively. Multivariable analysis showed epidural disease associated with inferior OS (p = 0.037, HR: 1.75, 95% CI: 1.04-2.96). Complete or partial pain responses for 93 tumors (88%) presenting with pain were 60%, 51%, 32%, and 32% after 1, 3, 6, and 12 months, respectively. Ten vertebral compression fractures (9%) developed following treatment. Twelve radiation toxicities (11%) were observed, with no cases of neuropathy or myelopathy. CONCLUSIONS SBRT offers effective local tumor control and pain palliation with minimal toxicity for GI cancer spinal metastases, whose incidence is expected to rise with advances in screening and systemic therapies.
Collapse
Affiliation(s)
- Samuel Adida
- School of Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA, 15213, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St Suite B-400, Pittsburgh, PA, 15213, USA
| | - Suchet Taori
- School of Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA, 15213, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St Suite B-400, Pittsburgh, PA, 15213, USA
| | - Zayaan Tirmizi
- School of Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - James C Bayley
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St Suite B-400, Pittsburgh, PA, 15213, USA
| | - Pascal O Zinn
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St Suite B-400, Pittsburgh, PA, 15213, USA
| | - John C Flickinger
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Steven A Burton
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Serah Choi
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Roberta K Sefcik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St Suite B-400, Pittsburgh, PA, 15213, USA.
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA.
| |
Collapse
|
2
|
Yariv O, Newman NB, Yarchoan M, Rabiee A, Wood BJ, Salem R, Hernandez JM, Bang CK, Yanagihara TK, Escorcia FE. Advances in radiation therapy for HCC: Integration with liver-directed treatments. Hepatol Commun 2025; 9:e0653. [PMID: 40163776 PMCID: PMC11927661 DOI: 10.1097/hc9.0000000000000653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 04/02/2025] Open
Abstract
HCC is the fourth leading cause of cancer-related mortality with increasing incidence worldwide. Historically, treatment for early disease includes liver transplantation, surgical resection, and/or other local therapies, such as thermal ablation. As a result of technical advances and high-quality prospective data, the use of definitive external beam radiotherapy with ablative doses has emerged. Intermediate-stage disease has been generally addressed with arterially directed therapies (eg, chemoembolization or radioembolization) and external beam radiotherapy, while advanced stages have been addressed by systemic therapy or best supportive care. The role of each local/locoregional therapy has rapidly evolved in the context of novel pharmacotherapies, including immunotherapies and antiangiogenic agents. The combinations, indications, and timing of treatments vary widely among specialties and geographies. Here, we aim to synthesize the best quality evidence available regarding the efficacy and safety of different liver-directed modalities, with a focus on recent prospective clinical data of external beam radiotherapy within the context of other available liver-directed therapies across Barcelona Liver Classification (BCLC) stages.
Collapse
Affiliation(s)
- Orly Yariv
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Neil B. Newman
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mark Yarchoan
- Department of Medical Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Atoosa Rabiee
- Division of Gastroenterology and Hepatology, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, USA
| | - Bradford J. Wood
- Interventional Radiology, Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Riad Salem
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan M. Hernandez
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Christine K. Bang
- Radiation Oncology Clinical Care Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Ted K. Yanagihara
- Department of Radiation Oncology, University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Christodoulidis G, Bartzi D, Koumarelas KE. Anticipation for hepatic arterial infusion chemotherapy in the treatment of hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:100505. [PMID: 39958551 PMCID: PMC11755988 DOI: 10.4251/wjgo.v17.i2.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
Hepatic arterial infusion chemotherapy (HAIC) is an advanced targeted therapeutic approach for hepatocellular carcinoma (HCC), the most common type of primary liver cancer. HAIC has demonstrated significant potential in managing advanced HCC, particularly in regions with high prevalence rates. Despite its promise, several challenges and areas for future research remain. Clinical studies have substantiated the efficacy of HAIC in enhancing survival outcomes for patients with advanced hepatic carcinoma. Notably, combination therapies involving immune checkpoint inhibitors, such as lenvatinib and programmed death-1 inhibitors, have shown substantial improvements in median overall survival and progression-free survival compared to systemic chemotherapy. These combination therapies have also exhibited superior response rates and disease control, with manageable and often less severe adverse events relative to systemic treatments. This article is based on the review by Zhou et al and aims to discuss the current status and future directions in the treatment of HCC, emphasizing the role of HAIC and its integration with novel therapeutic agents.
Collapse
Affiliation(s)
| | - Dimitra Bartzi
- Department of Oncology, The 251 Airforce General Hospital, Athens 11525, Greece
| | | |
Collapse
|
4
|
Cai L, Du Y, Xiong H, Zheng H. Application of nanotechnology in the treatment of hepatocellular carcinoma. Front Pharmacol 2024; 15:1438819. [PMID: 39679376 PMCID: PMC11637861 DOI: 10.3389/fphar.2024.1438819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Hepatocellular carcinoma is the predominant histologic variant of hepatic malignancy and has become a major challenge to global health. The increasing incidence and mortality of hepatocellular carcinoma has created an urgent need for effective prevention, diagnosis, and treatment strategies. This is despite the impressive results of multiple treatments in the clinic. However, the unique tumor immunosuppressive microenvironment of hepatocellular carcinoma increases the difficulty of treatment and immune tolerance. In recent years, the application of nanoparticles in the treatment of hepatocellular carcinoma has brought new hope for tumor patients. Nano agents target tumor-associated fibroblasts, regulatory T cells, myeloid suppressor cells, tumor-associated macrophages, tumor-associated neutrophils, and immature dendritic cells, reversed the immunosuppressive microenvironment of hepatocellular carcinoma. In addition, he purpose of this review is to summarize the advantages of nanotechnology in guiding surgical excision, local ablation, TACE, standard chemotherapy, and immunotherapy, application of nano-vaccines has also continuously enriched the treatment of liver cancer. This study aims to investigate the potential applications of nanotechnology in the management of hepatocellular carcinoma, with the ultimate goal of enhancing therapeutic outcomes and improving the prognosis for patients affected by this malignancy.
Collapse
Affiliation(s)
| | | | | | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Callan L, Razeghi H, Grindrod N, Gaede S, Wong E, Tan D, Vickress J, Patrick J, Lock M. Prognostic Index for Liver Radiation (PILiR). Curr Oncol 2024; 31:5862-5872. [PMID: 39451740 PMCID: PMC11506490 DOI: 10.3390/curroncol31100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
A Prognostic Index for Liver Radiation (PILiR) for improved patient selection for stereotactic liver-directed radiotherapy (SBRT) was developed. Using a large single-center database, 195 patients treated with SBRT for local control, including 66 with hepatocellular carcinoma (HCC) and 129 with metastatic liver disease, were analyzed. Only patients ineligible for alternative treatments were included. Overall survival was 11.9 months and 9.4 months in the HCC group and metastatic groups, respectively. In the combined dataset, Child-Pugh Score (CPS) (p = 0.002), serum albumin (p = 0.039), and presence of extrahepatic disease (p = 0.012) were significant predictors of early death on multivariable analysis and were included in the PILiR (total score 0 to 5). Median survival was 23.8, 9.1, 4.5, and 2.6 months for patients with 0, 1-2, 3, and 4-5 points, respectively. In the HCC dataset, CPS (p < 0.001) and gross tumor volume (p = 0.013) were predictive of early death. In the metastatic dataset, serum albumin (p < 0.001) and primary disease site (p = 0.003) were predictive of early death. The AUC for the combined, HCC, and metastatic datasets are 0.78, 0.84, and 0.80, respectively. Poor liver function (defined by CPS and serum albumin) and extrahepatic disease were most predictive of early death, providing clinically important expected survival information for patients and caregivers.
Collapse
Affiliation(s)
| | - Haddis Razeghi
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Faculty of Nursing, Western University, London, ON N6A 3K7, Canada
| | - Natalie Grindrod
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Pathology & Labaratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Stewart Gaede
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - Eugene Wong
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - David Tan
- Asian Alliance Radiation & Oncology, Centre for Stereotactic Radiosurgery, Singapore 289891, Singapore;
| | - Jason Vickress
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - John Patrick
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
| | - Michael Lock
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Schulich School of Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
6
|
Shyllon S, Penfold S, Dalfsen R, Kirkness E, Hug B, Rowshanfarzad P, Devlin P, Tang C, Le H, Gorayski P, Grogan G, Kearvell R, Ebert MA. Dosimetric comparison of proton therapy and CyberKnife in stereotactic body radiation therapy for liver cancers. Phys Eng Sci Med 2024; 47:1203-1212. [PMID: 38809365 PMCID: PMC11408538 DOI: 10.1007/s13246-024-01440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Stereotactic body radiation therapy (SBRT) has been increasingly used for the ablation of liver tumours. CyberKnife and proton beam therapy (PBT) are two advanced treatment technologies suitable to deliver SBRT with high dose conformity and steep dose gradients. However, there is very limited data comparing the dosimetric characteristics of CyberKnife to PBT for liver SBRT. PBT and CyberKnife plans were retrospectively generated using 4DCT datasets of ten patients who were previously treated for hepatocellular carcinoma (HCC, N = 5) and liver metastasis (N = 5). Dose volume histogram data was assessed and compared against selected criteria; given a dose prescription of 54 Gy in 3 fractions for liver metastases and 45 Gy in 3 fractions for HCC, with previously published consensus-based normal tissue dose constraints. Comparison of evaluation parameters showed a statistically significant difference for target volume coverage and liver, lungs and spinal cord (p < 0.05) dose, while chest wall and skin did not indicate a significant difference between the two modalities. A number of optimal normal tissue constraints was violated by both the CyberKnife and proton plans for the same patients due to proximity of tumour to chest wall. PBT resulted in greater organ sparing, the extent of which was mainly dependent on tumour location. Tumours located on the liver periphery experienced the largest increase in organ sparing. Organ sparing for CyberKnife was comparable with PBT for small target volumes.
Collapse
Affiliation(s)
- Samuel Shyllon
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia
- Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Scott Penfold
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Department of Physics, University of Adelaide, Adelaide, SA, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, SA, Australia
| | - Ray Dalfsen
- PT Product Engineering, Elekta, Adelaide, SA, Australia
| | - Elsebe Kirkness
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Ben Hug
- 5D Clinics, Claremont, WA, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia.
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia.
| | | | - Colin Tang
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- 5D Clinics, Claremont, WA, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, SA, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, SA, Australia
| | - Garry Grogan
- Radiotherapy Physics, The Churchill Hospital, Headington, Oxford, UK
| | | | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- 5D Clinics, Claremont, WA, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia
| |
Collapse
|
7
|
Su CW, Teng W, Shen EYL, Huang BS, Lin PT, Hou MM, Wu TH, Tsan DL, Hsieh CH, Wang CT, Chai PM, Lin CY, Lin SM, Lin CC. Concurrent Atezolizumab Plus Bevacizumab and High-Dose External Beam Radiotherapy for Highly Advanced Hepatocellular Carcinoma. Oncologist 2024; 29:e922-e931. [PMID: 38530254 PMCID: PMC11224977 DOI: 10.1093/oncolo/oyae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Atezolizumab plus bevacizumab (atezo-bev) has been recommended for advanced hepatocellular carcinoma (HCC). High-dose external beam radiotherapy (RT) is recognized for its excellent local tumor control. The efficacy and safety of concurrent atezo-bev with RT for highly advanced HCC has been minimally explored. METHODS In this preliminary retrospective study, we assessed patients with highly advanced HCC, characterized by Vp4 portal vein thrombosis or tumors exceeding 50% of liver volume, who received concurrent atezo-bev and RT (group A). Group A included 13 patients who received proton radiation at a dose of 72.6 GyE in 22 fractions, and one patient who received photon radiation at a dose of 54 Gy in 18 fractions. This group was compared with 34 similar patients treated atezo-bev alone as a control (group B). The primary objectives were to evaluate the objective response rate (ORR), overall survival (OS), and safety. RESULTS Baseline characteristics were similar between groups, except for a higher incidence of Vp4 portal vein thrombosis in group A (78.6% vs. 21.4%, P = .05). Group A achieved a higher ORR (50.0% vs. 11.8%, P < .01) and a longer OS (not reached vs. 5.5 months, P = .01) after a median follow-up of 5.2 months. Multivariate analysis indicated that concurrent RT independently favored longer OS (hazard ratio: 0.18; 95% CI, 0.05-0.63, P < .01). Group A did not increase any grade adverse events (78.6% vs. 58.8%, P = .19) or severe adverse events of grade ≥ 3 (14.3% vs. 14.7%, P = .97) compared to group B. CONCLUSIONS The concurrent high-dose external beam radiotherapy appears to safely enhance the effectiveness of atezolizumab plus bevacizumab for highly advanced patients with HCC. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Chung-Wei Su
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei Teng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Eric Yi-Liang Shen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Radiation Oncology and Proton Therapy Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Bing-Shen Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Radiation Oncology and Proton Therapy Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Po-Ting Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Mo Hou
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Tsung-Han Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Din-Li Tsan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Radiation Oncology and Proton Therapy Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Chia-Hsun Hsieh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal Tucheng Hospital (Built and Operated by Chang Gung Memorial Hospital), New Taipei, Taiwan
| | - Ching-Ting Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nursing, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Pei-Mei Chai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nursing, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shi-Ming Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Chun Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, New Taipei Municipal Tucheng Hospital (Built and Operated by Chang Gung Memorial Hospital), New Taipei, Taiwan
| |
Collapse
|
8
|
Xiang S, Li J, Zhang M. TGF-β1 inhibitor enhances the therapeutic effect of microwave ablation on hepatocellular carcinoma. Int J Hyperthermia 2024; 41:2359496. [PMID: 38909985 DOI: 10.1080/02656736.2024.2359496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Microwave ablation (MWA) is a widely adopted treatment technique for hepatocellular carcinoma (HCC). However, MWA alone is of limited use and has a high recurrence rate. Transforming growth factor-β1 (TGF-β1) is recognized as a potential therapeutic target for HCC patients. Therefore, this study was designed to investigate whether the TGF-β1 inhibitor could increase the efficacy of MWA therapy for HCC treatment. METHODS In vitro, HCC cells challenged with TGF-β1 inhibitor (SB-525334), or normal saline were then heated by microwave. Methyl tetrazolium assays were performed to detect cell survival rate and half-maximal drug inhibitory concentration (IC50). Cell viability and apoptosis were detected by cell counting kit-8 assays, flow cytometry and western blotting. In vivo, the mice injected with HepG2 cells received oral gavage of SB-525334 (20 mg/kg) or normal saline and MWA at a power of 15 W. Tumor volume was recorded. Expression of Ki67 and apoptosis-related proteins were detected by immunohistochemistry and western blotting. TUNEL assays were used to detect cell death ratio. Histopathological changes were examined by hematoxylin and eosin staining. The mechanisms associated with the function of MWA combined with TGF-β1 inhibitor in HCC development were explored by western blotting. RESULTS Combination of MWA and SB-525334 decreased the survival rate and promoted the apoptosis of HCC cells compared with MWA alone. SB-525334 enhanced the suppressive effect of MWA on tumor growth and amplified cell apoptosis. Mechanistically, MWA collaborated with SB-525334 inhibitor inactivated the TGF-β1/Smad2/Smad3 pathway. CONCLUSION TGF-β1 inhibitor enhances the therapeutic effect of MWA on HCC.
Collapse
Affiliation(s)
- Shufang Xiang
- Department of Ultrasound, The First Affiliated Hospital of Yangtze University, Jingzhou City, P. R.China
| | - Juan Li
- Department of Ultrasound, The First Affiliated Hospital of Yangtze University, Jingzhou City, P. R.China
| | - Mei Zhang
- Department of Ultrasound, The First Affiliated Hospital of Yangtze University, Jingzhou City, P. R.China
| |
Collapse
|
9
|
Tojjari A, Yu J, Saeed A. Immunotherapy and Radiation Therapy Combinatorial Approaches in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1058. [PMID: 38473415 DOI: 10.3390/cancers16051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a prevalent and often fatal liver cancer, presents significant treatment challenges, especially in its advanced stages. This article delves into the promising approach of combining immunotherapy, particularly immune checkpoint inhibitors, with radiation therapy, a cornerstone of HCC management. Our review synthesizes current preclinical and clinical research, highlighting the potential synergistic effects of this combinational treatment. Emerging evidence suggests that this synergy enhances tumor control and improves patient survival rates. The combination leverages the localized, tumor-targeting ability of radiation therapy and the systemic, immune-boosting effects of immunotherapy, potentially overcoming the limitations inherent in each treatment modality when used separately. This integrative approach is especially promising in addressing the complex tumor microenvironment of HCC. However, the treatment landscape is nuanced, with challenges such as patient-specific response variability and potential resistance to therapies. Future research directions should focus on refining these combination strategies, tailoring them to individual patient profiles, and understanding the underlying mechanisms that govern the interaction between immunotherapy and radiation therapy. Such advancements could significantly improve HCC management, setting new standards for patient care and treatment efficacy.
Collapse
Affiliation(s)
- Alireza Tojjari
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
| | - James Yu
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Anwaar Saeed
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
| |
Collapse
|
10
|
Alolyan A, Alshammari K, Arabi M, Alshehri A, Alsuhaibani H, Ibnshamsah F, Alsharm A, Mahrous M, Al Zanbagi A, Hassanain M, Bazarbashi S. Treatment Patterns and Recommendations for Improving the Management of Hepatocellular Carcinoma in Saudi Arabia. J Hepatocell Carcinoma 2024; 11:349-362. [PMID: 38385059 PMCID: PMC10879627 DOI: 10.2147/jhc.s442842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of cancer in the world associated with high morbidity and mortality. Despite being a significant healthcare burden there is limited information on the unmet needs and current treatment practices for intermediate and advanced-stage HCC in Saudi Arabia. This article analyzes the gaps and provides expert consensus on the management strategies for unresectable HCC in Saudi Arabia. A pre-meeting online questionnaire, comprising 20 objective questions about the treatment landscape and diagnosis of HCC in Saudi Arabia, was distributed to experts in the field of HCC management. An advisory board meeting including a panel of 13 experts was held in September 2022 where the responses to the survey questionnaire were reviewed and discussed. The survey results and experts' discussion highlighted the growing incidence of liver cancer in Saudi Arabia. HCC comprised the majority of all liver cancer cases due to rising rates of chronic viral infections and lifestyle-related risk factors. Most physicians in Saudi Arabia follow the Barcelona Clinic Liver Cancer guidelines as a prognostic tool for the detection and staging of patients with HCC. Most of the patients with HCC in Saudi Arabia are diagnosed in the intermediate or advanced stages with poor prognoses and limited therapeutic options. Establishing evidence-based surveillance techniques, a multidisciplinary approach to diagnosis, and better accessibility of treatment options is vital for the management of HCC in Saudi Arabia.
Collapse
Affiliation(s)
- Ashwaq Alolyan
- Department of Medical Oncology, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Kanan Alshammari
- Department of Medical Oncology, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammad Arabi
- Department of Medical Oncology, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ahmed Alshehri
- Department of Oncology, King Khalid National Guard Hospital Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Hamad Alsuhaibani
- Department of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fahad Ibnshamsah
- Department of Medical Oncology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Abdullah Alsharm
- Department of Medical Oncology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mervat Mahrous
- Department of Oncology, Prince Sultan Military Medical City Hospital, Riyadh, Saudi Arabia
- Department of Medicine, Minia University of Egypt, Faculty of Medicine, Minia, Egypt
| | - Adnan Al Zanbagi
- Department of Gastroenterology and Hepatology, King Abdullah Medical City, Makkah, Saudi Arabia
| | - Mazen Hassanain
- Department of Surgery, King Saudi University, Riyadh, Saudi Arabia
| | - Shouki Bazarbashi
- Department of Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Kookli K, Soleimani KT, Amr EF, Ehymayed HM, Zabibah RS, Daminova SB, Saadh MJ, Alsaikhan F, Adil M, Ali MS, Mohtashami S, Akhavan-Sigari R. Role of microRNA-146a in cancer development by regulating apoptosis. Pathol Res Pract 2024; 254:155050. [PMID: 38199132 DOI: 10.1016/j.prp.2023.155050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
Despite great advances in diagnostic and treatment options for cancer, like chemotherapy surgery, and radiation therapy it continues to remain a major global health concern. Further research is necessary to find new biomarkers and possible treatment methods for cancer. MicroRNAs (miRNAs), tiny non-coding RNAs found naturally in the body, can influence the activity of several target genes. These genes are often disturbed in diseases like cancer, which perturbs functions like differentiation, cell division, cell cycle, apoptosis and proliferation. MiR-146a is a commonly and widely used miRNA that is often overexpressed in malignant tumors. The expression of miR-146a has been correlated with many pathological and physiological changes in cancer cells, such as the regulation of various cell death paths. It's been established that the control of cell death pathways has a huge influence on cancer progression. To improve our understanding of the interrelationship between miRNAs and cancer cell apoptosis, it's necessary to explore the impact of miRNAs through the alteration in their expression levels. Research has demonstrated that the appearance and spread of cancer can be mitigated by moderating the expression of certain miRNA - a commencement of treatment that presents a hopeful approach in managing cancer. Consequently, it is essential to explore the implications of miR-146a with respect to inducing different forms of tumor cell death, and evaluate its potential to serve as a target for improved chemotherapy outcomes. Through this review, we provide an outline of miR-146a's biogenesis and function, as well as its significant involvement in apoptosis. As well, we investigate the effects of exosomal miR-146a on the promotion of apoptosis in cancer cells and look into how it could possibly help combat chemotherapeutic resistance.
Collapse
Affiliation(s)
- Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | | | - Eman Fathy Amr
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shakhnoza B Daminova
- Department of Prevention of Dental Diseases, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Tashkent Medical Pediatric Institute, Bogishamol Street 223, Tashkent, Uzbekistan
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | | | | | - Saghar Mohtashami
- University of California Los Angeles, School of Dentistry, Los Angeles, CA, USA.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
12
|
Chami P, Diab Y, Khalil DN, Azhari H, Jarnagin WR, Abou-Alfa GK, Harding JJ, Hajj J, Ma J, El Homsi M, Reyngold M, Crane C, Hajj C. Radiation and Immune Checkpoint Inhibitors: Combination Therapy for Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:16773. [PMID: 38069095 PMCID: PMC10706661 DOI: 10.3390/ijms242316773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The liver tumor immune microenvironment has been thought to possess a critical role in the development and progression of hepatocellular carcinoma (HCC). Despite the approval of immune checkpoint inhibitors (ICIs), such as programmed cell death receptor 1 (PD-1)/programmed cell death ligand 1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) inhibitors, for several types of cancers, including HCC, liver metastases have shown evidence of resistance or poor response to immunotherapies. Radiation therapy (RT) has displayed evidence of immunosuppressive effects through the upregulation of immune checkpoint molecules post-treatment. However, it was revealed that the limitations of ICIs can be overcome through the use of RT, as it can reshape the liver immune microenvironment. Moreover, ICIs are able to overcome the RT-induced inhibitory signals, effectively restoring anti-tumor activity. Owing to the synergetic effect believed to arise from the combination of ICIs with RT, several clinical trials are currently ongoing to assess the efficacy and safety of this treatment for patients with HCC.
Collapse
Affiliation(s)
- Perla Chami
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Youssef Diab
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon; (Y.D.)
| | - Danny N. Khalil
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Hassan Azhari
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - William R. Jarnagin
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Surgery, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Ghassan K. Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - James J. Harding
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Joseph Hajj
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon; (Y.D.)
| | - Jennifer Ma
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Maria El Homsi
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Marsha Reyngold
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | | | - Carla Hajj
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- New York Proton Center, New York, NY 10035, USA
| |
Collapse
|
13
|
Ku CY, Yang XK, Xi LJ, Wang RZ, Wu BB, Dai M, Liu L, Ping ZG. Competing risks analysis of external versus internal radiation in patients with hepatocellular carcinoma after controlling for immortal time bias. J Cancer Res Clin Oncol 2023; 149:9927-9935. [PMID: 37249648 DOI: 10.1007/s00432-023-04915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE In cohort studies on liver cancer, there are often immortal time bias and interference of competing risk events. This study proposes to explore the role of internal and external radiotherapy for hepatocellular carcinoma using SEER data, using a competing risk model and controlling immortal time bias. METHODS Data of SEER from 2004 till 2015 was included. To analyze whether there was a difference in survival between HCC (hepatocellular carcinoma) patients receiving external radiation and internal radiation, we used a competing risk analysis after excluding immortal time bias, and created a nomogram to assess the risk of cancer-specific death (CSD) in hepatocellular carcinoma patients receiving radiotherapy. RESULTS Potential confounding factors adjusted, there was no significant difference in CSD between external and internal radiation therapy [HR and its 95% CI = 1.098 (0.874-1.380)]. The constructed nomogram performed better than the traditional AJCC model. The AUC and calibration curve results showed that this well-calibrated nomogram could be used to make clinical decisions regarding the prognosis and personalized treatment of hepatocellular carcinoma treated. There was no difference in the cumulative risk of death between patients with liver cancer treated with external radiation therapy and internal radiation therapy. CONCLUSION There is no difference in the cumulative risk of death between patients with liver cancer treated with external radiation therapy and internal radiation therapy. The nomogram predicts the results more accurately. These results can be used to guide the choice of treatment options for patients with HCC and to predict their survival prognosis.
Collapse
Affiliation(s)
- Chao-Yue Ku
- Department of Health Statistics, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Xue-Ke Yang
- Department of Health Statistics, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Li-Jing Xi
- Department of Health Statistics, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Rui-Zhe Wang
- Department of Health Statistics, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Bin-Bin Wu
- Department of Health Statistics, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Man Dai
- Department of Health Statistics, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Li Liu
- School of Basic Medical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, People's Republic of China.
| | - Zhi-Guang Ping
- Department of Health Statistics, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan Province, People's Republic of China.
| |
Collapse
|
14
|
Endo Y, Sasaki K, Moazzam Z, Woldesenbet S, Yang J, Araujo Lima H, Alaimo L, Munir MM, Shaikh CF, Schenk A, Kitago M, Pawlik TM. The Impact of a Liver Transplant Program on the Outcomes of Hepatocellular Carcinoma. Ann Surg 2023; 278:230-238. [PMID: 36994716 DOI: 10.1097/sla.0000000000005849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
OBJECTIVE We sought to evaluate the impact of liver transplantation (LT) programs on the prognosis of hepatocellular carcinoma (HCC) patients who underwent liver resection (LR) and noncurative intent treatment. BACKGROUND LT programs have an array of resources and services that would positively affect the prognosis of patients with HCC. METHODS Patients who underwent LT, LR, radiotherapy (RT), or chemotherapy (CTx) for HCC between 2004 and 2018 were included in the National Cancer Database. Institutions with LT programs were defined as those that performed 1 or more LT for at least 5 years. Centers were stratified by hospital volume. The impact of LT programs was assessed after propensity score matching to achieve covariate balance. RESULTS A total of 71,735 patients were identified, of which 7997 received LT (11.1%), 12,683 LR (17.7%), 15,675 RT (21.9%), and 35,380 CTx (49.3%). Among a total of 1267 distinct institutions, 94 (7.4%) were categorized as LT programs. Designation as an LT program was also associated with a high volume of LR and noncurative intent treatment (both P <0.001). After propensity score matching, LT programs were associated with better survival among LR and noncurative intent treatment patients. Although hospital volume was also associated with improved prognosis, LT programs were associated with additional survival benefits in noncurative intent treatment. On the other hand, no such benefit was noted in patients who underwent LR. CONCLUSIONS The presence of an LT program was associated with a higher volume of LR and noncurative intent treatment. Furthermore, designation as an LT program had a "halo effect" on the prognosis of patients undergoing RT/CTx that went beyond the procedure-volume effect.
Collapse
Affiliation(s)
- Yutaka Endo
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH
| | | | - Zorays Moazzam
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH
| | - Selamawit Woldesenbet
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH
| | - Jason Yang
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH
| | - Henrique Araujo Lima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH
| | - Laura Alaimo
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH
| | - Muhammad Musaab Munir
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH
| | - Chanza F Shaikh
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH
| | - Austin Schenk
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH
| | - Minoru Kitago
- Department of Surgery, Keio University, Tokyo, Japan
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
15
|
Elnawasany S, Haggag YA, Shalaby SM, Soliman NA, EL Saadany AA, Ibrahim MAA, Badria F. Anti-cancer effect of nano-encapsulated boswellic acids, curcumin and naringenin against HepG-2 cell line. BMC Complement Med Ther 2023; 23:270. [PMID: 37516826 PMCID: PMC10386659 DOI: 10.1186/s12906-023-04096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND liver cancer is one of the most common cancers in the world. So far, there is no gold standard treatment for hepatocellular carcinoma. We conducted this in vitro study to assess the effect of three natural products: Boswellic acids, curcumin and naringin versus corresponding nanoparticles (NPs) on Hep G2 cells proliferation. METHODS Boswellic acid, curcumin, naringin-loaded NPs were prepared using nanoprecipitation method. Human liver (HepG2) cell line was cultured in Dulbecco's modified Eagle's medium (DMEM). The cell growth inhibition and cytotoxicity were evaluated by MTT assay. RESULTS Boswellic acid, curcumin, naringin were able to inhibit HepG2 cells proliferation. IC50 at 24 h, 48 h showed significant lower values in NPs versus Free herbs. IC50 values of free Boswellic acids and NPs at 24 h were (24.60 ± 1.89 and 7.78 ± 0.54, P < 0.001), at 48 h were (22.45 ± 1.13 and 5.58 ± 0.27, P < 0.001) respectively. IC50 values of free curcumin and NPs at 24 h were (5.89 ± 0.8 and 3.46 ± 0.23, P < 0.05), at 48 h were (5.57 ± 0.94 and 2.51 ± 0.11, P < 0.05), respectively. For free and naringenin NPs, IC50 values at 24 h were (14.57 ± 1.78 and 7.25 ± 0.17, P < 0.01), at 48 h were (11.37 ± 1.45 and 5.21 ± 0.18, P < 0.01) respectively. CONCLUSION Boswellic acid, curcumin, naringin and their nanoprecipitation prepared nanoparticles suppressed Hep G2 cells proliferation.
Collapse
Affiliation(s)
- Sally Elnawasany
- Tropical Medicine Department, Faculty of Medicine, Tanta University, Tanta, Gharbia, 31111 Egypt
| | - Yusuf A. Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Gharbia, Egypt
| | - Shahinaz M. Shalaby
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Nema A. Soliman
- Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Amira A. EL Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Marwa A. A. Ibrahim
- Histology Department, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Farid Badria
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Wu X, Wei M, Chen Y, Peng Z. Surgery or external beam radiation for solitary small hepatocellular carcinoma. J Cancer Res Ther 2023; 19:S166-S171. [PMID: 37147994 DOI: 10.4103/jcrt.jcrt_1604_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Background There is little evidence on the efficacy of external beam radiation (EBR) compared to liver resection (LR) for patients with solitary small (≤5 cm) hepatocellular carcinoma (HCC). Objective We aimed to investigate this clinical question based on the Surveillance, Epidemiology, and End Results (SEER) database. Method SEER database was used to identify 416 patients with solitary small HCC who underwent LR or EBR. Survival analysis and Cox proportional hazards model were performed to evaluate overall survival (OS) and identify prognostic factors for OS. Propensity score matching (PSM) method was used to adjust the baseline characteristics of the two groups. Result Before PSM, the 1- and 2-year OS rates were 92.0% and 85.2% in the LR cohort and 76.0% and 60.3% in the EBR cohort, respectively (P < 0.001). After PSM, LR (n = 62) demonstrated improved OS compared to EBR (n = 62) (1-year OS rate: 96.5% vs. 76.0%; 2-year OS rate: 89.3% vs. 60.3%, P < 0.001), despite stratification on tumor size. Multivariate Cox regression analysis indicated that treatment type was the only factor associated with OS (hazard ratio: 5.297; 95% confidence interval: 1.952-14.371, P = 0.001). Conclusion For patients with solitary small HCC, LR may offer better survival outcomes than EBR.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Department of Radiotherapy, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, China
| | - Mengchao Wei
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, China
| | - Yong Chen
- Department of Radiotherapy, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, China
| | - Zhenwei Peng
- Department of Radiotherapy; Department of Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Wong JK, Lim HJ, Tam VC, Burak KW, Dawson LA, Chaudhury P, Abraham RJ, Meyers BM, Sapisochin G, Valenti D, Samimi S, Ramjeesingh R, Mujoomdar A, Martins I, Dixon E, Segedi M, Liu DM. Clinical consensus statement: Establishing the roles of locoregional and systemic therapies for the treatment of intermediate-stage hepatocellular carcinoma in Canada. Cancer Treat Rev 2023; 115:102526. [PMID: 36924644 DOI: 10.1016/j.ctrv.2023.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) a leading cause of cancer mortality worldwide and approximately one-third of patients present with intermediate-stage disease. The treatment landscape of intermediate-stage HCC is rapidly evolving due to developments in local, locoregional and systemic therapies. Treatment recommendations focused on this heterogenous disease stage and that take into account the Canadian reality are lacking. To address this gap, a pan-Canadian group of experts in hepatology, transplant, surgery, radiation therapy, nuclear medicine, interventional radiology, and medical oncology came together to develop consensus recommendations on management of intermediate-stage HCC relevant to the Canadian context. METHODS A modified Delphi framework was used to develop consensus statements with strengths of recommendation and supporting levels of evidence graded using the AHA/ACC classification system. Tentative consensus statements were drafted based on a systematic search and expert input in a series of iterative feedback cycles and were then circulated via online survey to assess the level of agreement. RESULTS & CONCLUSION The pre-defined ratification threshold of 80 % agreement was reached for all statements in the areas of multidisciplinary treatment (n = 4), intra-arterial therapy (n = 14), biologics (n = 5), radiation therapy (n = 3), surgical resection and transplantation (n = 7), and percutaneous ablative therapy (n = 4). These generally reflected an expansion in treatment options due to developments in previously established or emergent techniques, introduction of new and more active therapies and increased therapeutic flexibility. These developments have allowed for greater treatment tailoring and personalization as well as a paradigm shift toward strategies with curative intent in a wider range of disease settings.
Collapse
Affiliation(s)
- Jason K Wong
- University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Howard J Lim
- BC Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada.
| | - Vincent C Tam
- Tom Baker Cancer Centre, University of Calgary, 1331 29 St NW, Calgary, AB T2N 4N2, Canada.
| | - Kelly W Burak
- University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Laura A Dawson
- Princess Margaret Cancer Centre, University of Toronto, 610 University Ave, Toronto, ON M5G 2C1, Canada.
| | | | - Robert J Abraham
- Department of Diagnostic Radiology, Dalhousie University, 6299 South St, Halifax, NS B3H 4R2, Canada.
| | - Brandon M Meyers
- Juravinski Cancer Centre, 699 Concession St, Hamilton, ON L8V 5C2, Canada.
| | | | - David Valenti
- McGill University, 845 Rue Sherbrooke O, Montréal, QC H3A 0G4, Canada.
| | - Setareh Samimi
- Hopital Sacre-Coeur de Montreal, University of Montreal, 5400 Boul Gouin O, Montréal, QC H4J 1C5, Canada.
| | - Ravi Ramjeesingh
- Department of Medicine, Dalhousie University, 6299 South St, Halifax, NS B3H 4R2, Canada.
| | - Amol Mujoomdar
- Western University, 1151 Richmond Street, London, ON N6A 5B9, Canada.
| | - Ilidio Martins
- Kaleidoscope Strategic, Inc. 1 King Street W, Suite 4800 - 117, Toronto, ON M5H 1A1, Canada.
| | - Elijah Dixon
- University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Maja Segedi
- Department of Surgery, Vancouver General Hospital, Jim Pattison Pavilion, 899 W 12th Ave, Vancouver, BC V5Z 1M9, Canada.
| | - David M Liu
- School of Biomedical Engineering, University of British Columbia, 2329 West Mall Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
18
|
Weng YS, Chiang IT, Tsai JJ, Liu YC, Hsu FT. Lenvatinib Synergistically Promotes Radiation Therapy in Hepatocellular Carcinoma by Inhibiting Src/STAT3/NF-κB-Mediated Epithelial-Mesenchymal Transition and Metastasis. Int J Radiat Oncol Biol Phys 2023; 115:719-732. [PMID: 36245124 DOI: 10.1016/j.ijrobp.2022.09.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE This study suggested that lenvatinib may incapacitate hepatocellular carcinoma (HCC) to radiation treatment by abrogating radiation-induced Src/signal transducer and the activator of transcription 3 signaling (STAT3)/nuclear factor-κB (NF-κB) to escalate radiation-induced extrinsic and intrinsic apoptosis. These findings uncover the role of targeting Src and its arbitrating epithelial-mesenchymal transition (EMT), which could increase the anti-HCC efficacy of radiation therapy (RT). Lenvatinib and sorafenib are multikinase inhibitors used to treat HCC. Lenvatinib is noninferior to sorafenib in the therapeutic response in HCC. However, whether lenvatinib intensifies the anti-HCC efficacy of RT is ambiguous. Several oncogenic kinases and transcription factors, such as Src, STAT3, and NF-κB, enhance the radiosensitivity of cancers. Therefore, we aimed to investigate the roles of the Src/STAT3/NF-κB axis in HCC after RT treatment and assessed whether targeting Src by lenvatinib may enhance the effectiveness of RT. METHODS AND MATERIALS Hep3B, Huh7, HepG2, and SK-Hep1 HCC cells and 2 types of animal models were used to identify the efficacy of RT combined with lenvatinib. Cellular toxicity, apoptosis, DNA damage, EMT/metastasis regulation, and treatment efficacy were validated by colony formation, flow cytometry, Western blotting, and in vivo experiments, respectively. Knockdown of Src by siRNA was also used to validate the role of Src in RT treatment. RESULTS Silencing Src reduced STAT3/NF-κB signaling and sensitized HCC to radiation. Lenvatinib reversed radiation-elicited Src/STAT3/NF-κB signaling while enhancing the anti-HCC efficacy of radiation. Both lenvatinib and siSrc promoted the radiation effect of cell proliferation on suppression, inhibition of the invasion ability, and induction of apoptosis in HCC. Lenvatinib also alleviated radiation-triggered oncogenic and EMT-related protein expression. CONCLUSIONS Our findings uncovered the role of the Src/STAT3/NF-κB regulatory axis in response to radiation-induced toxicity and confirmed Src as the key regulatory molecule for radiosensitization of HCC evoked by lenvatinib.
Collapse
Affiliation(s)
- Yueh-Shan Weng
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan
| | - I-Tsang Chiang
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan; Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan; Department of Medical Imaging and Radiologic Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan; Medical administrative center, Show Chwan Memorial Hospital, Changhua 500, Taiwan, ROC
| | - Jai-Jen Tsai
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yi-Lan 260, Taiwan; Department of Medicine/Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yi-Lan 260, Taiwan; Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei City 231, Taiwan
| | - Yu-Chang Liu
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan; Department of Medical Imaging and Radiologic Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan; Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan.
| |
Collapse
|
19
|
Zhan G, Peng H, Zhou L, Jin L, Xie X, He Y, Wang X, Du Z, Cao P. A web-based nomogram model for predicting the overall survival of hepatocellular carcinoma patients with external beam radiation therapy: A population study based on SEER database and a Chinese cohort. Front Endocrinol (Lausanne) 2023; 14:1070396. [PMID: 36798659 PMCID: PMC9927006 DOI: 10.3389/fendo.2023.1070396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND External beam radiation therapy (EBRT) for hepatocellular carcinoma (HCC) is rarely used in clinical practice. This study aims to develop and validate a prognostic nomogram model to predict overall survival (OS) in HCC patients treated with EBRT. METHOD We extracted eligible data of HCC patients between 2004 and 2015 from the Surveillance, Epidemiology, and End Results (SEER) database. Those patients were randomly divided into a training cohort (n=1004) and an internal validation cohort (n=429), and an external validation cohort composed of a Chinese cohort (n=95). A nomogram was established based on the independent prognostic variables identified from univariate and multivariate Cox regression analyses. The effective performance of the nomogram was evaluated using the concordance index (C-index), receiver operating characteristic curve (ROC), and calibration curves. The clinical practicability was evaluated using decision curve analysis (DCA). RESULTS T stage, N stage, M stage, AFP, tumor size, surgery, and chemotherapy were independent prognostic risk factors that were all included in the nomogram to predict OS in HCC patients with EBRT. In the training cohort, internal validation cohort, and external validation cohort, the C-index of the prediction model was 0.728 (95% confidence interval (CI): 0.716-0.740), 0.725 (95% CI:0.701-0.750), and 0.696 (95% CI:0.629-0.763), respectively. The 6-, 12-,18- and 24- month areas under the curves (AUC) of ROC in the training cohort were 0.835 、0.823 、0.810, and 0.801, respectively; and 0.821 、0.809 、0.813 and 0.804 in the internal validation cohort, respectively; and 0.749 、0.754 、0.791 and 0.798 in the external validation cohort, respectively. The calibration curves indicated that the predicted value of the prediction model performed well. The DCA curves showed better clinical practicability. In addition, based on the nomogram, we established a web-based nomogram to predict the OS of these patients visually. CONCLUSION Based on the SEER database and an independent external cohort from China, we established and validated a nomogram to predict OS in HCC patients treated with EBRT. In addition, for the first time, a web-based nomogram model can help clinicians judge the prognoses of these patients and make better clinical decisions.
Collapse
|
20
|
Răileanu M, Straticiuc M, Iancu DA, Andrei RF, Radu M, Bacalum M. Proton irradiation induced reactive oxygen species promote morphological and functional changes in HepG2 cells. J Struct Biol 2022; 214:107919. [PMID: 36356881 DOI: 10.1016/j.jsb.2022.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
The increased use of proton therapy has led to the need of better understanding the cellular mechanisms involved. The aim of this study was to investigate the effects induced by the accelerated proton beam in hepatocarcinoma cells. An existing facility in IFIN-HH, a 3 MV Tandetron™ accelerator, was used to irradiate HepG2 human hepatocarcinoma cells with doses between 0 and 3 Gy. Colony formation was used to assess the influence of radiation on cell long-term replication. Also, the changes induced at the mitochondrial level were shown by increased ROS and ATP levels as well as a decrease in the mitochondrial membrane potential. An increased dose has induced DNA damages and G2/M cell cycle arrest which leads to caspase 3/7 mediated apoptosis and senescence induction. Finally, the morphological and ultrastructural changes were observed at the membrane level and the nucleus of the irradiated cells. Thus, proton irradiation induces both morphological and functional changes in HepG2 cells.
Collapse
Affiliation(s)
- Mina Răileanu
- University of Bucharest, Faculty of Physics, Atomistilor 405, Măgurele, Romania; Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, Reactorului 30, Măgurele, Romania
| | - Mihai Straticiuc
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Applied Nuclear Physics, Reactorului 30, Măgurele, Romania
| | - Decebal-Alexandru Iancu
- University of Bucharest, Faculty of Physics, Atomistilor 405, Măgurele, Romania; Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Applied Nuclear Physics, Reactorului 30, Măgurele, Romania
| | - Radu-Florin Andrei
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Applied Nuclear Physics, Reactorului 30, Măgurele, Romania; University of POLITEHNICA of Bucharest, Faculty of Applied Sciences, Splaiul Independentei 313, Romania
| | - Mihai Radu
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, Reactorului 30, Măgurele, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, Reactorului 30, Măgurele, Romania.
| |
Collapse
|
21
|
Prince DS, Schlaphoff G, Davison SA, Huo YR, Xiang H, Chan MV, Lee AU, Thailakanathan C, Jebeili H, Rogan C, Al-Omary A, Gupta S, Lockart I, Tiwari N, Clark-Dickson M, Hillhouse JW, Laube R, Chang J, Nguyen V, Danta M, Cheng R, Strasser SI, Zekry A, Levy MT, Chan C, Liu K. Selective internal radiation therapy for hepatocellular carcinoma: A 15-year multicenter Australian cohort study. J Gastroenterol Hepatol 2022; 37:2173-2181. [PMID: 36031345 DOI: 10.1111/jgh.15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIM The exact place for selective internal radiation therapy (SIRT) in the therapeutic algorithm for hepatocellular carcinoma (HCC) is debated. There are limited data on its indications, efficacy, and safety in Australia. METHODS We performed a multicenter retrospective cohort study of patients undergoing SIRT for HCC in all Sydney hospitals between 2005 and 2019. The primary outcome was overall survival. Secondary outcomes were progression-free survival and adverse events. RESULTS During the study period, 156 patients underwent SIRT across 10 institutions (mean age 67 years, 81% male). SIRT use progressively increased from 2005 (n = 2), peaking in 2017 (n = 42) before declining (2019: n = 21). Barcelona Clinic Liver Cancer stages at treatment were A (13%), B (33%), C (52%), and D (2%). Forty-four (28%) patients had tumor thrombus. After a median follow-up of 13.9 months, there were 117 deaths. Median overall survival was 15 months (95% confidence interval 11-19). Independent predictors of mortality on multivariable analysis were extent of liver involvement, Barcelona Clinic Liver Cancer stage, baseline ascites, alpha fetoprotein, and model for end-stage liver disease score. Median progression-free survival was 6.0 months (95% confidence interval 5.1-6.9 months). Following SIRT, 11% of patients were downstaged to curative therapy. SIRT-related complications occurred in 17%: radioembolization-induced liver disease (11%), pneumonitis (3%), gastrointestinal ulceration, and cholecystitis (1% each). Baseline ascites predicted for radioembolization-induced liver disease. CONCLUSION We present the largest Australian SIRT cohort for HCC. We have identified several factors associated with a poor outcome following SIRT. Patients with early-stage disease had the best survival with some being downstaged to curative therapy.
Collapse
Affiliation(s)
- David Stephen Prince
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Department of Gastroenterology and Liver, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Glen Schlaphoff
- Department of Gastroenterology and Liver, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Scott Anthony Davison
- Department of Gastroenterology and Liver, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Ya Ruth Huo
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Hao Xiang
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Michael Vinchill Chan
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia.,Sydney Adventist Hospital, Sydney, New South Wales, Australia
| | - Alice Unah Lee
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Cynthuja Thailakanathan
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, New South Wales, Australia
| | - Hazem Jebeili
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, New South Wales, Australia
| | - Christopher Rogan
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney Adventist Hospital, Sydney, New South Wales, Australia
| | - Ahmed Al-Omary
- Gastroenterology Department, Westmead Hospital, Sydney, New South Wales, Australia
| | - Sidhartha Gupta
- Gastroenterology Department, Westmead Hospital, Sydney, New South Wales, Australia
| | - Ian Lockart
- Gastroenterology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Neha Tiwari
- Department of Gastroenterology and Hepatology, Nepean Hospital, Sydney, New South Wales, Australia
| | | | | | - Robyn Laube
- Macquarie University Hospital, Sydney, New South Wales, Australia
| | - Jeff Chang
- Department of Gastroenterology and Hepatology, Nepean Hospital, Sydney, New South Wales, Australia.,Macquarie University Hospital, Sydney, New South Wales, Australia
| | - Vi Nguyen
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Mark Danta
- Gastroenterology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Robert Cheng
- Gastroenterology Department, Westmead Hospital, Sydney, New South Wales, Australia
| | - Simone Irene Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Amany Zekry
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, New South Wales, Australia
| | - Miriam Tania Levy
- Department of Gastroenterology and Liver, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Christine Chan
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Horvat N, de Oliveira AI, Clemente de Oliveira B, Araujo-Filho JAB, El Homsi M, Elsakka A, Bajwa R, Martins GLP, Elsayes KM, Menezes MR. Local-Regional Treatment of Hepatocellular Carcinoma: A Primer for Radiologists. Radiographics 2022; 42:1670-1689. [PMID: 36190854 PMCID: PMC9539394 DOI: 10.1148/rg.220022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 11/07/2022]
Abstract
The treatment planning for patients with hepatocellular carcinoma (HCC) relies predominantly on tumor burden, clinical performance, and liver function test results. Curative treatments such as resection, liver transplantation, and ablative therapies of small lesions should be considered for all patients with HCC. However, many patients are ineligible for these treatments owing to advanced disease stage and comorbidities. Despite efforts to increase screening, early-stage HCC remains difficult to diagnose, which decreases the possibility of curative therapies. In this context, local-regional treatment of HCC is accepted as a form of curative therapy in selected patients with early-stage disease, as a therapeutic option in patients who are not eligible to undergo curative therapies, as a downstaging approach to decrease tumor size toward meeting the criteria for liver transplantation, and as a bridging therapy to avoid tumor growth while the patient is on the waiting list for liver transplantation. The authors review the indications, types, mechanism of action, and possible complications of local-regional treatment, as well as the expected postprocedural imaging features of HCC. Furthermore, they discuss the role of imaging in pre- and postprocedural settings, provide guidance on how to assess treatment response, and review the current limitations of imaging assessment. Finally, the authors summarize the potential future directions with imaging tools that may add value to contemporary practice at response assessment and imaging biomarkers for patient selection, treatment response, and prognosis. ©RSNA, 2022.
Collapse
Affiliation(s)
| | | | - Brunna Clemente de Oliveira
- From the Department of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Ave, Box 29, New York, NY 10065 (N.H., M.E.H., A.E., R.B.);
Department of Radiology, Hospital Sírio-Libanês, São Paulo,
Brazil (A.I.d.O., B.C.d.O., J.A.B.A.F., G.L.P.M., M.R.M.); Department of
Radiology, University of São Paulo, São Paulo, Brazil (A.I.d.O.,
G.L.P.M., M.R.M.); and Department of Abdominal Imaging, Division of Diagnostic
Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex
(K.M.E.)
| | - Jose A. B. Araujo-Filho
- From the Department of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Ave, Box 29, New York, NY 10065 (N.H., M.E.H., A.E., R.B.);
Department of Radiology, Hospital Sírio-Libanês, São Paulo,
Brazil (A.I.d.O., B.C.d.O., J.A.B.A.F., G.L.P.M., M.R.M.); Department of
Radiology, University of São Paulo, São Paulo, Brazil (A.I.d.O.,
G.L.P.M., M.R.M.); and Department of Abdominal Imaging, Division of Diagnostic
Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex
(K.M.E.)
| | - Maria El Homsi
- From the Department of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Ave, Box 29, New York, NY 10065 (N.H., M.E.H., A.E., R.B.);
Department of Radiology, Hospital Sírio-Libanês, São Paulo,
Brazil (A.I.d.O., B.C.d.O., J.A.B.A.F., G.L.P.M., M.R.M.); Department of
Radiology, University of São Paulo, São Paulo, Brazil (A.I.d.O.,
G.L.P.M., M.R.M.); and Department of Abdominal Imaging, Division of Diagnostic
Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex
(K.M.E.)
| | - Ahmed Elsakka
- From the Department of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Ave, Box 29, New York, NY 10065 (N.H., M.E.H., A.E., R.B.);
Department of Radiology, Hospital Sírio-Libanês, São Paulo,
Brazil (A.I.d.O., B.C.d.O., J.A.B.A.F., G.L.P.M., M.R.M.); Department of
Radiology, University of São Paulo, São Paulo, Brazil (A.I.d.O.,
G.L.P.M., M.R.M.); and Department of Abdominal Imaging, Division of Diagnostic
Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex
(K.M.E.)
| | - Raazi Bajwa
- From the Department of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Ave, Box 29, New York, NY 10065 (N.H., M.E.H., A.E., R.B.);
Department of Radiology, Hospital Sírio-Libanês, São Paulo,
Brazil (A.I.d.O., B.C.d.O., J.A.B.A.F., G.L.P.M., M.R.M.); Department of
Radiology, University of São Paulo, São Paulo, Brazil (A.I.d.O.,
G.L.P.M., M.R.M.); and Department of Abdominal Imaging, Division of Diagnostic
Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex
(K.M.E.)
| | - Guilherme L. P. Martins
- From the Department of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Ave, Box 29, New York, NY 10065 (N.H., M.E.H., A.E., R.B.);
Department of Radiology, Hospital Sírio-Libanês, São Paulo,
Brazil (A.I.d.O., B.C.d.O., J.A.B.A.F., G.L.P.M., M.R.M.); Department of
Radiology, University of São Paulo, São Paulo, Brazil (A.I.d.O.,
G.L.P.M., M.R.M.); and Department of Abdominal Imaging, Division of Diagnostic
Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex
(K.M.E.)
| | - Khaled M. Elsayes
- From the Department of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Ave, Box 29, New York, NY 10065 (N.H., M.E.H., A.E., R.B.);
Department of Radiology, Hospital Sírio-Libanês, São Paulo,
Brazil (A.I.d.O., B.C.d.O., J.A.B.A.F., G.L.P.M., M.R.M.); Department of
Radiology, University of São Paulo, São Paulo, Brazil (A.I.d.O.,
G.L.P.M., M.R.M.); and Department of Abdominal Imaging, Division of Diagnostic
Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex
(K.M.E.)
| | - Marcos R. Menezes
- From the Department of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Ave, Box 29, New York, NY 10065 (N.H., M.E.H., A.E., R.B.);
Department of Radiology, Hospital Sírio-Libanês, São Paulo,
Brazil (A.I.d.O., B.C.d.O., J.A.B.A.F., G.L.P.M., M.R.M.); Department of
Radiology, University of São Paulo, São Paulo, Brazil (A.I.d.O.,
G.L.P.M., M.R.M.); and Department of Abdominal Imaging, Division of Diagnostic
Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex
(K.M.E.)
| |
Collapse
|
23
|
Hou YC, Zhang C, Zhang ZJ, Xia L, Rao KQ, Gu LH, Wu YC, Lv ZC, Wu HX, Zuo XL, Li F, Feng H, Xia Q. Aggregation-Induced Emission (AIE) and Magnetic Resonance Imaging Characteristics for Targeted and Image-Guided siRNA Therapy of Hepatocellular Carcinoma. Adv Healthc Mater 2022; 11:e2200579. [PMID: 35749736 DOI: 10.1002/adhm.202200579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and remains a global health challenge. Small interfering RNA (siRNA) is a promising therapeutic modality that blocks multiple disease-causing genes without impairing cell structures. However, siRNA therapeutics still have off-target proportion and lack effective quantitative analysis method in vivo. Thus, a novel theragnostic nanoparticle with dual-mode imaging is synthesized for targeted and image-guided siRNA therapy of HCC. Survivin siRNA is carried by Poly-ethylenimine (PEI) and interacted with T7-AIE/Gd NPs, which are self-assembled of DSPE-PEG-DTPA(Gd), DSPE-PEG-Mal, DSPE-PEG-PEI, and TPE. The resulting theragnostic nanoparticles exhibit lower toxicity and high therapeutic effect, and excellent T1-weighted magnetic resonance imaging (MRI) and aggregation-induced emission (AIE) imaging performance. Moreover, in vivo MRI and AIE imaging indicate that this kind of theragnostic nanoparticles rapidly accumulates in the tumor due to active targeting and enhanced permeability and retention (EPR) effects. Sur@T7-AIE-Gd suppresses HCC tumor growth by inducing autophagy and destabilizes DNA integrity in tumor cells. The results suggest that T7-AIE-Gd nanoparticles carrying Survivin siRNA with dual-mode imaging characteristics are promising for targeted and image-guided siRNA therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yu-Chen Hou
- Shanghai Institute of Transplantation, Shanghai, 200127, China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Chao Zhang
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zi-Jie Zhang
- Shanghai Institute of Transplantation, Shanghai, 200127, China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ke-Qiang Rao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li-Hong Gu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yi-Chi Wu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zi-Cheng Lv
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hao-Xiang Wu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao-Lei Zuo
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fan Li
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hao Feng
- Shanghai Institute of Transplantation, Shanghai, 200127, China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Qiang Xia
- Shanghai Institute of Transplantation, Shanghai, 200127, China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| |
Collapse
|
24
|
Alnammi M, Wortman J, Therrien J, Afnan J. MRI features of treated hepatocellular carcinoma following locoregional therapy: a pictorial review. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:2299-2313. [PMID: 35524803 DOI: 10.1007/s00261-022-03526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide and within the United States. Liver transplant or partial liver resection is the definitive treatment of choice for HCC; however, the majority of cases are detected in advanced stages due to its early-stage asymptomatic nature, often precluding surgical treatment. Locoregional therapy plays an essential role in HCC management, including curative intent, as a bridge to transplant, or in some cases palliative therapy. Radiologists play a critical role in assessing tumor response following treatment to guide further management that may potentially impact transplantation eligibility; therefore, it is important for radiologists to have an understanding of different locoregional therapies and the variations of imaging response to different therapies. In this review article, we outline the imaging response to ablative therapy (AT), transarterial chemoembolization (TACE), selective internal radiation therapy (SIRT), and stereotactic body radiation therapy (SBRT). We will also briefly discuss the basic concepts of these locoregional therapies. This review focuses on the imaging features following locoregional treatment for hepatocellular carcinoma following AT, TACE, SIRT, and SBRT.
Collapse
Affiliation(s)
- Mohanned Alnammi
- Department of Diagnostic Radiology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Jeremy Wortman
- Department of Diagnostic Radiology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Jaclyn Therrien
- Department of Diagnostic Radiology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Jalil Afnan
- Department of Diagnostic Radiology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA.
| |
Collapse
|
25
|
Yadav P, Mimansa, Munawara R, Kapoor K, Chaturvedi S, Kailasam K, Biswas SK, Bahadur D, Srivastava R, Mishra AK, Shanavas A. Nontoxic In Vivo Clearable Nanoparticle Clusters for Theranostic Applications. ACS Biomater Sci Eng 2022; 8:2053-2065. [PMID: 35416030 DOI: 10.1021/acsbiomaterials.1c01579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Disintegrable inorganic nanoclusters (GIONs) with gold seed (GS) coating of an iron oxide core with a primary nanoparticle size less than 6 nm were prepared for theranostic applications. The GIONs possessed a broad near-infrared (NIR) absorbance at ∼750 nm because of plasmon coupling between closely positioned GSs on the iron oxide nanoclusters (ION) surface, in addition to the ∼513 nm peak corresponding to the isolated GS. The NIR laser-triggered photothermal response of GIONs was found to be concentration-dependent with a temperature rise of ∼8.5 and ∼4.5 °C from physiological temperature for 0.5 and 0.25 mg/mL, respectively. The nanoclusters were nonhemolytic and showed compatibility with human umbilical vein endothelial cells up to a concentration of 0.7 mg/mL under physiological conditions. The nanoclusters completely disintegrated at a lysosomal pH of 5.2 within 1 month. With an acute increase of over 400% intracellular reactive oxygen species soon after γ-irradiation and assistance from Fenton reaction-mediated supplemental oxidative stress, GION treatment in conjunction with radiation killed ∼50% of PLC/PRF/5 hepatoma cells. Confocal microscopy images of these cells showed significant cytoskeletal and nuclear damage from radiosensitization with GIONs. The cell viability further decreased to ∼10% when they were sequentially exposed to the NIR laser followed by γ-irradiation. The magnetic and optical properties of the nanoclusters enabled GIONs to possess a T2 relaxivity of ∼223 mM-1 s-1and a concentration-dependent strong photoacoustic signal toward magnetic resonance and optical imaging. GIONs did not incur any organ damage or evoke an acute inflammatory response in healthy C57BL/6 mice. Elemental analysis of various organs indicated differential clearance of gold and iron via both renal and hepatobiliary routes.
Collapse
Affiliation(s)
- Pranjali Yadav
- Institute of Nano Science and Technology (INST), Sector 81, Mohali 140306, India
| | - Mimansa
- Institute of Nano Science and Technology (INST), Sector 81, Mohali 140306, India
| | - Rafika Munawara
- Department of Anatomy, Government Medical College & Hospital, Sector 32, Chandigarh 160030, India
| | - Kanchan Kapoor
- Department of Anatomy, Government Medical College & Hospital, Sector 32, Chandigarh 160030, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | | | - Samir Kumar Biswas
- Department of Physical Sciences, Indian Institute of Science Education & Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli 140306, India
| | - Dhirendra Bahadur
- Department of Mechanical Engineering, Indian Institute of Technology Goa, Farmagudi, Ponda 403401, Goa, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology (INST), Sector 81, Mohali 140306, India
| |
Collapse
|
26
|
Guo Y, Chen J, Zhang Y, Guo Y, Jiang M, Dai Y, Yao X. Differentiating Cytokeratin 19 expression of hepatocellular carcinoma by using multi-b-value diffusion-weighted MR imaging with mono-exponential, stretched exponential, intravoxel incoherent motion, diffusion kurtosis imaging and fractional order calculus models. Eur J Radiol 2022; 150:110237. [DOI: 10.1016/j.ejrad.2022.110237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/02/2022] [Accepted: 03/03/2022] [Indexed: 12/25/2022]
|
27
|
Bakshi N, Chand V, Sangal R, Duggal R. Radiation Induced Liver Injury: Collateral Damage Radiologically Simulating Interval Metastasis in Carcinoma Esophagus; a Diagnostic Dilemma Resolved Through Liver Biopsy. Int J Surg Pathol 2022; 30:945-949. [PMID: 35470748 DOI: 10.1177/10668969221095181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
F-18-fluorodeoxyglucose positron emission tomography (18-FDG PET/CT) is increasingly being used in patients with cancer, both for baseline staging and for evaluation of treatment response. However, in patients with incidental irradiation of the liver during radiotherapy, particularly for lower gastrointestinal tract cancers, increased focal F-18-fluorodeoxyglucose positron emission tomography avidity may be the result of collateral radiation induced liver damage rather than metastases. Awareness of this pathologic entity and correlation with with other imaging, clinical and laboratory findings including liver biopsy is vital to avoid misinterpretation and overstaging of the carcinoma in these patients. We encountered such a scenario in an elderly female patient with distal esophageal squamous cell carcinoma patient, who developed F-18-fluorodeoxyglucose positron emission tomography avid left lobe liver lesion post neoadjuvant radiotherapy, simulating interval metastasis. A liver biopsy ruled out malignancy and helped to clinch the correct diagnosis of radiation induced liver injury.
Collapse
Affiliation(s)
- Neha Bakshi
- Department of Pathology (Histopathology division), 28928Sir Ganga Ram Hospital, New Delhi, India
| | - Vineeta Chand
- Department of Histopathology and cytopathology, BLK-MAX Hospital, New Delhi, India
| | - Rishu Sangal
- Department of Radiology and Imaging, BLK-MAX Hospital, New Delhi, India
| | - Rajan Duggal
- Department of Histopathology and cytopathology, BLK-MAX Hospital, New Delhi, India
| |
Collapse
|
28
|
Comparetti EJ, Lins PMP, Quitiba J, Zucolotto V. Cancer cell membrane‐derived nanoparticles block the expression of immune checkpoint proteins on cancer cells and coordinate modulatory activity on immunosuppressive macrophages. J Biomed Mater Res A 2022; 110:1499-1511. [DOI: 10.1002/jbm.a.37387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/27/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Edson J. Comparetti
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
| | - Paula M. P. Lins
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
| | - João Quitiba
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
- Institute of Advanced Studies University of Sao Paulo Sao Carlos Brazil
| |
Collapse
|
29
|
Srivastava A, Parambath HK, Ramdulari AV, Saxena H, Kumar R, Pandey S, Shalimar, Gupta S, Jee B. Is hepatocellular carcinoma complicated with portal vein tumor thrombosis potentially curable by radiotherapy in the form of stereotactic body radiation therapy? Int J Radiat Biol 2022; 98:1495-1509. [PMID: 35311612 DOI: 10.1080/09553002.2022.2055800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE The prognosis of hepatocellular carcinoma (HCC) with portal vein tumor thrombosis (PVTT) is dismal. Despite best treatment and care, the patients with this malignancy only showed 2.7-4 months of overall survival. It is debatable whether liver transplantation helps PVTT sufferers. The effectiveness of radiation therapy in treating HCC patients with PVTT should not be undervalued. By limiting the high dosage region to a small planning target volume, stereotactic radiation delivery has shifted toward hypofractionation, limiting the radiation exposure to healthy organs and tissues. Stereotactic body radiotherapy (SBRT) has a local control rate of 75-100%, depending on the treatment. The major limitation in SBRT for hepatocellular carcinoma with PVTT is the paucity of prospective evidence for longer periods beyond the first two years after treatment. More prospective studies/randomized clinical trials with a longer follow-up, larger sample size, and adequate statistical power are the dire need of the present situation to ascertain the curative effect of SBRT as primary therapy for advanced HCC with PVTT. CONCLUSION SBRT can improve survival, particularly for patients receiving multidisciplinary treatment. This review sums up our most current understanding of how radiation therapy, notably SBRT, can be used to treat hepatocellular carcinoma when combined with PVTT. Recent research has led us to believe that irradiation in the form of SBRT may cure hepatocellular carcinoma complicated by PVTT.
Collapse
Affiliation(s)
- Astha Srivastava
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Haresh Kunhi Parambath
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Anjali V Ramdulari
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Harsh Saxena
- Department of Medicine Trauma, All India Institute of Medical Sciences, New Delhi, India
| | - Rishabh Kumar
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Suyash Pandey
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Subhash Gupta
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| |
Collapse
|
30
|
A new lightweight convolutional neural network for radiation-induced liver disease classification. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Farooq A, Ahmed Z, Wert J, Jalil A, Yu J, Zaytsev V, Ahmad S. Updates on clinical trials for the management of hepatocellular carcinoma. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA, VOLUME 3 2022:259-273. [DOI: 10.1016/b978-0-323-99283-1.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Yoo GS, Yu JI, Park HC. Current role of proton beam therapy in patients with hepatocellular carcinoma. INTERNATIONAL JOURNAL OF GASTROINTESTINAL INTERVENTION 2021; 10:175-182. [DOI: 10.18528/ijgii210043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 04/24/2025] Open
Affiliation(s)
- Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Neutrophil-mediated clinical nanodrug for treatment of residual tumor after focused ultrasound ablation. J Nanobiotechnology 2021; 19:345. [PMID: 34715854 PMCID: PMC8555249 DOI: 10.1186/s12951-021-01087-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
Background The risk of local recurrence after high-intensity focused ultrasound (HIFU) is relatively high, resulting in poor prognosis of malignant tumors. The combination of HIFU with traditional chemotherapy continues to have an unsatisfactory outcome because of off-site drug uptake. Results Herein, we propose a strategy of inflammation-tendency neutrophil-mediated clinical nanodrug targeted therapy for residual tumors after HIFU ablation. We selected neutrophils as carriers and PEGylated liposome doxorubicin (PLD) as a model chemotherapeutic nanodrug to form an innovative cell therapy drug (PLD@NEs). The produced PLD@NEs had a loading capacity of approximately 5 µg of PLD per 106 cells and maintained the natural characteristics of neutrophils. The targeting performance and therapeutic potential of PLD@NEs were evaluated using Hepa1-6 cells and a corresponding tumor-bearing mouse model. After HIFU ablation, PLD@NEs were recruited to the tumor site by inflammation (most in 4 h) and released PLD with inflammatory stimuli, leading to targeted and localized postoperative chemotherapy. Conclusions This effective integrated method fully leverages the advantages of HIFU, chemotherapy and neutrophils to attract more focus on the practice of improving existing clinical therapies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01087-w.
Collapse
|
34
|
Jung JM, Kim SH, Giang Phan VH, Thambi T, Lee DS. Therapeutic effects of boronate ester cross-linked injectable hydrogels for the treatment of hepatocellular carcinoma. Biomater Sci 2021; 9:7275-7286. [PMID: 34609388 DOI: 10.1039/d1bm00881a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma is the most common malignancy with a high incidence rate and is the leading cause of cancer-related deaths. Herein, we developed a thermo-responsive hydrogel comprising poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide (PCLA) that exhibits acidity-accelerated delivery of the tumor-targeting glucuronic acid-bearing doxorubicin (DOX-pH-GA) conjugate into tumor tissues. The PCLA copolymer was post-modified with boronic acid (BA-PCLA) to covalently cross-link with the pH-responsive DOX-pH-GA conjugate. The BA-PCLA copolymer effectively coordinated with the DOX-pH-GA conjugate through the boronate ester formation and showed a lower critical gelation temperature. The DOX conjugated via boronate ester exhibited a sustained release in vitro. Subcutaneous administration of PCLA copolymers formed in situ gels in the subcutaneous layers of Sprague-Dawley rats and degraded after 6 weeks. Similarly, BA-PCLA copolymers coordinated with DOX-pH-GA formed a stable in situ gel in vivo. In vivo imaging studies demonstrated that DOX-pH-GA was released in a sustained manner. The anti-tumor activity of the DOX releasing injectable hydrogel was examined using a HepG2 liver cancer xenograft model. The in vivo antitumor effect demonstrated that the DOX releasing hydrogel depot remarkably suppresses the tumor growth. These results demonstrate that the pH-responsive DOX releasing thermo-responsive hydrogel depot has great potential for application in localized anticancer therapy.
Collapse
Affiliation(s)
- Jae Min Jung
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Seong Han Kim
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 70000, Vietnam
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
35
|
Yu C, Liang Y, Jin Y, Li Q. LncRNA GAS5 enhances radiosensitivity of hepatocellular carcinoma and restricts tumor growth and metastasis by miR-144-5p/ATF2. Am J Transl Res 2021; 13:10896-10907. [PMID: 34650771 PMCID: PMC8506991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND This study aimed to evaluate the biologic role of growth arrest-specific 5 (GAS5) in radiosensitivity of hepatocellular carcinoma (HCC). METHODS The levels of GAS5, miR-144-5p, and activating transcription factor 2 (ATF2) were quantified in HCC tissues and cell lines. RNA immunoprecipitation (RIP) and RNA pull-down assays were used to test the interaction between GAS5 and miR-144-5p. The regulatory relationship between miR-144-5p and ATF2 was identified by the dual-luciferase reporter (DLR) assay. A nude mouse model of HCC was induced to verify the effect of GAS5 on radiosensitivity of HCC in vivo. RESULTS Lower levels of GAS5 and ATF2, and higher levels of miR-144-5p, were found in radiation-resistant human HCC tissues and cell lines. Overexpression of ATF2 or GAS5 enhanced the radiosensitivity of HCC cell lines, while knockdown of ATF2 or GAS5 decreased the radiosensitivity. In addition, GAS5 acted as a miR-144-5p sponge, and miR-144-5p inversely regulated ATF2. Also, GAS5 mediated ATF2 levels through miR-144-5p, and increased the radiosensitivity of HCC by suppressing miR-144-5p both in vivo and in vitro. CONCLUSION Overexpression of GAS5 upregulates ATF2 through miR-144-5p and is able to enhance the radiosensitivity of HCC.
Collapse
Affiliation(s)
- Chuanyun Yu
- Oncology Radiotherapy Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyang 441021, Hubei, China
| | - Yi Liang
- Oncology Radiotherapy Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyang 441021, Hubei, China
| | - Yiqiang Jin
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyang 441021, Hubei, China
| | - Qinghuan Li
- Oncology Radiotherapy Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyang 441021, Hubei, China
| |
Collapse
|
36
|
Zhang H, Chang N, Han T, Ma S, Qu G, Liu H, Sun C, Cheng C, Zhou Q, Sun Y. Radiofrequency ablation versus stereotactic body radiotherapy for hepatocellular carcinoma: a meta-analysis. Future Oncol 2021; 17:4027-4040. [PMID: 34278818 DOI: 10.2217/fon-2021-0263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The present meta-analysis was performed to evaluate the efficacy of radiofrequency ablation (RFA) and stereotactic body radiotherapy (SBRT) in hepatocellular carcinoma (HCC) patients. A systematic literature search was conducted of online databases prior to February 21, 2021. Eleven articles involving 8429 patients were included. The pooled hazard ratio for overall survival (OS) of RFA versus SBRT was 0.79 (p < 0.001). Statistically significant differences were found in the 1-, 2-, 3-, 4- and 5-year pooled OS and freedom from local progression (FFLP) rates between the two groups, favoring the RFA arms. However, the pooled local control (LC) rates were higher in the SBRT arm. RFA provided better OS and FFLP for treating HCC, while SBRT achieved superior LC. PROSPERO registration number: CRD42020207877.
Collapse
Affiliation(s)
- Huimei Zhang
- Department of Epidemiology & Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Na Chang
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of UTSC, Division of Life Sciences & Medicine, University of Science & Technology of China), Hefei, Anhui 230031, China
| | - Tiantian Han
- Department of Epidemiology & Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shaodi Ma
- Department of Epidemiology & Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Guangbo Qu
- Department of Epidemiology & Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Haixia Liu
- Department of Epidemiology & Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL 60657, USA
| | - Ce Cheng
- The University of Arizona College of Medicine/Banner University Medical Center at South Campus, 2800 E Ajo Way, Tucson, AZ 85714, USA
| | - Qin Zhou
- Mayo clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Yehuan Sun
- Department of Epidemiology & Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China.,Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China
| |
Collapse
|
37
|
Woodrell CD, Goldstein NE, Moreno JR, Schiano TD, Schwartz ME, Garrido MM. Inpatient Specialty-Level Palliative Care Is Delivered Late in the Course of Hepatocellular Carcinoma and Associated With Lower Hazard of Hospital Readmission. J Pain Symptom Manage 2021; 61:940-947.e3. [PMID: 33035651 PMCID: PMC8021616 DOI: 10.1016/j.jpainsymman.2020.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT Little is known about receipt of specialty-level palliative care by people with hepatocellular carcinoma (HCC) or its impact on health care utilization. OBJECTIVES Identify patient characteristics associated with receipt of specialty-level palliative care among hospitalized HCC patients and measure association with time to readmission. METHODS We used logistic regression to examine relationships between receipt of inpatient palliative care consultation by HCC patients at an academic center (N = 811; 2012-2016) and clinical and demographic covariates at index hospitalization. We used a survival analysis model accounting for competing risk of mortality to compare time to readmission among individuals who did or did not receive palliative care during the admission and performed a sensitivity analysis using kernel weights to account for selection bias. RESULTS Overall, 16% received inpatient palliative care consults. Those who received consults had worse laboratory values than those who did not. In a multivariable model, higher Model for End-Stage Liver Disease Sodium, receipt of sorafenib, and higher pain scores were significantly associated with increased odds of palliative care, whereas liver transplantation and admission to a surgical service were associated with lower odds. For time to readmission (2076 hospitalizations for 811 individuals with 175 palliative care visits), the subhazard ratio for readmission for patients who received consults was 0.26 (95% CI = 0.18-0.38) and 0.35 (95% CI = 0.24-0.52) with a kernel-weighted sample. CONCLUSION Inpatient palliative care consultation was received by individuals with more advanced disease and associated with lower readmission hazard. These findings support further research and the development of HCC-specific programs that increase access to specialty-level palliative care.
Collapse
Affiliation(s)
- Christopher D Woodrell
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| | - Nathan E Goldstein
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Jaison R Moreno
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas D Schiano
- Division of Liver Diseases, Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Myron E Schwartz
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Melissa M Garrido
- Boston Veterans Affairs Healthcare System, Boston, Massachusetts, USA; Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Alhalmi A, Beg S, Kohli K, Waris M, Singh T. Nanotechnology Based Approach for Hepatocellular Carcinoma Targeting. Curr Drug Targets 2021; 22:779-792. [PMID: 33302831 DOI: 10.2174/1389450121999201209194524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the primary liver cancer that has shown a high incidence and mortality rate worldwide among several types of cancers. A large variety of chemotherapeutic agents employed for the treatment have a limited success rate owing to their limited site-specific drug targeting ability. Thus, there is a demand to develop novel approaches for the treatment of HCC. With advancements in nanotechnology-based drug delivery approaches, the challenges of conventional chemotherapy have been continuously decreasing. Nanomedicines constituted of lipidic and polymeric composites provide a better platform for delivering and opening new pathways for HCC treatment. A score of nanocarriers such as surface-engineered liposomes, nanoparticles, nanotubes, micelles, quantum dots, etc., has been investigated in the treatment of HCC. These nanocarriers are considered to be highly effective clinically for delivering chemotherapeutic drugs with high site-specificity ability and therapeutic efficiency. The present review highlights the current focus on the application of nanocarrier systems using various ligand-based receptor-specific targeting strategies for the treatment and management of HCC. Moreover, the article has also included information on the current clinically approved drug therapy for hepatocellular carcinoma treatment and updates of regulatory requirements for approval of such nanomedicines.
Collapse
Affiliation(s)
- Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Waris
- Department of Botany, Thakur Prasad Singh College, Patna, Magadh University, Bodh Gaya, India
| | - Tanuja Singh
- University Department of Botany, Patliputra University, Patna, Bihar, India
| |
Collapse
|
39
|
Lin W, Zhang T, Ding G, Hao L, Zhang B, Yu J, Pang Y, Geng F, Zhan L, Zhou M, Yan Q, Wang Y, Zheng C, Li H. Circular RNA circ‑CCT3 promotes hepatocellular carcinoma progression by regulating the miR‑1287‑5p/TEAD1/PTCH1/LOX axis. Mol Med Rep 2021; 23:375. [PMID: 33760147 PMCID: PMC7986040 DOI: 10.3892/mmr.2021.12014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by a poor prognosis because of its insensitivity to radiation and chemotherapy. Recently, circular RNAs (circRNAs) have been found to serve important roles in hepatocellular carcinogenesis. circ-CCT3, a novel circRNA, was screened from the differential tissue expression results of a circRNA microarray. Relative expression levels of circ-CCT3 in specimens and cell lines were evaluated by reverse transcription-quantitative PCR and the relationship between circ-CCT3 and prognosis was analyzed by Kaplan-Meier curves. The oncogenic role of circ-CCT3 was confirmed in HCC cells through a cell counting kit-8 (CCK-8) assay, a colony formation assay, acridine orange/ethidium bromide double fluorescence staining, flow cytometry, a wound-healing assay and a Transwell assay. Bioinformatics prediction and luciferase reporter assays validated that circ-CCT3 facilitated HCC progression through the miR-1287-5p/TEA domain transcription factor 1 (TEAD1) axis. TEAD1 could then directly activate patched 1 and lysyl oxidase transcription, as analyzed by chromatin immunoprecipitation and luciferase reporter assays. The present study identified a novel circRNA, circ-CCT3, which may be used as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Wennan Lin
- Department of General Practice, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Tianyu Zhang
- Department of Computed Tomography, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Guoxu Ding
- Department of General Practice, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Liguo Hao
- Department of Molecular Imaging, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Bingquan Zhang
- Department of General Practice, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Jing Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Yu Pang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Feng Geng
- Department of Pharmacy, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Lan Zhan
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Minglu Zhou
- Department of General Practice, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Qiyu Yan
- Department of General Practice, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Yuguang Wang
- Department of Computed Tomography, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Chunlei Zheng
- Department of Oncology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Hui Li
- Department of Electrophysiology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
40
|
Downregulation of Mcl-1 by Panobinostat Potentiates Proton Beam Therapy in Hepatocellular Carcinoma Cells. Cells 2021; 10:cells10030554. [PMID: 33806487 PMCID: PMC7999709 DOI: 10.3390/cells10030554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modulation by histone deacetylase (HDAC) inhibitors is an attractive anti-cancer strategy for diverse hematological and solid cancers. Herein, we explored the relative effectiveness of the pan-HDAC inhibitor panobinostat in combination with proton over X-ray irradiation in HCC cells. Clonogenic survival assays revealed that radiosensitization of Huh7 and Hep3B cells by panobinostat was more evident when combined with protons than X-rays. Panobinostat increased G2/M arrest and production of intracellular reactive oxygen species, which was further enhanced by proton irradiation. Immunofluorescence staining of γH2AX showed that panobinostat enhanced proton-induced DNA damage. Panobinostat dose-dependently decreased expression of an anti-apoptotic protein, Mcl-1, concomitant with increasing acetylation of histone H4. The combination of panobinostat with proton irradiation enhanced apoptotic cell death to a greater extent than that with X-ray irradiation. Depletion of Mcl-1 by RNA interference enhanced proton-induced apoptosis and proton radiosensitization, suggesting a potential role of Mcl-1 in determining proton sensitivity. Together, our findings suggest that panobinostat may be a promising combination agent for proton beam therapy in HCC treatment.
Collapse
|
41
|
Chuang HY, Tyan YS, Hwang JJ, Shih KC, Lin WC. A combination of sorafenib and radiotherapy reduces NF-κB activity and growth of hepatocellular carcinoma in an orthotopic mouse model. Oncol Lett 2021; 21:337. [PMID: 33692869 PMCID: PMC7933744 DOI: 10.3892/ol.2021.12598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is difficult to diagnose at an early stage, and its prognosis is generally poor. Sorafenib is the primary treatment for unresectable advanced HCC and targets multiple receptor tyrosine kinases. However, sorafenib only extends the average survival time by 3 months. This observation indicates that sorafenib may need to be combined with other treatments to further improve outcomes. We previously showed that combination of sorafenib with radiotherapy (RT) enhances tumor inhibition in subcutaneous HCC mouse models compared with monotherapy. The present study demonstrated that combining sorafenib and RT could suppress tumor growth in an orthotopic HCC model by regulating apoptosis and NF-κB-related pathways. Moreover, decreased numbers of visible liver tumors and a smaller percentage of spleen metastases were found in the combination group. A transient drop in body weight was initially observed after RT, but progressive recovery of body weight occurred. The current study showed that the combination of sorafenib and RT could be a safe strategy for HCC treatment.
Collapse
Affiliation(s)
- Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
| | - Yeu-Sheng Tyan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C
| | - Jeng-Jong Hwang
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C.,Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Medicine, Cheng-Hsin General Hospital, Taipei 112, Taiwan, R.O.C.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Wei-Chan Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C.,Department of Radiology, Cathay General Hospital, New Taipei 106, Taiwan, R.O.C.,School of Medicine, Fu-Jen Catholic University, New Taipei 106, Taiwan, R.O.C
| |
Collapse
|
42
|
Yang J, Liang H, Hu K, Xiong Z, Cao M, Zhong Z, Yao Z, Deng M. The effects of several postoperative adjuvant therapies for hepatocellular carcinoma patients with microvascular invasion after curative resection: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:92. [PMID: 33549093 PMCID: PMC7868028 DOI: 10.1186/s12935-021-01790-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Background For patients with hepatocellular carcinoma (HCC) with microvascular invasion (MVI) after curative resection, the effects of various postoperative adjuvant therapies are not summarized in detail, and the comparison between the effects of various adjuvant therapies is still unclear. Thus, we collected existing studies on postoperative adjuvant therapies for patients with HCC with MVI after curative resection and analyzed the effects of various adjuvant therapies. Method We collected all studies on postoperative adjuvant therapy for patients with HCC with MVI after curative resection from PubMed, EMBASE, Cochrane Library and SinoMed ending on May 1, 2019. Overall survival (OS) and disease-free/recurrence-free survival (RFS) between each group were compared in these studies by calculating the pooled hazard ratio (HR) and 95% confidence interval (CI). All statistical analyses were assessed by two authors independently. Result A total of 13 studies were included in this study, including 824 postoperative adjuvant transarterial chemoembolization (pa-TACE) patients, 90 postoperative radiotherapy patients, 57 radiofrequency ablation (RFA)/re-resection patients, 16 sorafenib patients and 886 postoperative conservative treatment patients. The results showed that pa-TACE significantly improved OS and RFS compared with postoperative conservative treatment in patients with HCC with MVI after curative resection (HR: 0.64, 95% CI: 0.55–0.74, p < 0.001; HR: 0.70, 95% CI: 0.62–0.78, p < 0.001, respectively). There was no significant difference in OS between pa-TACE and radiotherapy in patients with HCC with MVI (HR: 1.75, 95% CI: 0.92–3.32, p = 0.087). RFS in patients with HCC with MVI after pa-TACE was worse than that after postoperative adjuvant radiotherapy (HR: 2.29, 95% CI: 1.43–3.65, p < 0.001). The prognosis of pa-TACE and RFA/re-resection in patients with MVI with recurrent HCC had no significant differences (HR: 0.65, 95% CI: 0.09–4.89, p = 0.671). Adjuvant treatments significantly improved the OS and RFS of patients compared with the postoperative conservative group (HR: 0.580, 95% CI: 0.480–0.710, p < 0.001; HR: 0.630, 95% CI: 0.540–0.740, p < 0.001, respectively). Conclusion Compared with postoperative conservative treatment, pa-TACE, postoperative radiotherapy and sorafenib can improve the prognosis of patients with hepatocellular carcinoma with microvascular invasion after curative resection. Postoperative radiotherapy can reduce the recurrence of patients with HCC with MVI after curative resection compared with pa-TACE.
Collapse
Affiliation(s)
- Jiarui Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510530, Guangdong, China
| | - Hao Liang
- Department of General Surgery, Ling Nan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, No. 2693, Kai Chuang Avenue, Guangzhou, 510530, Guangdong, China
| | - Kunpeng Hu
- Department of General Surgery, Ling Nan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, No. 2693, Kai Chuang Avenue, Guangzhou, 510530, Guangdong, China
| | - Zhiyong Xiong
- Department of General Surgery, Ling Nan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, No. 2693, Kai Chuang Avenue, Guangzhou, 510530, Guangdong, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510530, Guangdong, China
| | - Zhaozhong Zhong
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510530, Guangdong, China
| | - Zhicheng Yao
- Department of General Surgery, Ling Nan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, No. 2693, Kai Chuang Avenue, Guangzhou, 510530, Guangdong, China.
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510530, Guangdong, China.
| |
Collapse
|
43
|
O'Leary C, Soulen MC, Shamimi-Noori S. Interventional Oncology Approach to Hepatic Metastases. Semin Intervent Radiol 2020; 37:484-491. [PMID: 33328704 PMCID: PMC7732560 DOI: 10.1055/s-0040-1719189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastatic liver disease is one of the major causes of cancer-related morbidity and mortality. Locoregional therapies offered by interventional oncologists alleviate cancer-related morbidity and in some cases improve survival. Locoregional therapies are often palliative in nature but occasionally can be used with curative intent. This review will discuss important factors to consider prior to palliative and curative intent treatment of metastatic liver disease with locoregional therapy. These factors include those specific to the tumor, liver function, liver reserve, differences between treatment modalities, and patient-specific considerations.
Collapse
Affiliation(s)
- Cathal O'Leary
- Division of Interventional Radiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael C. Soulen
- Division of Interventional Radiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan Shamimi-Noori
- Division of Interventional Radiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Prince D, Liu K, Xu W, Chen M, Sun JY, Lu XJ, Ji J. Management of patients with intermediate stage hepatocellular carcinoma. Ther Adv Med Oncol 2020; 12:1758835920970840. [PMID: 33224278 PMCID: PMC7649909 DOI: 10.1177/1758835920970840] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) causes a significant health burden globally and its impact is expected to increase in the coming years. Intermediate stage HCC, as defined by the Barcelona Clinic Liver Cancer (BCLC) system stage B, represents up to 30% of patients at diagnosis and encompasses a broad spectrum of tumor burden. Several attempts have been made to further subclassify this heterogenous group. The current standard of care recommended by BCLC for intermediate stage HCC patients is transarterial chemoembolization (TACE), with modest outcomes reported. While refinements have been made to TACE technique and patient selection, it remains non-curative. In the real-world setting, only 60% of patients with intermediate stage HCC receive TACE, with the remainder deviating to a range of other therapies that have shown promise in select patient subgroups. These include curative treatments (resection, ablation, and liver transplantation), radiotherapy (stereotactic and radioembolization), systemic therapies, and their combination. In this review, we summarize the classifications and current management for patients with intermediate stage HCC as well as highlight recent key developments in this space.
Collapse
Affiliation(s)
- David Prince
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Liver Injury and Cancer Program, The Centenary Institute, Sydney, NSW, Australia
| | - Weiqi Xu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui, China
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui, China
| | - Jin-Yu Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Sparkfire Scientific Research Group, Nanjing Medical University, Nanjing, China
| | - Xiao-Jie Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| |
Collapse
|
45
|
Yoo GS, Yu JI, Park HC, Hyun D, Jeong WK, Lim HY, Choi MS, Ha SY. Do Biliary Complications after Proton Beam Therapy for Perihilar Hepatocellular Carcinoma Matter? Cancers (Basel) 2020; 12:cancers12092395. [PMID: 32847035 PMCID: PMC7565009 DOI: 10.3390/cancers12092395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
We aimed to evaluate the biliary complications and efficacy of proton beam therapy (PBT) for hepatocellular carcinoma (HCC). We retrospectively analyzed 167 patients who received PBT with ≥ 75 GyRBE of biological effective dose with 𝛼/β = 10 for primary HCC. The perihilar region was defined as a 1-cm area extending from the right, left, and common hepatic ducts, including the gallbladder and cystic duct. PBT-related biliary complications were defined as follows: significant elevation in bilirubin level to > 3.0 mg/dL; elevation to more than twice of the baseline level after the completion of PBT; or newly developed radiological biliary abnormalities, which were not caused by HCC progression, comorbidities, or other treatments. Eighty (47.9%) had perihilar HCC. PBT-related events occurred in seven (4.2%), three of whom had perihilar HCC. Radiologic biliary abnormalities developed in 12 patients (7.2%); however, no events were PBT-related. All patients who experienced PBT-related biliary complications had underlying liver cirrhosis. The albumin-bilirubin grade was identified as an independent factor associated with PBT-related biliary complications. PBT at the current dose showed a low rate of PBT-related biliary complications even for patients with perihilar HCC. PBT for HCC patients with risk factors requires attention to reduce PBT-related biliary complications.
Collapse
Affiliation(s)
- Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (G.S.Y.); (J.I.Y.)
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (G.S.Y.); (J.I.Y.)
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (G.S.Y.); (J.I.Y.)
- Correspondence: ; Tel.: +82-2-3410-2612; Fax: +82-2-3410-2619
| | - Dongho Hyun
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (D.H.); (W.K.J.)
| | - Woo Kyoung Jeong
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (D.H.); (W.K.J.)
| | - Ho Yeong Lim
- Department of Internal Medicine (Division of Hematology-Oncology), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Moon Seok Choi
- Department of Internal Medicine (Division of Gastroenterology), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| |
Collapse
|
46
|
de la Peña C, Gonzalez MF, González C, Salazar JM, Cruz B. Stereotactic body radiation therapy for liver metastases: Clinical outcomes and literature review. Rep Pract Oncol Radiother 2020; 25:637-642. [DOI: 10.1016/j.rpor.2020.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/23/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
|
47
|
Bai YH, Yun XJ, Xue Y, Zhou T, Sun X, Gao YJ. A novel oncolytic adenovirus inhibits hepatocellular carcinoma growth. J Zhejiang Univ Sci B 2020; 20:1003-1013. [PMID: 31749347 DOI: 10.1631/jzus.b1900089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the inhibitory role of a novel oncolytic adenovirus (OA), GP73-SphK1sR-Ad5, on the growth of hepatocellular carcinoma (HCC). METHODS GP73-SphK1sR-Ad5 was constructed by integrating Golgi protein 73 (GP73) promoter and sphingosine kinase 1 (SphK1)-short hairpin RNA (shRNA) into adenovirus serotype 5 (Ad5), and transfecting into HCC Huh7 cells and normal human liver HL-7702 cells. The expression of SphK1 and adenovirus early region 1 (E1A) was detected by quantitative real-time PCR (qRT-PCR) and western blot, respectively. Cell viability was detected by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, and apoptotic rate was determined by flow cytometry. An Huh7 xenograft model was established in mice injected intratumorally with GP73-SphK1sR-Ad5. Twenty days after injection, the tumor volume and weight, and the survival time of the mice were recorded. The histopathological changes in tumor tissues were observed by hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). RESULTS Transfection of GP73-SphK1sR-Ad5 significantly upregulated E1A and downregulated SphK1 in Huh7 cells, but not in HL7702 cells. GP73-SphK1sR-Ad5 transfection significantly decreased the viability and increased the apoptotic rate of Huh7 cells, but had no effect on HL7702 cells. Intratumoral injection of GP73-SphK1sR-Ad5 into the Huh7 xenograft mouse model significantly decreased tumor volume and weight, and prolonged survival time. It also significantly decreased the tumor infiltration area and blood vessel density, and increased the percentages of cells with nucleus deformation and cells with condensed chromatin in tumor tissues. CONCLUSIONS GP73-SphK1sR-Ad5 serves as a novel OA and can inhibit HCC progression with high specificity and efficacy.
Collapse
Affiliation(s)
- Yu-Huan Bai
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Gastroenterology, the Second People's Hospital of Liaocheng, Linqing 252600, China
| | - Xiao-Jing Yun
- Department of Gastroenterology, the Second People's Hospital of Liaocheng, Linqing 252600, China
| | - Yan Xue
- Department of Gastroenterology, the Second People's Hospital of Liaocheng, Linqing 252600, China
| | - Ting Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xin Sun
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yan-Jing Gao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
48
|
Cui Y, Liang S, Zhang S, Zhang C, Zhao Y, Wu D, Wang J, Song R, Wang J, Yin D, Liu Y, Pan S, Liu X, Wang Y, Han J, Meng F, Zhang B, Guo H, Lu Z, Liu L. ABCA8 is regulated by miR-374b-5p and inhibits proliferation and metastasis of hepatocellular carcinoma through the ERK/ZEB1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:90. [PMID: 32430024 PMCID: PMC7236190 DOI: 10.1186/s13046-020-01591-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Background ATP binding cassette subfamily A member 8 (ABCA8) belongs to the ATP binding cassette (ABC) transporter superfamily. ABCA8 is a transmembrane transporter responsible for the transport of organics, such as cholesterol, and drug efflux. Some members of the ABC subfamily, such as ABCA1, may inhibit cancer development. However, the mechanism of ABCA8 in the process of cancer activation is still ambiguous. Methods The expression of ABCA8 in human hepatocellular carcinoma (HCC) tissues and cell lines was examined using qPCR, immunoblotting, and immunohistochemical staining. The effects of ABCA8 on the proliferation and metastasis of HCC were examined using in vitro and in vivo functional tests. A luciferase reporter assay was performed to explore the binding between microRNA-374b-5p (miR-374b-5p) and the ABCA8 3′-untranslated region (UTR). Results ABCA8 was frequently down-regulated in HCC and this down-regulation was negatively correlated with prognosis. The overexpression of ABCA8 inhibited growth and metastasis in HCC, whereas the knockdown of ABCA8 exerted the antithetical effects both in vivo and in vitro. ABCA8 was down-regulated by miR-374b-5p; this down-regulation can induce epithelial transformation to mesenchyme via the ERK/ZEB1 signaling pathway and promote HCC progression. Conclusion We exposed the prognostic value of ABCA8 in HCC, and illuminated a novel pathway in ABCA8-regulated inhibition of HCC tumorigenesis and metastasis. These findings may lead to a new targeted therapy for HCC through the regulation of ABCA8, and miR-374b-5p.
Collapse
Affiliation(s)
- Yifeng Cui
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Shuhang Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Shugeng Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Congyi Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yunzheng Zhao
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Dehai Wu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Ruipeng Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Jizhou Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Xirui Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yan Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jihua Han
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Fanzheng Meng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Hongrui Guo
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Zhaoyang Lu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China. .,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China. .,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China. .,Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
49
|
O'Leary C, Mahler M, Soulen MC. Curative-Intent Therapies in Localized Hepatocellular Carcinoma. Curr Treat Options Oncol 2020; 21:31. [PMID: 32193784 DOI: 10.1007/s11864-020-0725-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The high mortality rate for hepatocellular carcinoma (HCC) relative to its prevalence underscores the need for curative-intent therapies. Image-guided therapies such as ablation and embolization have an established role as primary or neoadjuvants preparing patients for curative treatment. RECENT FINDINGS For HCC < 3 cm, percutaneous thermal ablation provides oncologic outcomes similar to surgical resection and is now a recommended first-line therapy in the EASL guidelines. Both ablation and embolization are recommended as bridging therapies for HCC patients awaiting liver transplantation. T3 HCC can be downstaged by embolization to T2, allowing liver transplantation with similar outcomes to patients transplanted within Milan criteria. New and evolving techniques such as SBRT, radiation segmentectomy and lobectomy, and combination therapies show promise but require further prospective data before they can be integrated into treatment algorithms. Combinations of embolic, ablative, and extirpative therapies can increase access to curative-intent treatment of HCC. Multidisciplinary treatment decisions are required to craft optimal treatment strategies considering tumor size, location, and underlying liver cirrhosis.
Collapse
Affiliation(s)
- Cathal O'Leary
- Department of Radiology, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Mary Mahler
- University of Toronto, 500 University Avenue, Suite 602, Toronto, Ontario, M5G1V7, Canada
| | - Michael C Soulen
- Department of Radiology, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
50
|
Elevated PDK1 Expression Drives PI3K/AKT/MTOR Signaling Promotes Radiation-Resistant and Dedifferentiated Phenotype of Hepatocellular Carcinoma. Cells 2020; 9:cells9030746. [PMID: 32197467 PMCID: PMC7140693 DOI: 10.3390/cells9030746] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Resistance to radiotherapy (IR), with consequent disease recurrence, continues to limit the efficacy of contemporary anticancer treatment for patients with hepatocellular carcinoma (HCC), especially in late stage. Despite accruing evidence implicating the PI3K/AKT signaling pathway in cancer-promoting hypoxia, cancerous cell proliferation and radiotherapy-resistance, it remains unclear which molecular constituent of the pathway facilitates adaptation of aggressive HCC cells to tumoral stress signals and drives their evasion of repeated IR-toxicity. This present study investigated the role of PDK1 signaling in IR-resistance, enhanced DNA damage repair and post-IR relapse, characteristic of aggressive HCC cells, while exploring potential PDK1-targetability to improve radiosensitivity. The study employed bioinformatics analyses of gene expression profile and functional protein–protein interaction, generation of IR-resistant clones, flow cytometry-based ALDH activity and side-population (SP) characterization, siRNA-mediated loss-of-PDK1function, western-blotting, immunohistochemistry and functional assays including cell viability, migration, invasion, clonogenicity and tumorsphere formation assays. We showed that the aberrantly expressed PDK1 characterizes poorly differentiated HCC CVCL_7955, Mahlavu, SK-HEP1 and Hep3B cells, compared to the well-differentiated Huh7 or normal adult liver epithelial THLE-2 cells, and independently activates the PI3K/AKT/mTOR signaling. Molecular ablation of PDK1 function enhanced susceptibility of HCC cells to IR and was associated with deactivated PI3K/AKT/mTOR signaling. Additionally, PDK1-driven IR-resistance positively correlated with activated PI3K signaling, enhanced HCC cell motility and invasiveness, augmented EMT, upregulated stemness markers ALDH1A1, PROM1, SOX2, KLF4 and POU5F1, increased tumorsphere-formation efficiency and suppressed biomarkers of DNA damage—RAD50, MSH3, MLH3 and ERCC2. Furthermore, the acquired IR-resistant phenotype of Huh7 cells was strongly associated with significantly increased ALDH activity, SP-enrichment, and direct ALDH1-PDK1 interaction. Moreover, BX795-mediated pharmacological inhibition of PDK1 synergistically enhances the radiosensitivity of erstwhile resistant cells, increased Bax/Bcl-2 apoptotic ratio, while suppressing oncogenicity and clonogenicity. We provide preclinical evidence implicating PDK1 as an active driver of IR-resistance by activation of the PI3K/AKT/mTOR signaling, up-modulation of cancer stemness signaling and suppression of DNA damage, thus, projecting PDK1-targeting as a putative enhancer of radiosensitivity and a potential new therapeutic approach for patients with IR-resistant HCC.
Collapse
|