1
|
Prasad A, Wynands E, Roche SM, Romo-Bernal C, Allan N, Olson M, Levengood S, Andersen R, Loebel N, Sabino CP, Ross JA. Photodynamic Inactivation of Foodborne Bacteria: Screening of 32 Potential Photosensitizers. Foods 2024; 13:453. [PMID: 38338588 PMCID: PMC10855769 DOI: 10.3390/foods13030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The development of novel antimicrobial technologies for the food industry represents an important strategy to improve food safety. Antimicrobial photodynamic disinfection (aPDD) is a method that can inactivate microbes without the use of harsh chemicals. aPDD involves the administration of a non-toxic, light-sensitive substance, known as a photosensitizer, followed by exposure to visible light at a specific wavelength. The objective of this study was to screen the antimicrobial photodynamic efficacy of 32 food-safe pigments tested as candidate photosensitizers (PSs) against pathogenic and food-spoilage bacterial suspensions as well as biofilms grown on relevant food contact surfaces. This screening evaluated the minimum bactericidal concentration (MBC), minimum biofilm eradication concentration (MBEC), and colony forming unit (CFU) reduction against Salmonella enterica, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas fragi, and Brochothrix thermosphacta. Based on multiple characteristics, including solubility and the ability to reduce the biofilms by at least 3 log10 CFU/sample, 4 out of the 32 PSs were selected for further optimization against S. enterica and MRSA, including sunset yellow, curcumin, riboflavin-5'-phosphate (R-5-P), and erythrosin B. Optimized factors included the PS concentration, irradiance, and time of light exposure. Finally, 0.1% w/v R-5-P, irradiated with a 445 nm LED at 55.5 J/cm2, yielded a "max kill" (upwards of 3 to 7 log10 CFU/sample) against S. enterica and MRSA biofilms grown on metallic food contact surfaces, proving its potential for industrial applications. Overall, the aPDD method shows substantial promise as an alternative to existing disinfection technologies used in the food processing industry.
Collapse
Affiliation(s)
- Amritha Prasad
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Erin Wynands
- ACER Consulting, Guelph, ON N1G 5L3, Canada; (E.W.); (S.M.R.)
| | - Steven M. Roche
- ACER Consulting, Guelph, ON N1G 5L3, Canada; (E.W.); (S.M.R.)
| | - Cristina Romo-Bernal
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Nicholas Allan
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Merle Olson
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Sheeny Levengood
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Roger Andersen
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Nicolas Loebel
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Caetano P. Sabino
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
- Center for Lasers and Applications, Energy and Nuclear Research Institute, São Paulo 05508-000, SP, Brazil
| | - Joseph A. Ross
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| |
Collapse
|
2
|
Valluvar Oli A, Li Z, Chen Y, Ivaturi A. Near-Ultraviolet Indoor Black Light-Harvesting Perovskite Solar Cells. ACS APPLIED ENERGY MATERIALS 2022; 5:14669-14679. [PMID: 36590877 PMCID: PMC9795417 DOI: 10.1021/acsaem.2c01560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/03/2022] [Indexed: 05/26/2023]
Abstract
Indoor light-energy-harvesting solar cells have long-standing history with perovskite solar cells (PSCs) recently emerging as potential candidates with high power conversion efficiencies (PCEs). However, almost all of the reported studies on indoor light-harvesting solar cells utilize white light in the visible wavelength. Low wavelength near-ultraviolet (UV) lights used under indoor environments are not given attention despite their high photon energy. In this study, perovskite solar cells have been investigated for the first time for harvesting energy from a commercially available near-UV (UV-A) indoor LED light (395-400 nm). Also called black lights, these near-UV lights are commonly used for decoration (e.g., in bars, pubs, aquariums, parties, clubs, body art studios, neon lights, and Christmas and Halloween decorations). The optimized perovskite solar cells with the n-i-p architecture using the CH3NH3PbI3 absorber were fabricated and characterized under different illumination intensities of near-UV indoor LEDs. The champion devices delivered a PCE and power output of 20.63% and 775.86 μW/cm2, respectively, when measured under UV illumination of 3.76 mW/cm2. The devices retained 84.10% of their initial PCE when aged under near-UV light for 24 h. The effects of UV exposure on the device performance have been comprehensively characterized. Furthermore, UV-stable solar cells fabricated with a modified electron transport layer retained 95.53% of its initial PCE after 24 h UV exposure. The champion devices delivered enhanced PCE and power output of 26.19% and 991.21 μW/cm2, respectively, when measured under UV illumination of 3.76 mW/cm2. This work opens up a novel direction for energy harvesting from near-UV indoor light sources for applications in microwatt-powered electronics such as internet of things sensors.
Collapse
Affiliation(s)
- Arivazhagan Valluvar Oli
- Smart
Materials Research and Device Technology (SMaRDT) Group, Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas Graham Building, Glasgow G1 1XL, U.K.
| | - Zinuo Li
- Department
of Physics, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Yu Chen
- Department
of Physics, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Aruna Ivaturi
- Smart
Materials Research and Device Technology (SMaRDT) Group, Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas Graham Building, Glasgow G1 1XL, U.K.
| |
Collapse
|
3
|
Salazar F, Pizarro-Oteíza S, Kasahara I, Labbé M. Effect of ultraviolet light-emitting diode processing on fruit and vegetable-based liquid foods: A review. Front Nutr 2022; 9:1020886. [PMID: 36523335 PMCID: PMC9745123 DOI: 10.3389/fnut.2022.1020886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/10/2022] [Indexed: 09/10/2023] Open
Abstract
Ultraviolet light-emitting diode (UV-LED) technology has emerged as a non-thermal and non-chemical treatment for preserving liquid fruit and vegetable foods. This technology uses ultraviolet light to interact with the food at different wavelengths, solving problems related to product stability, quality, and safety during storage. UV-LED treatment has been shown to affect microbe and enzyme inactivation, and it increases and improves retention of bioactive compounds. Moreover, computational simulations are a powerful and relevant tool that can be used optimize and improve the UV-LED process. Currently, there are a limited studies of this technology in liquid fruit and vegetable-based foods. This review gathers information on these food type and shows that it is a promising technology for the development of new products, is environmentally friendly, and does not require the addition of chemicals nor heat. This is relevant from an industrial perspective because maintaining the nutritional and organoleptic properties ensures better quality. However, due to the scarce information available on this type of food, further studies are needed.
Collapse
Affiliation(s)
- Fernando Salazar
- Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | | | |
Collapse
|
4
|
Poonia A, Pandey S, Vasundhara. Application of light emitting diodes (LEDs) for food preservation, post-harvest losses and production of bioactive compounds: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00086-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractLight-emitting diode (LED) technology is a new non-thermal food preservation method that works by converting light energy into heat. LED has potential to revolutionize crop production, protection and preservation. This technology is economical and environmentally friendly. LEDs have been shown to improve the nutritive quality and shelf life of foods, control the ripening of fruits, induce the synthesis of bioactive compounds and antioxidants and reduce the microbial contamination. This technology also has great scope in countries, where safety, hygiene, storage and distribution of foods are serious issues. While comparing this technology with other lighting technologies, LEDs can bring numerous advantages to food supply chain from farm to fork. In case of small growing amenities which exploit only LEDs, energy expenditure has been successfully reduced while producing nutritious food. LEDs can be used to give us better understanding and control over production and preservation of food with relation to spectral composition of light. LEDs also play significant role in food safety by inactivating the food borne pathogens. Therefore, LED lighting is a very effective and promising technology for extending shelf life of agricultural produce by increasing disease resistance and with increased nutritional values.
Graphical abstract
Collapse
|
5
|
Nyhan L, Przyjalgowski M, Lewis L, Begley M, Callanan M. Investigating the Use of Ultraviolet Light Emitting Diodes (UV-LEDs) for the Inactivation of Bacteria in Powdered Food Ingredients. Foods 2021; 10:797. [PMID: 33917815 PMCID: PMC8068219 DOI: 10.3390/foods10040797] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
The addition of contaminated powdered spices and seasonings to finished products which do not undergo further processing represents a significant concern for food manufacturers. To reduce the incidence of bacterial contamination, seasoning ingredients should be subjected to a decontamination process. Ultraviolet light emitting diodes (UV-LEDs) have been suggested as an alternative to UV lamps for reducing the microbial load of foods, due to their increasing efficiency, robustness and decreasing cost. In this study, we investigated the efficacy of UV-LED devices for the inactivation of four bacteria (Listeria monocytogenes, Escherichia coli, Bacillus subtilis and Salmonella Typhimurium) on a plastic surface and in four powdered seasoning ingredients (onion powder, garlic powder, cheese and onion powder and chilli powder). Surface inactivation experiments with UV mercury lamps, UVC-LEDs and UVA-LEDs emitting at wavelengths of 254 nm, 270 nm and 365 nm, respectively, revealed that treatment with UVC-LEDs were comparable to, or better than those observed using the mercury lamp. Bacterial reductions in the seasoning powders with UVC-LEDs were less than in the surface inactivation experiments, but significant reductions of 0.75-3 log10 colony forming units (CFU) were obtained following longer (40 s) UVC-LED exposure times. Inactivation kinetics were generally nonlinear, and a comparison of the predictive models highlighted that microbial inactivation was dependent on the combination of powder and microorganism. This study is the first to report on the efficacy of UV-LEDs for the inactivation of several different bacterial species in a variety of powdered ingredients, highlighting the potential of the technology as an alternative to the traditional UV lamps used in the food industry.
Collapse
Affiliation(s)
- Laura Nyhan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (L.N.); (M.B.)
| | - Milosz Przyjalgowski
- Centre for Advanced Photonics and Process Analysis, Munster Technological University, T12 P928 Cork, Ireland; (M.P.); (L.L.)
| | - Liam Lewis
- Centre for Advanced Photonics and Process Analysis, Munster Technological University, T12 P928 Cork, Ireland; (M.P.); (L.L.)
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (L.N.); (M.B.)
| | - Michael Callanan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (L.N.); (M.B.)
| |
Collapse
|
6
|
Baykuş G, Akgün MP, Unluturk S. Effects of ultraviolet-light emitting diodes (UV-LEDs) on microbial inactivation and quality attributes of mixed beverage made from blend of carrot, carob, ginger, grape and lemon juice. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102572] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Niu L, Wu Z, Yang L, Wang Y, Xiang Q, Bai Y. Antimicrobial Effect of UVC Light-Emitting Diodes against Saccharomyces cerevisiae and Their Application in Orange Juice Decontamination. J Food Prot 2021; 84:139-146. [PMID: 32916700 DOI: 10.4315/jfp-20-200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
ABSTRACT UVC light-emitting diodes (UVC-LEDs) are a novel eco-friendly alternative source of UV light. This study evaluated the inactivation and membrane damage of spoilage yeast Saccharomyces cerevisiae by UVC-LEDs and their application in orange juice pasteurization. The results demonstrated that the antimicrobial effect of UVC-LED treatment against S. cerevisiae was enhanced by increased radiation dose. When the dose of UVC-LED radiation was 1,420 mJ/cm2, the population of S. cerevisiae in yeast extract peptone dextrose broth was reduced by 4.86 log CFU/mL. Through scanning electron microscopy and fluorescent staining, the structure and function of plasma membrane was observed to be severely damaged by UVC-LED treatment. The inactivation efficacy of UVC-LEDs against S. cerevisiae in orange juice also increased with increasing radiation dose. Radiation at 1,420 mJ/cm2 greatly reduced S. cerevisiae in orange juice by 4.44 log CFU/mL and did not induce remarkable changes in pH, total soluble solids, titratable acidity, and color parameters. However, the total phenolic content in orange juice was found to be significantly decreased by UVC-LEDs. These findings contribute to a better comprehension of UVC-LED inactivation and provide theoretical support for its potential application in fruit and vegetable juice processing. HIGHLIGHTS
Collapse
Affiliation(s)
- Liyuan Niu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,(ORCID: https://orcid.org/0000-0003-2334-4001 [L.N.].,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Zihao Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| | - Lanrui Yang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| | - Yanqiu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,https://orcid.org/0000-0002-3052-0969 [Q.X.].,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,https://orcid.org/0000-0002-2074-0351 [Y.B.]).,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
8
|
Kebbi Y, Muhammad AI, Sant'Ana AS, do Prado‐Silva L, Liu D, Ding T. Recent advances on the application of UV‐LED technology for microbial inactivation: Progress and mechanism. Compr Rev Food Sci Food Saf 2020; 19:3501-3527. [DOI: 10.1111/1541-4337.12645] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/29/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yasmine Kebbi
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
| | - Aliyu Idris Muhammad
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
- Department of Agricultural and Environmental Engineering Faculty of Engineering Bayero University Kano Nigeria
| | - Anderson S. Sant'Ana
- Department of Food Science Faculty of Food Engineering University of Campinas Campinas SP Brazil
| | | | - Donghong Liu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Tian Ding
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| |
Collapse
|
9
|
Prasad A, Du L, Zubair M, Subedi S, Ullah A, Roopesh MS. Applications of Light-Emitting Diodes (LEDs) in Food Processing and Water Treatment. FOOD ENGINEERING REVIEWS 2020. [PMCID: PMC7223679 DOI: 10.1007/s12393-020-09221-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Light-emitting diode (LED) technology is an emerging nonthermal food processing technique that utilizes light energy with wavelengths ranging from 200 to 780 nm. Inactivation of bacteria, viruses, and fungi in water by LED treatment has been studied extensively. LED technology has also shown antimicrobial efficacy in food systems. This review provides an overview of recent studies of LED decontamination of water and food. LEDs produce an antibacterial effect by photodynamic inactivation due to photosensitization of light absorbing compounds in the presence of oxygen and DNA damage; however, such inactivation is dependent on the wavelength of light energy used. Commercial applications of LED treatment include air ventilation systems in office spaces, curing, medical applications, water treatment, and algaculture. As low penetration depth and high-intensity usage can challenge optimal LED treatment, optimization studies are required to select the right light wavelength for the application and to standardize measurements of light energy dosage.
Collapse
Affiliation(s)
- Amritha Prasad
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Lihui Du
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Samir Subedi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - M. S. Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| |
Collapse
|
10
|
Hinds LM, O'Donnell CP, Akhter M, Tiwari BK. Principles and mechanisms of ultraviolet light emitting diode technology for food industry applications. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
D'Souza C, Yuk HG, Khoo GH, Zhou W. Application of Light-Emitting Diodes in Food Production, Postharvest Preservation, and Microbiological Food Safety. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12155] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Craig D'Souza
- Food Science and Technology Programme, c/o Dept. of Chemistry; National Univ. of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Hyun-Gyun Yuk
- Food Science and Technology Programme, c/o Dept. of Chemistry; National Univ. of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Gek Hoon Khoo
- Post-Harvest Technology Dept, Technology & Industry Development Group; Agri-Food & Veterinary Authority of Singapore; 2 Perahu Road Singapore 718915 Singapore
| | - Weibiao Zhou
- Food Science and Technology Programme, c/o Dept. of Chemistry; National Univ. of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
12
|
Aihara M, Lian X, Shimohata T, Uebanso T, Mawatari K, Harada Y, Akutagawa M, Kinouchi Y, Takahashi A. Vegetable Surface Sterilization System Using UVA Light-Emitting Diodes. THE JOURNAL OF MEDICAL INVESTIGATION 2014; 61:285-90. [DOI: 10.2152/jmi.61.285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Mutsumi Aihara
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Xin Lian
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yumi Harada
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Masatake Akutagawa
- Department of Electrical and Electronic Engineering, Institute of Socio- Techno Sciences, the University of Tokushima Graduate School
| | - Yohsuke Kinouchi
- Department of Electrical and Electronic Engineering, Institute of Socio- Techno Sciences, the University of Tokushima Graduate School
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| |
Collapse
|