1
|
Wei LS, Tahiluddin AB, Wee W. A glimpse on influences of ginger and its derivatives as a feed additive in finfish farming: A mini-review. Heliyon 2025; 11:e41914. [PMID: 39897801 PMCID: PMC11782999 DOI: 10.1016/j.heliyon.2025.e41914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/24/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Ginger (Zingiber officinale) has emerged as a promising feed additive in aquaculture due to its reported benefits for fish health and growth. Possessing a range of bioactive compounds, ginger exhibits antimicrobial, anti-parasite, immunostimulatory, anti-inflammatory, anti-oxidative, and growth-promoting properties. This review provides a comprehensive overview of recent research on dietary ginger and its derivatives for fish. It explores the various forms, bioactive compounds, biological activities, and preparation methods of these feed additives. The discussion focuses on the impacts of dietary ginger and its derivatives on growth performance, flesh quality, hematology profile, antioxidative responses, immune system, and disease resistance stimulation in fish. Additionally, the review examines the mechanisms of action of these additives and explores the optimal supplementation levels for inclusion in fish diets. Previous studies reported the optimal doses of dietary ginger and its derivatives were ranged from 0.0002 to 4 % of diet whereas 0.0004 % for bathing treatment. Bioactive compounds such as phenolic acids, flavonoids, zingerone, gingerols, shogaols, and paradols were responsible to the ginger and its derivatives beneficial effects. Overall, the findings suggest that dietary ginger and its derivatives hold significant promise for enhancing growth and health in fish farming.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga Bongao, Tawi-Tawi, 7500, Philippines
- Department of Aquaculture, Institute of Science, Kastamonu University, Kastamonu, 37200, Türkiye
| | - Wendy Wee
- Center for Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
2
|
Todorov SD, Lima JMS, Bucheli JEV, Popov IV, Tiwari SK, Chikindas ML. Probiotics for Aquaculture: Hope, Truth, and Reality. Probiotics Antimicrob Proteins 2024; 16:2007-2020. [PMID: 38801620 DOI: 10.1007/s12602-024-10290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The use of microorganisms as beneficial crops for human and animal health has been studied for decades, and these microorganisms have been in practical use for quite some time. Nowadays, in addition to well-known examples of beneficial properties of lactic acid bacteria, bifidobacteria, selected Bacillus spp., and yeasts, there are several other bacteria considered next-generation probiotics that have been proposed to improve host health. Aquaculture is a rapidly growing area that provides sustainable proteins for consumption by humans and other animals. Thus, there is a need to develop new technologies for the production practices associated with cleaner and environment-friendly approaches. It is a well-known fact that proper selection of the optimal probiotics for use in aquaculture is an essential step to ensure effectiveness and safety. In this critical review, we discuss the evaluation of host-specific probiotics in aquaculture, challenges in using probiotics in aquaculture, methods to improve the survival of probiotics under different environmental conditions, technological approach to improving storage, and delivery along with possible negative consequences of using probiotics in aquaculture. A critical analysis of the identified challenges for the use of beneficial microbes in aquaculture will help in sustainable aquafarming, leading to improved agricultural practices with a clear aim to increase protein production.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil.
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - Joao Marcos Scafuro Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Jorge Enrique Vazquez Bucheli
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Bioestadistica y Genetica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, C.P. 04510, Mexico City, Mexico
| | - Igor Vitalievich Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1, Rostov-On-Don 344002, Rostov, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1, Rostov-On-Don 344002, Rostov, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, the State University of New Jersey, RutgersNew Brunswick, NJ 08901, USA
- I. M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| |
Collapse
|
3
|
Cacot G, Davis DA, LaFrentz BR, Liles MR, Butts IAE, Shoemaker CA, Beck BH, Farmer M, Bruce TJ. Assessment of dietary yeast-based additives for cultured catfish and tilapia health. JOURNAL OF FISH DISEASES 2024; 47:e14008. [PMID: 39160764 DOI: 10.1111/jfd.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Channel catfish (Ictalurus punctatus) and Nile tilapia (Oreochromis niloticus) are two aquaculture species of great importance. Intensive production is often hindered by poor growth performance and disease mortality. The aim of this study was to evaluate the potential of a commercial fermented yeast product, DVAQUA, on channel catfish and Nile tilapia growth performance metrics and disease resistance. Channel catfish and Nile tilapia were fed practical diets supplemented with 0%, 0.1% or 0.4% of DVAQUA over approximately 2-month feeding periods in recirculation aquaculture systems. To assess the potential of the postbiotic against common aquaculture pathogens, juvenile catfish were subsequently challenged by immersion with Edwardsiella ictaluri S97-773 or virulent Aeromonas hydrophila ML09-119. Nile tilapia juveniles were challenged by injection with Streptococcus iniae ARS-98-60. Serum lysozyme activity, blood chemistry and growth metrics were measured at the end of the feeding period, but no differences were observed across the different metrics, except for survival. For the pathogen challenges, there were no differences in endpoint mortality for channel catfish with either pathogen (p > .05). In contrast, Nile tilapia survivability to S. iniae infection increased proportionally to the inclusion of DVAQUA (p = .005). Changes to sera lysozyme activity were also noted in the tilapia trial, with a reduction of activity in the fish fed the 0.4% DVAQUA diet compared to the control diet (p = .031). Expression profiles of proinflammatory genes and antibodies were also found to be modulated in channel catfish fed the postbiotic, indicating some degree of protective response. These results suggest that this postbiotic may be beneficial in protecting Nile tilapia against S. iniae infection by influencing immune parameters and additional research is needed to evaluate the potential of this DVAQUA for improving catfish health and disease control.
Collapse
Affiliation(s)
- Guillaume Cacot
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - D Allen Davis
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | | | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | | | - Benjamin H Beck
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, Alabama, USA
| | | | - Timothy J Bruce
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
4
|
Sun H, Wang L, Chen F, Meng X, Zheng W, Peng H, Hao H, Chen H, Wang KJ. The modulation of intestinal commensal bacteria possibly contributes to the growth and immunity promotion in Epinephelus akaara after feeding the antimicrobial peptide Scy-hepc. Anim Microbiome 2024; 6:54. [PMID: 39380116 PMCID: PMC11459891 DOI: 10.1186/s42523-024-00342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Our previous study revealed that feeding the antimicrobial peptide (AMP) product Scy-hepc significantly enhances the growth of mariculture fish through the activation of the GH-Jak2-STAT5-IGF1 axis. However, the contribution of gut microbiota to this growth enhancement remains unclear. This study aimed to elucidate the potential mechanism involved in intestinal absorption and modulation of gut microbiota in Epinephelus akaara following Scy-hepc feeding. RESULTS The results showed that a 35 day regimen of Scy-hpec markedly promoted the growth of E. akaara compared to groups supplemented with either florfenicol, B. subtilis, or a vector. The growth enhancement is likely attributed to alterations in microbiota colonization in the foregut and midgut, characterized by an increasing abundance of potential probiotics (Rhizobiaceae and Lysobacter) and a decreased abundance of opportunistic pathogens (Psychrobacter and Brevundimonas) as determined by 16S rRNA analysis. Additionally, similar to the effect of florfenicol feeding, Scy-hepc significantly improved host survival rate by over 20% in response to a lethal dose challenge with Edwardsiella tarda. Further investigations demonstrated that Scy-hepc is absorbed by the fish foregut (20-40 min) and midgut (20-30 min) as confirmed by Western blot, ELISA, and Immunofluorescence. The absorption of Scy-hepc affected the swimming, swarming and surfing motility of Vibrio harveyi and Bacillus thuringiensis isolated from E. akaara's gut. Moreover, Scy-hepc induced the downregulation of 40 assembly genes and the upregulation expression of 5, with the most significant divergence in gene expression between opportunistic pathogens and probiotics concentrated in their motility genes (PomA/B, MotA/B). CONCLUSIONS In summary, this study shows that feeding AMP Scy-hepc can promote growth and bolster immunity in E. akaara. These beneficial effects are likely due to the absorption of Scy-hepc in the fish's foregut and midgut, which modulates the colonization and motility of commensal bacteria, leading to favorable changes in the composition of the foregut and midgut microbiota. Therefore, a profound understanding of the mechanisms by which antimicrobial peptides affect host gut microbiota will contribute to a comprehensive assessment of their advantages and potential application prospects as substitutes for antibiotics in fish health and improving aquaculture practices.
Collapse
Affiliation(s)
- Hang Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
| | - Luxi Wang
- Department of Physiology, School of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiangyu Meng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
| | - Wenbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huiyun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China.
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
5
|
Quintanilla-Pineda M, Ibañez FC, Garrote-Achou C, Marzo F. A Novel Postbiotic Product Based on Weissella cibaria for Enhancing Disease Resistance in Rainbow Trout: Aquaculture Application. Animals (Basel) 2024; 14:744. [PMID: 38473129 DOI: 10.3390/ani14050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Postbiotics are innovative tools in animal husbandry, providing eco-friendly solutions for disease management within the industry. In this study, a new postbiotic product was evaluated for its impact on the health of rainbow trout (Oncorhynchus mykiss). In vivo studies were conducted to assess the safety of the Weissella cibaria strains used in postbiotic production. Additionally, this study evaluated the impact of diet supplementation with 0.50% postbiotics on growth performance during a 30-day feeding trial; the gut microbial communities, immunomodulation, and protection against Yersinia ruckeri infection were evaluated. The strains did not harm the animals during the 20-day observation period. Furthermore, the effect of postbiotics on growth performance was not significant (p < 0.05). The treated group showed a significant increase in acid-lactic bacteria on the 30th day of the feeding trial, with counts of 3.42 ± 0.21 log CFU/mL. Additionally, there was an up-regulation of the pro-inflammatory cytokine IL-1β in head kidney samples after 48 h of feed supplementation, whereas cytokines IL-10, IL-8, INF-γ, and TNF-α were down-regulated. The findings indicate that rainbow trout fed with postbiotics saw an improvement in their survival rate against Y. ruckeri, with a 20.66% survival improvement in the treated group. This study proves that incorporating postbiotics from two strains of W. cibaria previously isolated from rainbow trout into the diet of fish has immunomodulatory effects, enhances intestinal microbial composition, and improves fish resistance against Y. ruckeri.
Collapse
Affiliation(s)
- Mario Quintanilla-Pineda
- Laboratorio de Fisiología y Nutrición Animal, Universidad Pública de Navarra, 31006 Pamplona, Spain
- PENTABIOL SL, 31191 Pamplona, Spain
| | - Francisco C Ibañez
- Laboratorio de Fisiología y Nutrición Animal, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | | | - Florencio Marzo
- Laboratorio de Fisiología y Nutrición Animal, Universidad Pública de Navarra, 31006 Pamplona, Spain
| |
Collapse
|
6
|
Contente D, Díaz-Formoso L, Feito J, Hernández PE, Muñoz-Atienza E, Borrero J, Poeta P, Cintas LM. Genomic and Functional Evaluation of Two Lacticaseibacillus paracasei and Two Lactiplantibacillus plantarum Strains, Isolated from a Rearing Tank of Rotifers ( Brachionus plicatilis), as Probiotics for Aquaculture. Genes (Basel) 2024; 15:64. [PMID: 38254954 PMCID: PMC10815930 DOI: 10.3390/genes15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Aquaculture plays a crucial role in meeting the increasing global demand for food and protein sources. However, its expansion is followed by increasing challenges, such as infectious disease outbreaks and antibiotic misuse. The present study focuses on the genetic and functional analyses of two Lacticaseibacillus paracasei (BF3 and RT4) and two Lactiplantibacillus plantarum (BF12 and WT12) strains isolated from a rotifer cultivation tank used for turbot larviculture. Whole-genome sequencing (WGS) and bioinformatics analyses confirmed their probiotic potential, the absence of transferable antibiotic resistance genes, and the absence of virulence and pathogenicity factors. Bacteriocin mining identified a gene cluster encoding six plantaricins, suggesting their role in the antimicrobial activity exerted by these strains. In vitro cell-free protein synthesis (IV-CFPS) analyses was used to evaluate the expression of the plantaricin genes. The in vitro-synthesized class IIb (two-peptide bacteriocins) plantaricin E/F (PlnE/F) exerted antimicrobial activity against three indicator microorganisms, including the well-known ichthyopathogen Lactococcus garvieae. Furthermore, MALDI-TOF MS on colonies detected the presence of a major peptide that matches the dimeric form of plantaricins E (PlnE) and F (PlnF). This study emphasizes the importance of genome sequencing and bioinformatic analysis for evaluating aquaculture probiotic candidates. Moreover, it provides valuable insights into their genetic features and antimicrobial mechanisms, paving the way for their application as probiotics in larviculture, which is a major bottleneck in aquaculture.
Collapse
Affiliation(s)
- Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| |
Collapse
|
7
|
Ballantyne R, Lee JW, Wang ST, Lin JS, Tseng DY, Liao YC, Chang HT, Lee TY, Liu CH. Dietary administration of a postbiotic, heat-killed Pediococcus pentosaceus PP4012 enhances growth performance, immune response and modulates intestinal microbiota of white shrimp, Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023:108882. [PMID: 37279829 DOI: 10.1016/j.fsi.2023.108882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023]
Abstract
The efficacy of postbiotics on the immune-related gene expression and gut microbiota of white shrimp (Penaeus vannamei) remains unexplored. A commercial heat-killed postbiotic Pediococcus pentosaceus PP4012 was used to evaluate the growth performance, intestinal morphology, immunological status, and microbial community of white shrimp after dietary administration in this study. White shrimp (0.040 ± 0.003 g) were divided into three treatments; a control, inanimate P. pentosaceus (105 CFU g feed-1) at low concentration (IPL) and inanimate P. pentosaceus (106 CFU g feed-1) at high concentrations (IPH). The diets of IPL and IPH significantly increased final weight, specific growth rate and production compared to the control group. Shrimp fed with IPL and IPH significantly utilized feed more efficiently than those fed the control diet. The IPH treatment significantly lowered the cumulative mortality rate compared to the control and IPL diet following Vibrio parahaemolyticus infection. No significant difference was observed for Vibrio-like and lactic acid bacteria in intestine of shrimp fed with the control diet and the experimental diets. Adding inanimate P. pentosaceus significantly improved immune responses such as lysozyme and phagocytic activity compared to the control group. However, the total hemocyte count, phenoloxidase activity, respiratory burst, and superoxide dismutase were not significantly different among treatments. The immune-related genes alf, pen3a, and pen4 expression were significantly higher in shrimp fed IPL diet compared with control and IPH. Taxonomic identification of bacterial genera in all dietary groups belonged to two predominant phyla, Proteobacteria and Bacteroidota. An abundance of Photobacterium, Motilimonas, Litorilituus, and Firmicutes bacterium ZOR0006 were identified in the intestine of shrimp fed postbiotic diets. Unique microbes such as Cohaesibacter was discovered in the shrimp fed IPL while Candidatus Campbellbacteria, uncultured Verrucomicrobium DEV114 and Paenalcaligenes were discovered in the intestines of shrimp fed IPH diet. Collectively, these data suggest that including heat-killed P. pentosaceus, particularly IPH, can enhance growth performance, promote microbial diversity, elevate immune responses, and increase shrimp's resistance to V. parahaemolyticus.
Collapse
Affiliation(s)
- Rolissa Ballantyne
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Sz-Tsan Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 821, Taiwan
| | - Deng-Yu Tseng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700, Taiwan
| | - Yi-Chu Liao
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 821, Taiwan
| | - Hsiao-Tung Chang
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 821, Taiwan
| | - Ting-Yu Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 821, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
8
|
In Vitro Evaluation of Postbiotics Produced from Bacterial Isolates Obtained from Rainbow Trout and Nile Tilapia against the Pathogens Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida. Foods 2023; 12:foods12040861. [PMID: 36832935 PMCID: PMC9957526 DOI: 10.3390/foods12040861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The use of antibiotics in aquaculture leads to the proliferation of multidrug-resistant bacteria, and an urgent need for developing new alternatives to prevent and control disease has, thus, arisen. In this scenario, postbiotics represent a promising tool to achieve this purpose; thus, in this study, isolation and selection of bacteria to further produce and evaluate their postbiotics antibacterial activity against fish pathogens was executed. In this respect, bacterial isolates from rainbow trout and Nile tilapia were obtained and tested in vitro against Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida. From 369 obtained isolates, 69 were selected after initial evaluation. Afterwards, additional screening was carried out by spot-on-lawn assay to finally select twelve isolates; four were identified as Pediococcus acidilactici, seven as Weissella cibaria, and one as Weissella paramesenteroides by matrix assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS). Selected bacteria were used to obtain postbiotic products to test their antagonistic activity through coculture challenge and broth microdilution assays. The influence of incubation time prior to postbiotic production on antagonistic behavior was also recorded. Two isolates identified as W. cibaria were able to significantly reduce (p < 0.05) A. salmonicida subsp. salmonicida's growth in the coculture challenge up to 4.49 ± 0.05 Log CFU/mL, and even though the reduction in Y. ruckeri was not as effective, some inhibition on the pathogen's growth was reported; at the same time, most of the postbiotic products obtained showed more antibacterial activity when obtained from broth cultures incubated for 72 h. Based on the results obtained, the preliminary identification of the isolates that expressed the highest inhibitory activity was confirmed by partial sequencing as W. cibaria. Through our study, it can be concluded that postbiotics produced by these strains are useful to inhibit the growth of the pathogens and could, thereby, be applicable in further research to develop suitable tools as feed additives for disease control and prevention in aquaculture.
Collapse
|
9
|
Hu K, Li Y, Wang F, Liu J, Li Y, Zhao Q, Zheng X, Zhu N, Yu X, Fang S, Huang J. A loop-mediated isothermal amplification-based microfluidic chip for triplex detection of shrimp pathogens. JOURNAL OF FISH DISEASES 2023; 46:137-146. [PMID: 36336976 DOI: 10.1111/jfd.13727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Decapod iridescent virus 1 (DIV1), White spot syndrome virus (WSSV), and Enterocytozoon hepatopenaei (EHP) pose serious threats to the shrimp farming. To date, early detection remains an important way to control the occurrence and diffusion of these pathogens. Here, we developed for the first time, a loop-mediated isothermal amplification (LAMP)-based microfluidic chip detection system, which could detect DIV1, WSSV, and EHP simultaneously. The limits of detection (LoD) of the system were 10 copies/reaction for EHP and DIV1, and 102 copies/reaction for WSSV. The entire detection procedure could be completed rapidly in 40 min at 63°C with 100% specificity and had no cross-reaction with other common shrimp pathogens. This newly established method was further validated using 94 Penaeus vannamei clinical samples, which were comparable to a typical qPCR assay and revealed good stability and reproducibility. These results illustrate that this LAMP microfluidic chip detection system allows rapid triplex pathogen analysis and could satisfy the demands of the field and routine diagnoses in aquaculture.
Collapse
Affiliation(s)
- Keshun Hu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ye Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Feng Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jianying Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yuanyuan Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qian Zhao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xiaoye Zheng
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Ningyu Zhu
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Shaohua Fang
- Zhejiang Orient Gene Biotech Company Limited, Huzhou, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
10
|
Vijayaram S, Sun YZ, Zuorro A, Ghafarifarsani H, Van Doan H, Hoseinifar SH. Bioactive immunostimulants as health-promoting feed additives in aquaculture: A review. FISH & SHELLFISH IMMUNOLOGY 2022; 130:294-308. [PMID: 36100067 DOI: 10.1016/j.fsi.2022.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Bioactive immunostimulants could be derived from different sources like plants, animals, microbes, algae, yeast, etc. Bioactive immunostimulants are the most significant role to enhance aquatic production, as well as the cost of this method, which is effective, non-toxic, and environment-friendly. These immunostimulants are supportive to increase the immune system, growth, antioxidant, anti-inflammatory, and disease resistance of aquatic animals' health and also improve aquatic animal feed. Diseases are mainly targeted to the immune system of aquatic organisms in such a way that different processes of bioactive immunostimulants progress are considered imperative techniques for the development of aquaculture production. Communicable infections are the main problem for aquaculture, while the mortality and morbidity connected with some outbreaks significantly limit the productivity of some sectors. Aquaculture is considered the mainly developing food production sector globally. Protein insists is an important issue in human nutrition. Aquaculture has been an exercise for thousands of years, and it has now surpassed capture fisheries as the most vital source of seafood in the world. Limited study reports are available to focal point on bioactive immunostimulants in aquaculture applications. This review report provides information on the nutritional administration of bioactive immunostimulants, their types, functions, and beneficial impacts on aquatic animals' health as well as for the feed quality development in the aquaculture industry. The scope of this review combined to afford various kinds of natural derived bioactive molecules utilization and their beneficial effects in aquaculture applications.
Collapse
Affiliation(s)
- Seerengaraj Vijayaram
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China; Department of Environmental Studies, School of Energy Environment and Natural Resources, Madurai Kamaraj University, Madurai, India
| | - Yun-Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China.
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184, Rome, Italy
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand; Science and Technology Research Institute, Chiang Mai University, Suthep, Muang, Chiang Mai, Thailand.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
11
|
Pereira WA, Mendonça CMN, Urquiza AV, Marteinsson VÞ, LeBlanc JG, Cotter PD, Villalobos EF, Romero J, Oliveira RPS. Use of Probiotic Bacteria and Bacteriocins as an Alternative to Antibiotics in Aquaculture. Microorganisms 2022; 10:microorganisms10091705. [PMID: 36144306 PMCID: PMC9503917 DOI: 10.3390/microorganisms10091705] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity.
Collapse
Affiliation(s)
- Wellison Amorim Pereira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Carlos Miguel N. Mendonça
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | | | | | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000, Argentina
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland, T12 K8AF Cork, Ireland
| | - Elías Figueroa Villalobos
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4780000, Chile
- Correspondence:
| | - Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, El Libano 5524, Santiago 783090, Chile
| | - Ricardo P. S. Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
12
|
Sudhakaran G, Guru A, Haridevamuthu B, Murugan R, Arshad A, Arockiaraj J. Molecular properties of postbiotics and their role in controlling aquaculture diseases. AQUACULTURE RESEARCH 2022; 53:3257-3273. [DOI: 10.1111/are.15846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/13/2022] [Indexed: 10/16/2023]
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT) Chennai India
| |
Collapse
|
13
|
Elliecpearl Jasca J, Annita Seok KY, Suraini L, Chun YA, Julian R, Sano M, Dan S, Hamasaki K, Nor Azman K, Tamrin ML. Antifungal Prospect of Bacillus cereus Postbiotic on Crustacean Pathogen, Lagenidium thermophilum. Biocontrol Sci 2022; 26:201-205. [PMID: 35013016 DOI: 10.4265/bio.26.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Pathogenic marine fungi, Lagenidium thermophilum is known causative agent in the crustacean industry. Current disinfection practice in hatchery has risks and negative impacts which prompts suitable substitute to synthetic antifungal agents. Thus, this study was conducted to evaluate the antifungal potential of postbiotic from four potential probiotics towards marine oomycetes, L. thermophilum IPMB 1401. The screening test showed that the Lactobacillus plantarum GS12 and Bacillus cereus GS15 postbiotics were positive for antifungal activity on L. thermophilum IPMB 1401. These two bacterial extracts have minimum inhibitory concentration (MIC) at 50%. The toxicity assay on MIC level of the postbiotic revealed that the cumulative mortality of brine shrimp nauplii exposed to B. cereus postbiotic was significantly lower compared to L. plantarum GS12 postbiotic and formalin. This indicates a high potential of B. cereus GS15 as a prospect for alternative control method for fungal infections in the crustacean culture industry.
Collapse
Affiliation(s)
| | | | - Lajimin Suraini
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS
| | - Yao Ang Chun
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS
| | - Ransangan Julian
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS
| | - Motohiko Sano
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology
| | - Shigeki Dan
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology
| | - Katsuyuki Hamasaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology
| | - Kasan Nor Azman
- Higher Institution Centre of Excellence (HICoE) , Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
| | - M Lal Tamrin
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS
| |
Collapse
|
14
|
Gaussian Distribution Model for Detecting Dangerous Operating Conditions in Industrial Fish Farming. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of better monitoring technologies, the early combat of outbreaks, massive mortality, and promoting sustainability are challenges that the aquaculture industry still faces, and the development of solutions for this is an open problem. In this paper, focusing our attention on monitoring technologies as a promising solution to these issues, we report a Gaussian distribution model for detecting dangerous operating conditions in industrial fish farming. This approach allows us to indicate through a 2D image visualization when fish production is under normal, warning, or dangerous operating conditions. Furthermore, our proposed method has promising possibilities for application in the most varied fields of science, given that the mathematical procedure described allows us to discover the fundamental statistical structure of physical, chemical, and biological systems governed by laws of a probabilistic nature.
Collapse
|
15
|
Zhou QJ, Lu JF, Su XR, Jin JL, Li SY, Zhou Y, Wang L, Shao XB, Wang YH, Yan MC, Li MY, Chen J. Simultaneous detection of multiple bacterial and viral aquatic pathogens using a fluorogenic loop-mediated isothermal amplification-based dual-sample microfluidic chip. JOURNAL OF FISH DISEASES 2021; 44:401-413. [PMID: 33340375 DOI: 10.1111/jfd.13325] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Rapid and user-friendly diagnostic tests are necessary for early diagnosis and immediate detection of diseases, particularly for on-site screening of pathogenic microorganisms in aquaculture. In this study, we developed a dual-sample microfluidic chip integrated with a real-time fluorogenic loop-mediated isothermal amplification assay (dual-sample on-chip LAMP) to simultaneously detect 10 pathogenic microorganisms, that is Aeromonas hydrophila, Edwardsiella tarda, Vibrio harveyi, V. alginolyticus, V. anguillarum, V. parahaemolyticus, V. vulnificus, infectious hypodermal and haematopoietic necrosis virus, infectious spleen and kidney necrosis virus, and white spot syndrome virus. This on-chip LAMP provided a nearly automated protocol that can analyse two samples simultaneously, and the tests achieved limits of detection (LOD) ranging from 100 to 10-1 pg/μl for genomic DNA of tested bacteria and 10-4 to 10-5 pg/μl for recombinant plasmid DNA of tested viruses, with run times averaging less than 30 min. The coefficient of variation for the time-to-positive value was less than 10%, reflecting a robust reproducibility. The clinical sensitivity and specificity were 93.52% and 85.53%, respectively, compared to conventional microbiological or clinical methods. The on-chip LAMP assay provides an effective dual-sample and multiple pathogen analysis, and thus would be applicable to on-site detection and routine monitoring of multiple pathogens in aquaculture.
Collapse
Affiliation(s)
- Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jian-Fei Lu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiu-Rong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jing-Lei Jin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shang-Yang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Lei Wang
- CapitalBio Corporation, Beijing, China
| | - Xin-Bin Shao
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Yao-Hua Wang
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Mao-Cang Yan
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Ming-Yun Li
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Li YX, Wang NN, Zhou YX, Lin CG, Wu JS, Chen XQ, Chen GJ, Du ZJ. Planococcus maritimus ML1206 Isolated from Wild Oysters Enhances the Survival of Caenorhabditis elegans against Vibrio anguillarum. Mar Drugs 2021; 19:md19030150. [PMID: 33809116 PMCID: PMC7999227 DOI: 10.3390/md19030150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
With the widespread occurrence of aquaculture diseases and the broad application of antibiotics, drug-resistant pathogens have increasingly affected aquatic animals’ health. Marine probiotics, which live under high pressure in a saltwater environment, show high potential as a substitute for antibiotics in the field of aquatic disease control. In this study, twenty strains of non-hemolytic bacteria were isolated from the intestine of wild oysters and perch, and a model of Caenorhabditis elegans infected by Vibrio anguillarum was established. Based on the model, ML1206, which showed a 99% similarity of 16S rRNA sequence to Planococcus maritimus, was selected as a potential marine probiotic, with strong antibacterial capabilities and great acid and bile salt tolerance, to protect Caenorhabditis elegans from being damaged by Vibrio anguillarum. Combined with plate counting and transmission electron microscopy, it was found that strain ML1206 could significantly inhibit Vibrio anguillarum colonization in the intestinal tract of Caenorhabditis elegans. Acute oral toxicity tests in mice showed that ML1206 was safe and non-toxic. The real-time qPCR results showed a higher expression level of genes related to the antibacterial peptide (ilys-3) and detoxification (ugt-22, cyp-35A3, and cyp-14A3) in the group of Caenorhabditis elegans protected by ML1206 compared to the control group. It is speculated that ML1206, as a potential probiotic, may inhibit the infection caused by Vibrio anguillarum through stimulating Caenorhabditis elegans to secrete antibacterial effectors and detoxification proteins. This paper provides a new direction for screening marine probiotics and an experimental basis to support the potential application of ML1206 as a marine probiotic in aquaculture.
Collapse
Affiliation(s)
- Ying-Xiu Li
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
| | - Nan-Nan Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
| | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
| | - Chun-Guo Lin
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
| | - Jing-Shan Wu
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
| | - Xin-Qi Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
| | - Guan-Jun Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
- Correspondence: (G.J.C.); (Z.-J.D.)
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
- Correspondence: (G.J.C.); (Z.-J.D.)
| |
Collapse
|
17
|
Wei Y, Bu J, Long H, Zhang X, Cai X, Huang A, Ren W, Xie Z. Community Structure of Protease-Producing Bacteria Cultivated From Aquaculture Systems: Potential Impact of a Tropical Environment. Front Microbiol 2021; 12:638129. [PMID: 33613508 PMCID: PMC7889957 DOI: 10.3389/fmicb.2021.638129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Protease-producing bacteria play vital roles in degrading organic matter of aquaculture system, while the knowledge of diversity and bacterial community structure of protease-producing bacteria is limited in this system, especially in the tropical region. Herein, 1,179 cultivable protease-producing bacterial strains that belonged to Actinobacteria, Firmicutes, and Proteobacteria were isolated from tropical aquaculture systems, of which the most abundant genus was Bacillus, followed by Vibrio. The diversity and relative abundance of protease-producing bacteria in sediment were generally higher than those in water. Twenty-one genera from sediment and 16 genera from water were identified, of which Bacillus dominated by Bacillus hwajinpoensis in both and Vibrio dominated by Vibrio owensii in water were the dominant genera. The unique genera in sediment or water accounted for tiny percentage may play important roles in the stability of community structure. Eighty V. owensii isolates were clustered into four clusters (ET-1-ET-4) at 58% of similarity by ERIC-PCR (enterobacterial repetitive intergenic consensus-polymerase chain reaction), which was identified as a novel branch of V. owensii. Additionally, V. owensii strains belonged to ET-3 and ET-4 were detected in most aquaculture ponds without outbreak of epidemics, indicating that these protease-producing bacteria may be used as potential beneficial bacteria for wastewater purification. Environmental variables played important roles in shaping protease-producing bacterial diversity and community structure in aquaculture systems. In sediment, dissolved oxygen (DO), chemical oxygen demand (COD), and salinity as the main factors positively affected the distributions of dominant genus (Vibrio) and unique genera (Planococcus and Psychrobacter), whereas temperature negatively affected that of Bacillus (except B. hwajinpoensis). In water, Alteromonas as unique genus and Photobacterium were negatively affected by NO3 --N and NO2 --N, respectively, whereas pH as the main factor positively affected the distribution of Photobacterium. These findings will lay a foundation for the development of protease-producing bacterial agents for wastewater purification and the construction of an environment-friendly tropical aquaculture model.
Collapse
Affiliation(s)
- Yali Wei
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jun Bu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Xiaoni Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Aiyou Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Zhenyu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| |
Collapse
|
18
|
Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimarães JT, Yılmaz N, Lotfi A. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr Rev Food Sci Food Saf 2020; 19:3390-3415. [PMID: 33337065 DOI: 10.1111/1541-4337.12613] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
There are many critical challenges in the use of primary and secondary cultures and their biological compounds in food commodities. An alternative is the application of postbiotics from the starter and protective lactic acid bacteria (LAB). The concept of postbiotics is relatively new and there is still not a recognized definition for this term. The word "postbiotics" is currently used to refer to bioactive compounds, which did not fit to the traditional definitions of probiotics, prebiotics, and paraprobiotics. Therefore, the postbiotics may be presently defined as bioactive soluble factors (products or metabolic byproducts), produced by some food-grade microorganisms during the growth and fermentation in complex microbiological culture (in this case named cell-free supernatant), food, or gut, which exert some benefits to the food or the consumer. Many LAB are considered probiotic and their postbiotic compounds present similar or additional health benefits to the consumer; however, this review aimed to address the most recent applications of the postbiotics with food safety purposes. The potential applications of postbiotics in food biopreservation, food packaging, and biofilm control were reviewed. The current uses of postbiotics in the reduction and biodegradation of some food safety-related chemical contaminants (e.g., biogenic amines) were considered. We also discussed the safety aspects, the obstacles, and future perspectives of using postbiotics in the food industry. This work will open up new insights for food applications of postbiotics prepared from LAB.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Seyedeh Alaleh Kousheh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Brazil
| | - Nurten Yılmaz
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Anita Lotfi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
19
|
Effect of a novel postbiotic containing lactic acid bacteria on the intestinal microbiota and disease resistance of rainbow trout (Oncorhynchus mykiss). Biotechnol Lett 2020; 42:1957-1962. [PMID: 32449071 DOI: 10.1007/s10529-020-02919-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study was aimed to assess the effect of a novel postbiotic on bacterial community composition and structure within the intestinal ecosystem of rainbow trout (Oncorhynchus mykiss), as well as evaluate its capacity to protect rainbow trout from Lactococcus garvieae infection. RESULTS After 30 days of dietary postbiotic supplementation, high-throughput 16S rRNA gene sequencing revealed that bacterial community composition, diversity and richness were significantly higher in treated fish than in control fish. The proportion of sequences affiliated to the phylum Tenericutes, and to a lesser extent, the phyla Spirochaetes and Bacteroidetes was increased in fish fed a postbiotic-enriched diet compared to control fish, whereas the abundance of Fusobacteria was higher in control fish. Moreover, the treated fish showed significantly (p < 0.05) improved protection against L. garvieae compared to control fish. CONCLUSIONS These findings suggest that dietary postbiotic supplementation may represent an environmentally friendly strategy for preventing and controlling diseases in aquaculture.
Collapse
|