1
|
Karimaei S, Moradkasani S, Esmaeili S. Overview of the Q fever vaccine development: current status and future prospects. Antonie Van Leeuwenhoek 2025; 118:85. [PMID: 40448839 DOI: 10.1007/s10482-025-02094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/03/2025] [Indexed: 06/02/2025]
Abstract
Coxiella burnetii, the causative agent of Q fever, is responsible for a globally significant zoonotic disease, characterized by flu-like symptoms. The primary reservoirs of C. burnetii are ruminant livestock, particularly goats, sheep, and cattle, which shed the bacterium through birth products, such as the placenta, amniotic fluid, and other secretions. Human infections typically occur via the inhalation of contaminated aerosols during direct or indirect contact with infected animals or their birthing materials. Consequently, individuals living in or working near livestock environments are at elevated risk, making Q fever both a location- and occupation-related disease. Owing to its remarkable environmental resilience and extremely low infectious dose, C. burnetii is classified as a Category B bioterrorism agent by the U.S. Centers for Disease Control and Prevention (CDC). These characteristics significantly complicate efforts to eradicate the bacterium and position vaccination as a key strategy for preventing human transmission. Although whole-cell vaccines (WCVs) are currently licensed for use in Australia, their widespread implementation has been hindered by their strong reactogenic responses in individuals with prior exposure to C. burnetii. This review provides an overview of past and current efforts to develop non-reactogenic C. burnetii vaccines and discusses possible approaches to enhance the efficiency and safety of these vaccines.
Collapse
Affiliation(s)
- Samira Karimaei
- WHO Collaborating Centre for Vector-Borne Diseases, Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Safoura Moradkasani
- WHO Collaborating Centre for Vector-Borne Diseases, Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Saber Esmaeili
- WHO Collaborating Centre for Vector-Borne Diseases, Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Kabudar Ahang, Akanlu, Hamadan, Iran.
| |
Collapse
|
2
|
Marena Guzman R, Voth DE. Embracing multiple infection models to tackle Q fever: A review of in vitro, in vivo, and lung ex vivo models. Cell Immunol 2024; 405-406:104880. [PMID: 39357100 DOI: 10.1016/j.cellimm.2024.104880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Multiple animal and cell culture models are employed to study pathogenesis of Coxiella burnetii, the causative agent of acute and chronic human Q fever. C. burnetii is a lung pathogen that is aerosolized in contaminated products and inhaled by humans to cause acute disease that can disseminate to other organs and establish chronic infection. Cellular models of Q fever include a variety of tissue-derived cell lines from mice and humans such as lung alveolar ex vivo cells. These models have the advantage of being cost-effective and reproducible. Similarly, animal models including mice and guinea pigs are cost-effective, although only immunocompromised SCID mice display a severe disease phenotype in response to Nine Mile I and Nine Mile II isolates of C. burnetii while immunocompetent guinea pigs display human-like symptoms and robust immune responses. Non-human primates such as macaques and marmosets are the closest model of human disease but are costly and largely used for adaptive immune response studies. All animal models are used for vaccine development but many differences exist in the pathogen's ability to establish lung infection when considering infection routes, bacterial isolates, and host genetic background. Similarly, while cellular models are useful for characterization of host-pathogen mechanisms, future developments should include use of a lung infection platform to draw appropriate conclusions. Here, we summarize the current state of the C. burnetii lung pathogenesis field by discussing the contribution of different animal and cell culture models and include suggestions for continuing to move the field forward.
Collapse
Affiliation(s)
- R Marena Guzman
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
3
|
Palanisamy R, Zhang Y, Zhang G. Role of Type 4B Secretion System Protein, IcmE, in the Pathogenesis of Coxiella burnetii. Pathogens 2024; 13:405. [PMID: 38787259 PMCID: PMC11123719 DOI: 10.3390/pathogens13050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes Q fever, a life-threatening zoonotic disease. C. burnetii replicates within an acidified parasitophorous vacuole derived from the host lysosome. The ability of C. burnetii to replicate and achieve successful intracellular life in the cell cytosol is vastly dependent on the Dot/Icm type 4B secretion system (T4SSB). Although several T4SSB effector proteins have been shown to be important for C. burnetii virulence and intracellular replication, the role of the icmE protein in the host-C. burnetii interaction has not been investigated. In this study, we generated a C. burnetii Nine Mile Phase II (NMII) mutant library and identified 146 transposon mutants with a single transposon insertion. Transposon mutagenesis screening revealed that disruption of icmE gene resulted in the attenuation of C. burnetii NMII virulence in SCID mice. ELISA analysis indicated that the levels of pro-inflammatory cytokines, including interleukin-1β, IFN-γ, TNF-α, and IL-12p70, in serum from Tn::icmE mutant-infected SCID mice were significantly lower than those in serum from wild-type (WT) NMII-infected mice. Additionally, Tn::icmE mutant bacteria were unable to replicate in mouse bone marrow-derived macrophages (MBMDM) and human macrophage-like cells (THP-1). Immunoblotting results showed that the Tn::icmE mutant failed to activate inflammasome components such as IL-1β, caspase 1, and gasdermin-D in THP-1 macrophages. Collectively, these results suggest that the icmE protein may play a vital role in C. burnetii virulence, intracellular replication, and activation of inflammasome mediators during NMII infection.
Collapse
Affiliation(s)
| | | | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
4
|
Long CM, Beare PA, Cockrell D, Binette P, Tesfamariam M, Richards C, Anderson M, McCormick-Ell J, Brose M, Anderson R, Omsland A, Pearson T, Heinzen RA. Natural reversion promotes LPS elongation in an attenuated Coxiella burnetii strain. Nat Commun 2024; 15:697. [PMID: 38267444 PMCID: PMC10808227 DOI: 10.1038/s41467-023-43972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/24/2023] [Indexed: 01/26/2024] Open
Abstract
Lipopolysaccharide (LPS) phase variation is a critical aspect of virulence in many Gram-negative bacteria. It is of particular importance to Coxiella burnetii, the biothreat pathogen that causes Q fever, as in vitro propagation of this organism leads to LPS truncation, which is associated with an attenuated and exempted from select agent status (Nine Mile II, NMII). Here, we demonstrate that NMII was recovered from the spleens of infected guinea pigs. Moreover, these strains exhibit a previously unrecognized form of elongated LPS and display increased virulence in comparison with the initial NMII strain. The reversion of a 3-bp mutation in the gene cbu0533 directly leads to LPS elongation. To address potential safety concerns, we introduce a modified NMII strain unable to produce elongated LPS.
Collapse
Affiliation(s)
- Carrie M Long
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA.
| | - Paul A Beare
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Diane Cockrell
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Picabo Binette
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Mahelat Tesfamariam
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Crystal Richards
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Matthew Anderson
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Jessica McCormick-Ell
- Office of the Director, Office of Research Services, Division of Occupational Health and Safety, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Megan Brose
- Office of the Director, Office of Research Services, Division of Occupational Health and Safety, National Institutes of Health, Hamilton, 59840, USA
| | - Rebecca Anderson
- Office of the Director, Office of Research Services, Division of Occupational Health and Safety, National Institutes of Health, Hamilton, 59840, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Talima Pearson
- Department of Biological Sciences, Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Robert A Heinzen
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| |
Collapse
|
5
|
Tesfamariam M, Binette P, Cockrell D, Beare PA, Heinzen RA, Shaia C, Long CM. Characterization of Coxiella burnetii Dugway Strain Host-Pathogen Interactions In Vivo. Microorganisms 2022; 10:2261. [PMID: 36422331 PMCID: PMC9692954 DOI: 10.3390/microorganisms10112261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2023] Open
Abstract
Coxiella burnetii is a Gram-negative, intracellular bacterium that causes the zoonosis Q fever. Among the many natural isolates of C. burnetii recovered from various sources, the Dugway group exhibits unique genetic characteristics, including the largest C. burnetii genomes. These strains were isolated during 1954-1958 from wild rodents from the Utah, USA desert. Despite retaining phase I lipopolysaccharide and the type 4B secretion system, two critical virulence factors, avirulence has been reported in a guinea pig infection model. Using guinea pig models, we evaluated the virulence, whole-cell vaccine (WCV) efficacy, and post-vaccination hypersensitivity (PVH) potential of a representative Dugway strain. Consistent with prior reports, Dugway appeared to be highly attenuated compared to a virulent strain. Indeed, Dugway-infected animals showed similarly low levels of fever, body weight loss, and splenomegaly like Nine Mile II-infected animals. When compared to a human Q fever vaccine, QVax®, Dugway WCV exhibited analogous protection against a heterologous Nine Mile I challenge. PVH was investigated in a skin-testing model which revealed significantly decreased maximum erythema in Dugway Δdot/icm WCV-skin-tested animals compared to that of QVax®. These data provide insight into this unique bacterial strain and implicate its potential use as a mutated WCV candidate.
Collapse
Affiliation(s)
- Mahelat Tesfamariam
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT 59840, USA
| | - Picabo Binette
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT 59840, USA
| | - Diane Cockrell
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT 59840, USA
| | - Paul A. Beare
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT 59840, USA
| | - Robert A. Heinzen
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT 59840, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT 59840, USA
| | - Carrie Mae Long
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
6
|
Coxiella burnetii-Infected NK Cells Release Infectious Bacteria by Degranulation. Infect Immun 2020; 88:IAI.00172-20. [PMID: 32817330 DOI: 10.1128/iai.00172-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are critically involved in the early immune response against various intracellular pathogens, including Coxiella burnetii and Chlamydia psittaci Chlamydia-infected NK cells functionally mature, induce cellular immunity, and protect themselves by killing the bacteria in secreted granules. Here, we report that infected NK cells do not allow intracellular multiday growth of Coxiella, as is usually observed in other host cell types. C. burnetii-infected NK cells display maturation and gamma interferon (IFN-γ) secretion, as well as the release of Coxiella-containing lytic granules. Thus, NK cells possess a potent program to restrain and expel different types of invading bacteria via degranulation. Strikingly, though, in contrast to Chlamydia, expulsed Coxiella organisms largely retain their infectivity and, hence, escape the cell-autonomous self-defense mechanism in NK cells.
Collapse
|
7
|
Kohl L, Hayek I, Daniel C, Schulze-Lührmann J, Bodendorfer B, Lührmann A, Lang R. MyD88 Is Required for Efficient Control of Coxiella burnetii Infection and Dissemination. Front Immunol 2019; 10:165. [PMID: 30800124 PMCID: PMC6376249 DOI: 10.3389/fimmu.2019.00165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
The intracellular pathogen Coxiella (C.) burnetii causes Q fever, a usually self-limiting respiratory infection that becomes chronic and severe in some patients. Innate immune recognition of C. burnetii and its role in the decision between resolution and chronicity is not understood well. However, TLR2 is important for the response to C. burnetii in mice, and genetic polymorphisms in Myd88 have been associated with chronic Q fever in humans. Here, we have employed MyD88-deficient mice in infection models with the attenuated C. burnetii Nine Mile phase II strain (NMII). Myd88−/− macrophages failed to restrict the growth of NMII in vitro, and to upregulate production of the cytokines TNF, IL-6, and IL-10. Following intraperitoneal infection, NMII bacterial burden was significantly higher on day 5 and 20 in organs of Myd88−/− mice. After infection via the natural route by intratracheal injection, a higher bacterial load in the lung and increased dissemination of NMII to other organs was observed in MyD88-deficient mice. While wild-type mice essentially cleared NMII on day 27 after intratracheal infection, it was still readily detectable on day 42 in multiple organs in the absence of MyD88. Despite the elevated bacterial load, Myd88−/− mice had less granulomatous inflammation and expressed significantly lower levels of chemoattractants, inflammatory cytokines, and of several IFNγ-induced genes relevant for control of intracellular pathogens. Together, our results show that MyD88-dependent signaling is essential for early control of C. burnetii replication and to prevent systemic spreading. The continued presence of NMII in the organs of Myd88−/− mice constitutes a new mouse model to study determinants of chronicity and resolution in Q fever.
Collapse
Affiliation(s)
- Lisa Kohl
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Inaya Hayek
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Schulze-Lührmann
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Bodendorfer
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Lührmann
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Selim A, Yang E, Rousset E, Thiéry R, Sidi-Boumedine K. Characterization of Coxiella burnetii strains from ruminants in a Galleria mellonella host-based model. New Microbes New Infect 2018; 24:8-13. [PMID: 29922469 PMCID: PMC6004733 DOI: 10.1016/j.nmni.2018.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 11/25/2022] Open
Abstract
Coxiella burnetii is a small Gram-negative intracellular bacterium and is the causative agent of Q fever, which is a zoonotic disease with a worldwide distribution. Domesticated ruminants are the main reservoir of the disease, but the bacterium is able to infect a wide range of hosts, including humans, arthropods and invertebrates. Virulence studies of Coxiella strains usually require a suitable animal model. However, mammalian models are costly and are associated with many ethical constraints. An alternative infection model using Galleria mellonella has been used to study the virulence of several bacterial as well as fungal pathogens. Moreover, the G. mellonella larvae model has been used to identify virulence genes using phase II C. burnetii strain Nine Mile mutants. In our study we describe its use for the characterization of C. burnetii strains isolated from ruminants.
Collapse
Affiliation(s)
- A Selim
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France.,Animal Medicine Department, Faculty of Veterinary Medicine, Banha University, Banha, Egypt
| | - E Yang
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - E Rousset
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - R Thiéry
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - K Sidi-Boumedine
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| |
Collapse
|
9
|
Host and Bacterial Factors Control Susceptibility of Drosophila melanogaster to Coxiella burnetii Infection. Infect Immun 2017; 85:IAI.00218-17. [PMID: 28438980 DOI: 10.1128/iai.00218-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022] Open
Abstract
Coxiella burnetii is the causative agent of Q fever, a zoonotic disease that threatens both human and animal health. Due to the paucity of experimental animal models, little is known about how host factors interface with bacterial components and affect pathogenesis. Here, we used Drosophila melanogaster, in conjunction with the biosafety level 2 (BSL2) Nine Mile phase II (NMII) clone 4 strain of C. burnetii, as a model to investigate host and bacterial components implicated in infection. We demonstrate that adult Drosophila flies are susceptible to C. burnetii NMII infection and that this bacterial strain, which activates the immune deficiency (IMD) pathway, is able to replicate and cause mortality in the animals. We show that in the absence of Eiger, the only known tumor necrosis factor (TNF) superfamily homolog in Drosophila, Coxiella-infected flies exhibit reduced mortality from infection. We also demonstrate that the Coxiella type 4 secretion system (T4SS) is critical for the formation of the Coxiella-containing vacuole and establishment of infection in Drosophila Altogether, our data reveal that the Drosophila TNF homolog Eiger and the Coxiella T4SS are implicated in the pathogenesis of C. burnetii in flies. The Drosophila/NMII model mimics relevant aspects of the infection in mammals, such as a critical role of host TNF and the bacterial T4SS in pathogenesis. Our work also demonstrates the usefulness of this BSL2 model to investigate both host and Coxiella components implicated in infection.
Collapse
|
10
|
van Schaik EJ, Case ED, Martinez E, Bonazzi M, Samuel JE. The SCID Mouse Model for Identifying Virulence Determinants in Coxiella burnetii. Front Cell Infect Microbiol 2017; 7:25. [PMID: 28217558 PMCID: PMC5289997 DOI: 10.3389/fcimb.2017.00025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/19/2017] [Indexed: 01/09/2023] Open
Abstract
Coxiella burnetii is an intracellular, zoonotic pathogen that is the causative agent of Q fever. Infection most frequently occurs after inhalation of contaminated aerosols, which can lead to acute, self-limiting febrile illness or more serve chronic infections such as hepatitis or endocarditis. Macrophages are the principal target cells during infection where C. burnetii resides and replicates within a unique phagolysosome-like compartment, the Coxiella-containing vacuole (CCV). The first virulence determinant described as necessary for infection was full-length lipopolysaccarride (LPS); spontaneous rough mutants (phase II) arise after passage in immuno-incompetent hosts. Phase II C. burnetii are attenuated in immuno-competent animals, but are fully capable of infecting a variety of host cells in vitro. A clonal strain of the Nine Mile isolate (RSA439, clone 4), has a 26 KDa chromosomal deletion that includes LPS biosynthetic genes and is uniquely approved for use in BL2/ABL2 conditions. With the advances of axenic media and genetic tools for C. burnetii research, the characterization of novel virulence determinants is ongoing and almost exclusively performed using this attenuated clone. A major problem with predicting essential virulence loci with RSA439 is that, although some cell-autonomous phenotypes can be assessed in tissue culture, no animal model for assessing pathogenesis has been defined. Here we describe the use of SCID mice for predicting virulence factors of C. burnetii, in either independent or competitive infections. We propose that this model allows for the identification of mutations that are competent for intracellular replication in vitro, but attenuated for growth in vivo and predict essential innate immune responses modulated by the pathogen during infection as a central pathogenic strategy.
Collapse
Affiliation(s)
- Erin J. van Schaik
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M UniversityBryan, TX, USA
| | - Elizabeth D. Case
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M UniversityBryan, TX, USA
| | - Eric Martinez
- Centre National de la Recherche Scientifique, Formation de Recherche en Évolution 3689, Centre d'études d'agents Pathogènes et Biotechnologies Pour la Santé, Université MontpellierMontpellier, France
| | - Matteo Bonazzi
- Centre National de la Recherche Scientifique, Formation de Recherche en Évolution 3689, Centre d'études d'agents Pathogènes et Biotechnologies Pour la Santé, Université MontpellierMontpellier, France
| | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M UniversityBryan, TX, USA
| |
Collapse
|
11
|
|
12
|
Larson CL, Martinez E, Beare PA, Jeffrey B, Heinzen RA, Bonazzi M. Right on Q: genetics begin to unravel Coxiella burnetii host cell interactions. Future Microbiol 2016; 11:919-39. [PMID: 27418426 DOI: 10.2217/fmb-2016-0044] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Invasion of macrophages and replication within an acidic and degradative phagolysosome-like vacuole are essential for disease pathogenesis by Coxiella burnetii, the bacterial agent of human Q fever. Previous experimental constraints imposed by the obligate intracellular nature of Coxiella limited knowledge of pathogen strategies that promote infection. Fortunately, new genetic tools facilitated by axenic culture now allow allelic exchange and transposon mutagenesis approaches for virulence gene discovery. Phenotypic screens have illuminated the critical importance of Coxiella's type 4B secretion system in host cell subversion and discovered genes encoding translocated effector proteins that manipulate critical infection events. Here, we highlight the cellular microbiology and genetics of Coxiella and how recent technical advances now make Coxiella a model organism to study macrophage parasitism.
Collapse
Affiliation(s)
- Charles L Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Eric Martinez
- CNRS, FRE3698, CPBS, 1919 Route de Mende, 34293 Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Brendan Jeffrey
- Bioinformatics & Computational Biosciences Branch, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Matteo Bonazzi
- CNRS, FRE3698, CPBS, 1919 Route de Mende, 34293 Montpellier, France.,Université de Montpellier, Montpellier, France
| |
Collapse
|
13
|
Bayesian Validation of the Indirect Immunofluorescence Assay and Its Superiority to the Enzyme-Linked Immunosorbent Assay and the Complement Fixation Test for Detecting Antibodies against Coxiella burnetii in Goat Serum. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:507-514. [PMID: 27122484 DOI: 10.1128/cvi.00724-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/14/2016] [Indexed: 01/23/2023]
Abstract
Although many studies have reported the indirect immunofluorescence assay (IFA) to be more sensitive in detection of antibodies to Coxiella burnetii than the complement fixation test (CFT), the diagnostic sensitivity (DSe) and diagnostic specificity (DSp) of the assay have not been previously established for use in ruminants. This study aimed to validate the IFA by describing the optimization, selection of cutoff titers, repeatability, and reliability as well as the DSe and DSp of the assay. Bayesian latent class analysis was used to estimate diagnostic specifications in comparison with the CFT and the enzyme-linked immunosorbent assay (ELISA). The optimal cutoff dilution for screening for IgG and IgM antibodies in goat serum using the IFA was estimated to be 1:160. The IFA had good repeatability (>96.9% for IgG, >78.0% for IgM), and there was almost perfect agreement (Cohen's kappa > 0.80 for IgG) between the readings reported by two technicians for samples tested for IgG antibodies. The IFA had a higher DSe (94.8%; 95% confidence interval [CI], 80.3, 99.6) for the detection of IgG antibodies against C. burnetii than the ELISA (70.1%; 95% CI, 52.7, 91.0) and the CFT (29.8%; 95% CI, 17.0, 44.8). All three tests were highly specific for goat IgG antibodies. The IFA also had a higher DSe (88.8%; 95% CI, 58.2, 99.5) for detection of IgM antibodies than the ELISA (71.7%; 95% CI, 46.3, 92.8). These results underscore the better suitability of the IFA than of the CFT and ELISA for detection of IgG and IgM antibodies in goat serum and possibly in serum from other ruminants.
Collapse
|
14
|
Galleria mellonella as an alternative model of Coxiella burnetii infection. Microbiology (Reading) 2014; 160:1175-1181. [DOI: 10.1099/mic.0.077230-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coxiella burnetii is a Gram-negative intracellular bacterium and is the causative agent of the zoonotic disease Q fever. Several rodent and non-human primate models of virulent phase I C. burnetii [Nine Mile (NM)I] have been developed, and have been used to determine the efficacy of antibiotics and vaccine candidates. However, there are several advantages to using insect models to study host–microbe interactions, such as reduced animal use, lowered cost and ease of manipulation in high containment. In addition, many laboratories use the avirulent phase II C. burnetii clone (NMII) to study cellular interactions and identify novel virulence determinants using genetic manipulation. We report that larvae of the greater wax moth, Galleria mellonella, were susceptible to infection with both C. burnetii NMI and NMII. Following subcutaneous infection, we report that intracellular bacteria were present within haemocytes and that larval death occurred in a dose-dependent manner. Additionally, we have used the model to characterize the role of the type 4 secretion system in C. burnetii NMII and to determine antibiotic efficacy in a non-mammalian model of disease.
Collapse
|