1
|
Sagay AS, Hsieh SC, Dai YC, Chang CA, Ogwuche J, Ige OO, Kahansim ML, Chaplin B, Imade G, Elujoba M, Paul M, Hamel DJ, Furuya H, Khouri R, Boaventura VS, de Moraes L, Kanki PJ, Wang WK. Chikungunya virus antepartum transmission and abnormal infant outcomes in a cohort of pregnant women in Nigeria. Int J Infect Dis 2024; 139:92-100. [PMID: 38056689 PMCID: PMC10843725 DOI: 10.1016/j.ijid.2023.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVES Chikungunya virus (CHIKV), a reemerging global public health concern, which causes acute febrile illness, rash, and arthralgia and may affect both mothers and infants during pregnancy. Mother-to-child transmission (MTCT) of CHIKV in Africa remains understudied. METHODS Our cohort study screened 1006 pregnant women with a Zika/dengue/CHIKV rapid test at two clinics in Nigeria between 2019 and 2022. Women who tested positive for the rapid test were followed through their pregnancy and their infants were observed for 6 months, with a subset tested by reverse transcription-polymerase chain reaction (RT-PCR) and neutralization, to investigate seropositivity rates and MTCT of CHIKV. RESULTS Of the 1006, 119 tested positive for CHIKV immunoglobulin (Ig)M, of which 36 underwent detailed laboratory tests. While none of the IgM reactive samples were RT-PCR positive, 14 symptomatic pregnant women were confirmed by CHIKV neutralization test. Twelve babies were followed with eight normal and four abnormal outcomes, including stillbirth, cleft lip/palate with microcephaly, preterm delivery, polydactyly with sepsis, and jaundice. CHIKV IgM testing identified three possible antepartum transmissions. CONCLUSION In Nigeria, we found significant CHIKV infection in pregnancy and possible CHIKV antepartum transmission associated with birth abnormalities.
Collapse
Affiliation(s)
- Atiene S Sagay
- Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | - Szu-Chia Hsieh
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, USA
| | - Yu-Ching Dai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, USA
| | - Charlotte Ajeong Chang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | | | - Olukemi O Ige
- Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | | | - Beth Chaplin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Godwin Imade
- Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | | | - Michael Paul
- Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | - Donald J Hamel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Hideki Furuya
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Ricardo Khouri
- Instituto Gonçalo Moniz -Oswaldo Cruz Foundation (FIOCRUZ), Bahia, Brazil
| | | | - Laíse de Moraes
- Instituto Gonçalo Moniz -Oswaldo Cruz Foundation (FIOCRUZ), Bahia, Brazil
| | - Phyllis J Kanki
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Wei-Kung Wang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, USA
| |
Collapse
|
2
|
Gil-Mora J, Acevedo-Gutiérrez LY, Betancourt-Ruiz PL, Martínez-Diaz HC, Fernández D, Bopp NE, Olaya-Másmela LA, Bolaños E, Benavides E, Villasante-Tezanos A, Hidalgo M, Aguilar PV. Arbovirus Antibody Seroprevalence in the Human Population from Cauca, Colombia. Am J Trop Med Hyg 2022; 107:1218-1225. [PMID: 36375460 PMCID: PMC9768249 DOI: 10.4269/ajtmh.22-0120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Several arboviruses have emerged or reemerged into the New World during the past several decades, causing outbreaks of significant proportion. In particular, the outbreaks of Dengue virus (DENV), Zika virus, and Chikungunya virus (CHIKV) have been explosive and unpredictable, and have led to significant adverse health effects. These viruses are considered the leading cause of acute undifferentiated febrile illnesses in Colombia. However, Venezuelan equine encephalitis virus (VEEV) is endemic in Colombia, and arboviruses such as the Mayaro virus (MAYV) and the Oropouche virus (OROV) cause febrile illnesses in neighboring countries. Yet, evidence of human exposure to MAYV and OROV in Colombia is scarce. In this study, we conducted a serosurvey study in healthy individuals from the Cauca Department in Colombia. We assessed the seroprevalence of antibodies against multiple arboviruses, including DENV serotype 2, CHIKV, VEEV, MAYV, and OROV. Based on serological analyses, we found that the overall seroprevalence for DENV serotype 2 was 30%, 1% for MAYV, 2.6% for CHIKV, 4.4% for VEEV, and 2% for OROV. This study provides evidence about the circulation of MAYV and OROV in Colombia, and suggests that they-along with VEEV and CHIKV-might be responsible for cases of acute undifferentiated febrile illnesses that remain undiagnosed in the region. The study results also highlight the need to strengthen surveillance programs to identify outbreaks caused by these and other vector-borne pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Diana Fernández
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Nathen E. Bopp
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
- Center for Tropical Diseases, Galveston, Texas
| |
Collapse
|
3
|
Dos Santos Souza Marinho R, Duro RLS, Bellini Caldeira D, Galinskas J, Oliveira Mota MT, Hunter J, Rodrigues Teles MDA, de Pádua Milagres FA, Sobhie Diaz R, Shinji Kawakubo F, Vasconcelos Komninakis S. Re-emergence of mayaro virus and coinfection with chikungunya during an outbreak in the state of Tocantins/Brazil. BMC Res Notes 2022; 15:271. [PMID: 35922804 PMCID: PMC9351195 DOI: 10.1186/s13104-022-06153-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/12/2022] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE To perform a molecular screening to detect infections by the mayaro virus and possible coinfections with Chikungunya during an outbreak in the state of Tocantins/Brazil in 2017. RESULTS Of a total 102 samples analyzed in this study, 6 cases were identified with simultaneous infection between mayaro and chikungunya viruses (5.88%). In these 6 samples, the mean Cycle threshold (Ct) for CHIKV was 26.87 (SD ± 10.54) and for MAYV was 29.58 (SD ± 6.34). The mayaro sequences generated showed 95-100% identity to other Brazilian sequences of this virus and with other MAYV isolates obtained from human and arthropods in different regions of the world. The remaining samples were detected with CHIKV monoinfection (41 cases), DENV monoinfection (50 cases) and coinfection between CHIKV/DENV (5 cases). We did not detect MAYV monoinfections.
Collapse
Affiliation(s)
| | - Rodrigo Lopes Sanz Duro
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo City, São Paulo, 04039-032, Brazil
| | - Débora Bellini Caldeira
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo City, São Paulo, 04039-032, Brazil
| | - Juliana Galinskas
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo City, São Paulo, 04039-032, Brazil
| | | | - James Hunter
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo City, São Paulo, 04039-032, Brazil
| | | | - Flávio Augusto de Pádua Milagres
- Central Public Health Laboratory of Tocantins (LACEN/TO), Palmas City, Tocantins, 77016-330, Brazil.,Institute of Biological Sciences, Federal University of Tocantins, Palmas City, Tocantins, 77001-090, Brazil.,Tocantins Health Department, Palmas City, Tocantins, 77453-000, Brazil
| | - Ricardo Sobhie Diaz
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo City, São Paulo, 04039-032, Brazil
| | - Fernando Shinji Kawakubo
- Faculty of Philosophy, Letters and Human Sciences, University of São Paulo, São Paulo City, São Paulo, 05508-000, Brazil
| | - Shirley Vasconcelos Komninakis
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo City, São Paulo, 04039-032, Brazil. .,Faculty of Medicine (FMUSP), Institute of Tropical Medicine, University of São Paulo, São Paulo City, São Paulo, 05403-000, Brazil.
| |
Collapse
|