1
|
Stauft CB, Phillips AT, Wang TT, Olson KE. Identification of salivary gland escape barriers to western equine encephalitis virus in the natural vector, Culex tarsalis. PLoS One 2022; 17:e0262967. [PMID: 35298486 PMCID: PMC8929657 DOI: 10.1371/journal.pone.0262967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Herein we describe a previously uninvestigated salivary gland escape barrier (SEB) in Culex tarsalis mosquitoes infected with two different strains of Western equine encephalitis virus (WEEV). The WEEV strains were originally isolated either from mosquitoes (IMP181) or a human patient (McMillan). Both IMP181 and McMillan viruses were fully able to infect the salivary glands of Culex tarsalis after intrathoracic injection as determined by expression of mCherry fluorescent protein. IMP181, however, was better adapted to transmission as measured by virus titer in saliva as well as transmission rates in infected mosquitoes. We used chimeric recombinant WEEV strains to show that inclusion of IMP181-derived structural genes partially circumvents the SEB.
Collapse
Affiliation(s)
- Charles B. Stauft
- Laboratory of Vector-Borne Diseases, Division of Viral Products, Office of Vaccine Research and Review, Food and Drug Administration, White Oak, Maryland, United States of America
| | - Aaron T. Phillips
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tony T. Wang
- Laboratory of Vector-Borne Diseases, Division of Viral Products, Office of Vaccine Research and Review, Food and Drug Administration, White Oak, Maryland, United States of America
| | - Kenneth E. Olson
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
2
|
Ma J, Wang H, Zheng X, Wu H, Yang S, Xia X. Western equine encephalitis virus virus-like particles from an insect cell-baculovirus system elicit the strong immune responses in mice. Biotechnol J 2021; 16:e2100008. [PMID: 34176228 DOI: 10.1002/biot.202100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022]
Abstract
Western equine encephalitis virus (WEEV) causes lethal encephalitis in humans and equines, and it poses a serious public health threat in many countries. Therefore, the development of an efficient vaccine remains an important challenge for the prevention of WEEV infection. This study presents the first description of WEEV virus-like particles (VLPs) generated from insect cells using recombinant baculoviruses. WEEV VLPs with 206 adjuvant could trigger a strong cellular immune response; increase the levels of IL-2, IL-4 and IFN-γ; and induce a high level of neutralizing antibodies against WEEV in mice. These data showed that the insect cell-baculovirus system is suitable for the production of WEEV VLPs and that these VLPs could elicit the strong immunogenicity in mice. These results suggest a new, nonreplicating, and effective vaccine candidate against WEEV infection.
Collapse
Affiliation(s)
- JinZhu Ma
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.,College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - HuaLei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - XueXing Zheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - HongXia Wu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - SongTao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - XianZhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
3
|
McGregor BL, Connelly CR, Kenney JL. Infection, Dissemination, and Transmission Potential of North American Culex quinquefasciatus, Culex tarsalis, and Culicoides sonorensis for Oropouche Virus. Viruses 2021; 13:v13020226. [PMID: 33540546 PMCID: PMC7912852 DOI: 10.3390/v13020226] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/14/2023] Open
Abstract
Oropouche virus (OROV), a vector-borne Orthobunyavirus circulating in South and Central America, causes a febrile illness with high rates of morbidity but with no documented fatalities. Oropouche virus is transmitted by numerous vectors, including multiple genera of mosquitoes and Culicoides biting midges in South America. This study investigated the vector competence of three North American vectors, Culex tarsalis, Culex quinquefasciatus, and Culicoides sonorensis, for OROV. Cohorts of each species were fed an infectious blood meal containing 6.5 log10 PFU/mL OROV and incubated for 10 or 14 days. Culex tarsalis demonstrated infection (3.13%) but not dissemination or transmission potential at 10 days post infection (DPI). At 10 and 14 DPI, Cx. quinquefasciatus demonstrated 9.71% and 19.3% infection, 2.91% and 1.23% dissemination, and 0.97% and 0.82% transmission potential, respectively. Culicoides sonorensis demonstrated 86.63% infection, 83.14% dissemination, and 19.77% transmission potential at 14 DPI. Based on these data, Cx. tarsalis is unlikely to be a competent vector for OROV. Culex quinquefasciatus demonstrated infection, dissemination, and transmission potential, although at relatively low rates. Culicoides sonorensis demonstrated high infection and dissemination but may have a salivary gland barrier to the virus. These data have implications for the spread of OROV in the event of a North American introduction.
Collapse
Affiliation(s)
- Bethany L. McGregor
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| | - C. Roxanne Connelly
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA;
| | - Joan L. Kenney
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA;
- Correspondence: ; Tel.: +1-970-221-6465
| |
Collapse
|
4
|
Abstract
Alphaviruses cause severe human illnesses including persistent arthritis and fatal encephalitis. As alphavirus entry into target cells is the first step in infection, intensive research efforts have focused on elucidating aspects of this pathway, including attachment, internalization, and fusion. Herein, we review recent developments in the molecular understanding of alphavirus entry both in vitro and in vivo and how these advances might enable the design of therapeutics targeting this critical step in the alphavirus life cycle.
Collapse
|
5
|
Darwin JR, Kenney JL, Weaver SC. Transmission potential of two chimeric Chikungunya vaccine candidates in the urban mosquito vectors, Aedes aegypti and Ae. albopictus. Am J Trop Med Hyg 2011; 84:1012-5. [PMID: 21633043 DOI: 10.4269/ajtmh.2011.11-0049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus that has caused major epidemics in Africa and Asia. We developed chimeric vaccine candidates using the non-structural protein genes of either Venezuelan equine encephalitis virus (VEEV) attenuated vaccine strain TC-83 or a naturally attenuated strain of eastern equine encephalitis virus (EEEV) and the structural genes of CHIKV. Because the transmission of genetically modified live vaccine strains is undesirable because of the potentially unpredictable evolution of these viruses as well as the potential for reversion, we evaluated the ability of these vaccines to infect the urban CHIKV vectors, Aedes aegypti and Ae. albopictus. Both vaccine candidates exhibited significantly lower infection and dissemination rates compared with the parent alphaviruses. Intrathoracic inoculations indicated that reduced infectivity was mediated by midgut infection barriers in both species. These results indicate a low potential for transmission of these vaccine strains in the event that a vaccinee became viremic.
Collapse
Affiliation(s)
- Justin R Darwin
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | |
Collapse
|
6
|
Pfeffer M, Dobler G. Emergence of zoonotic arboviruses by animal trade and migration. Parasit Vectors 2010; 3:35. [PMID: 20377873 PMCID: PMC2868497 DOI: 10.1186/1756-3305-3-35] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/08/2010] [Indexed: 11/10/2022] Open
Abstract
Arboviruses are transmitted in nature exclusively or to a major extend by arthropods. They belong to the most important viruses invading new areas in the world and their occurrence is strongly influenced by climatic changes due to the life cycle of the transmitting vectors. Several arboviruses have emerged in new regions of the world during the last years, like West Nile virus (WNV) in the Americas, Usutu virus (USUV) in Central Europe, or Rift Valley fever virus (RVFV) in the Arabian Peninsula. In most instances the ways of introduction of arboviruses into new regions are not known. Infections acquired during stays in the tropics and subtropics are diagnosed with increasing frequency in travellers returning from tropical countries, but interestingly no attention is paid on accompanying pet animals or the hematophagous ectoparasites that may still be attached to them. Here we outline the known ecology of the mosquito-borne equine encephalitis viruses (WEEV, EEEV, and VEEV), WNV, USUV, RVFV, and Japanese Encephalitis virus, as well as Tick-Borne Encephalitis virus and its North American counterpart Powassan virus, and will discuss the most likely mode that these viruses could expand their respective geographical range. All these viruses have a different epidemiology as different vector species, reservoir hosts and virus types have adapted to promiscuous and robust or rather very fine-balanced transmission cycles. Consequently, these viruses will behave differently with regard to the requirements needed to establish new endemic foci outside their original geographical ranges. Hence, emphasis is given on animal trade and suitable ecologic conditions, including competent vectors and vertebrate hosts.
Collapse
Affiliation(s)
- Martin Pfeffer
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | | |
Collapse
|
7
|
Atasheva S, Wang E, Adams AP, Plante KS, Ni S, Taylor K, Miller ME, Frolov I, Weaver SC. Chimeric alphavirus vaccine candidates protect mice from intranasal challenge with western equine encephalitis virus. Vaccine 2009; 27:4309-19. [PMID: 19446595 PMCID: PMC3238384 DOI: 10.1016/j.vaccine.2009.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/27/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
Abstract
We developed two types of chimeric Sindbis virus (SINV)/western equine encephalitis virus (WEEV) alphaviruses to investigate their potential use as live virus vaccines against WEE. The first-generation vaccine candidate, SIN/CO92, was derived from structural protein genes of WEEV strain CO92-1356, and two second-generation candidates were derived from WEEV strain McMillan. For both first- and second-generation vaccine candidates, the nonstructural protein genes were derived from SINV strain AR339. Second-generation vaccine candidates SIN/SIN/McM and SIN/EEE/McM included the envelope glycoprotein genes from WEEV strain McMillan; however, the amino-terminal half of the capsid, which encodes the RNA-binding domain, was derived from either SINV or eastern equine encephalitis virus (EEEV) strain FL93-939. All chimeric viruses replicated efficiently in mammalian and mosquito cell cultures and were highly attenuated in 6-week-old mice. Vaccinated mice developed little or no detectable disease and showed little or no evidence of challenge virus replication; however, all developed high titers of neutralizing antibodies. Upon intranasal challenge with high doses of virulent WEEV strains, mice vaccinated with >or=10(5)PFU of SIN/CO92 or >or=10(4)PFU of SIN/SIN/McM or SIN/EEE/McM were completely protected from disease. These findings support the potential use of these live-attenuated vaccine candidates as safe and effective vaccines against WEE.
Collapse
Affiliation(s)
- Svetlana Atasheva
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Eryu Wang
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555
| | - A. Paige Adams
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555
| | - Kenneth S. Plante
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555
| | - Sai Ni
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555
| | - Katherine Taylor
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555
| | - Mary E. Miller
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Ilya Frolov
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|