1
|
Katzelnick LC, Quentin E, Colston S, Ha TA, Andrade P, Eisenberg JNS, Ponce P, Coloma J, Cevallos V. Increasing transmission of dengue virus across ecologically diverse regions of Ecuador and associated risk factors. PLoS Negl Trop Dis 2024; 18:e0011408. [PMID: 38295108 PMCID: PMC10861087 DOI: 10.1371/journal.pntd.0011408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/12/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
The distribution and intensity of viral diseases transmitted by Aedes aegypti mosquitoes, including dengue, have rapidly increased over the last century. Here, we study dengue virus (DENV) transmission across the ecologically and demographically distinct regions or Ecuador. We analyzed province-level age-stratified dengue incidence data from 2000-2019 using catalytic models to estimate the force of infection of DENV over eight decades. We found that provinces established endemic DENV transmission at different time periods. Coastal provinces with the largest and most connected cities had the earliest and highest increase in DENV transmission, starting around 1980 and continuing to the present. In contrast, remote and rural areas with reduced access, like the northern coast and the Amazon regions, experienced a rise in DENV transmission and endemicity only in the last 10 to 20 years. The newly introduced chikungunya and Zika viruses have age-specific distributions of hospital-seeking cases consistent with recent emergence across all provinces. To evaluate factors associated with geographic differences in DENV transmission potential, we modeled DENV vector risk using 11,693 Aedes aegypti presence points to the resolution of 1 hectare. In total, 56% of the population of Ecuador, including in provinces identified as having increasing DENV transmission in our models, live in areas with high risk of Aedes aegypti, with population size, trash collection, elevation, and access to water as important determinants. Our investigation serves as a case study of the changes driving the expansion of DENV and other arboviruses globally and suggest that control efforts should be expanded to semi-urban and rural areas and to historically isolated regions to counteract increasing dengue outbreaks.
Collapse
Affiliation(s)
- Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emmanuelle Quentin
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Savannah Colston
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thien-An Ha
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Paulina Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Patricio Ponce
- Centro de Investigación en Enfermedades Infeciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Varsovia Cevallos
- Centro de Investigación en Enfermedades Infeciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| |
Collapse
|
2
|
Glover B, Lee GO, Suing O, Ha TA, Thongsripong P, Cevallos V, Ponce P, Van Wyk H, Morrison AC, Coloma J, Eisenberg JN. Validity of Self-Reported Mosquito Bites to Assess Household Mosquito Abundance in Six Communities of Esmeraldas Province, Ecuador. Am J Trop Med Hyg 2023; 108:981-986. [PMID: 37037437 PMCID: PMC10160883 DOI: 10.4269/ajtmh.22-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/13/2023] [Indexed: 04/12/2023] Open
Abstract
Mosquito-borne diseases are a global burden; however, current methods of evaluating human-mosquito contact rates are expensive and time consuming. Validated surveys of self-reported mosquito bites may be an inexpensive way to determine mosquito presence and bite exposure level in an area, but this remains untested. In this study, a survey of self-reported mosquito bites was validated against household mosquito abundance from six communities in Esmeraldas, Ecuador. From February 2021 to July 2022, households were interviewed monthly, and five questions were used to ask participants how often they were bitten by mosquitoes at different times during the day. At the same time, adult mosquitoes were collected using a Prokopack aspirator. Species were identified and counted. Survey responses were compared with the total number of mosquitoes found in the home using negative binomial regression. More frequent self-reported mosquito bites were significantly associated with higher numbers of collected adult mosquitoes. These associations were driven by the prevalence of the dominant genera, Culex. These results suggest that surveys of perceived mosquito bites relate to actual mosquito presence, making them a potentially useful tool for determining the impact of vector-control interventions on community perceptions of risk but less useful for assessing the risk of nondominant species such as Aedes aegypti. Further work is needed to examine the robustness of these results in other contexts.
Collapse
Affiliation(s)
- Brian Glover
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Gwenyth O. Lee
- Rutgers Global Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey
| | - Oscar Suing
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Thien-An Ha
- Division of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, California
| | - Panpim Thongsripong
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida
| | - Varsovia Cevallos
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Patricio Ponce
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Hannah Van Wyk
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, California
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, California
| | - Joseph N.S. Eisenberg
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Márquez S, Lee G, Gutiérrez B, Bennett S, Coloma J, Eisenberg JNS, Trueba G. Phylogenetic Analysis of Transmission Dynamics of Dengue in Large and Small Population Centers, Northern Ecuador. Emerg Infect Dis 2023; 29:888-897. [PMID: 37080979 PMCID: PMC10124659 DOI: 10.3201/eid2905.221226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Although dengue is typically considered an urban disease, rural communities are also at high risk. To clarify dynamics of dengue virus (DENV) transmission in settings with characteristics generally considered rural (e.g., lower population density, remoteness), we conducted a phylogenetic analysis in 6 communities in northwestern Ecuador. DENV RNA was detected by PCR in 121/488 serum samples collected from febrile case-patients during 2019-2021. Phylogenetic analysis of 27 samples from Ecuador and other countries in South America confirmed that DENV-1 circulated during May 2019-March 2020 and DENV-2 circulated during December 2020-July 2021. Combining locality and isolation dates, we found strong evidence that DENV entered Ecuador through the northern province of Esmeraldas. Phylogenetic patterns suggest that, within this province, communities with larger populations and commercial centers were more often the source of DENV but that smaller, remote communities also play a role in regional transmission dynamics.
Collapse
|