1
|
Singh E, Gupta A, Singh P, Jain M, Muthukumaran J, Singh RP, Singh AK. Exploring mammalian heme peroxidases: A comprehensive review on the structure and function of myeloperoxidase, lactoperoxidase, eosinophil peroxidase, thyroid peroxidase and peroxidasin. Arch Biochem Biophys 2024; 761:110155. [PMID: 39278306 DOI: 10.1016/j.abb.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The peroxidase family of enzymes is a ubiquitous cluster of enzymes primarily responsible for the oxidation of organic and inorganic substrates. The mammalian heme peroxidase subfamily is characterized by a covalently linked heme prosthetic group which plays a key role in the oxidation of halides and psuedohalides into their respective hypohalous acid and hypothiocyanous acid under the influence of H2O2 as substrate. The members of the heme peroxidase family include Lactoperoxidase (LPO), Eosinophil peroxidase (EPO), Myeloperoxidase (MPO), Thyroid peroxidase (TPO) and Peroxidasin (PXDN). The biological activity of LPO, MPO and EPO pertains to antibacterial, antifungal and antiviral while TPO is involved in the biosynthesis of the thyroid hormone and PXDN helps maintain the ECM. While these enzymes play several immunomodulatory roles, aberrations in their activity have been implicated in diseases such as myocardial infarction, asthma and Alzheimer's amongst others. The sequence and structural similarities amongst the members of the family are strikingly high while the substrate specificities and subcellular locations vary. Hence, it becomes important to provide a consortium of information regarding the members to study their biochemical, pathological and clinical function.
Collapse
Affiliation(s)
- Ekampreet Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Ayushi Gupta
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Pratyaksha Singh
- School of Biotechnology, Gautam Buddha University, P.C. 201312, Greater Noida, U.P., India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Rashmi Prabha Singh
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, P.C. 201310, Greater Noida, U.P., India.
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India.
| |
Collapse
|
2
|
Molina MF, Pio MG, Scheps KG, Adrover E, Abelleyro MM, Targovnik HM, Rivolta CM. Curating the gnomAD database: Report of novel variants in the thyroid peroxidase gene using in silico bioinformatics algorithms and a literature review. Mol Cell Endocrinol 2022; 558:111748. [PMID: 35995307 DOI: 10.1016/j.mce.2022.111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
Thyroid peroxidase (TPO) is a membrane-bound glycoprotein located at the apical side of the thyroid follicular cells that catalyzes both iodination and coupling of iodotyrosine residues within the thyroglobulin molecule, leading to the synthesis of thyroid hormone. Variants in TPO cause congenital hypothyroidism (CH) by iodide organification defect and are commonly inherited in an autosomal recessive fashion. In the present work, we report a detailed population analysis and bioinformatic prediction of the TPO variants indexed in the Genome Aggregation Database (gnomAD) v2.1.1. The proportion of missense cysteine variants and nonsense, frameshift, and splice acceptor/donor variants were analyzed in each ethnic group (European (Non-Finnish), European (Finnish), African/African Americans, Latino/Admixed American, East Asian, South Asian, Ashkenazi Jewish, Other). The results showed a clear predominance of frameshift variants in the East Asian (82%) and European (Finnish) (75%) population, whereas the splice site variants predominate in African/African Americans (99.46%), Other (96%), Latino/Admixed American (94%), South Asian (86%), European (Non-Finnish) (56%) and Ashkenazi Jewish (56%) populations. The analysis of the distribution of the variants indexed in gnomAD v2.1.1 database revealed that most missense variants identified in the An peroxidase domain map in exon 8, followed by exons 11, 7 and 9, and finally in descending order by exons 10, 6, 12 and 5. In total, 183 novel TPO variants were described (13 missense cysteine's variants, 158 missense variants involving the An peroxidase domain and 12 splicing acceptor or donor sites variants) which were not reported in the literature and that would have deleterious effects on prediction programs. In the gnomAD v2.1.1 population, the estimated prevalence of heterozygous carriers of the potentially damaging variants was 1:77. In conclusion, we provide an updated and curated reference source of new TPO variants for application in clinical diagnosis and genetic counseling. Also, this work contributes to elucidating the molecular basis of CH associated with TPO defects.
Collapse
Affiliation(s)
- Maricel F Molina
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Mauricio Gomes Pio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Karen G Scheps
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ezequiela Adrover
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Miguel M Abelleyro
- CONICET-Academia Nacional de Medicina, Instituto de Medicina Experimental (IMEX), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Tobias L, Elias-Assad G, Khayat M, Admoni O, Almashanu S, Tenenbaum-Rakover Y. Long-Term Outcome of Patients with TPO Mutations. J Clin Med 2021; 10:3898. [PMID: 34501348 PMCID: PMC8432017 DOI: 10.3390/jcm10173898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Thyroid peroxidase (TPO) deficiency is the most common enzymatic defect causing congenital hypothyroidism (CH). We aimed to characterize the long-term outcome of patients with TPO deficiency. METHODS Clinical and genetic data were collected retrospectively. RESULTS Thirty-three patients with primary CH caused by TPO deficiency were enrolled. The follow-up period was up to 43 years. Over time, 20 patients (61%) developed MNG. Eight patients (24%) underwent thyroidectomy: one of them had minimal invasive follicular thyroid carcinoma. No association was found between elevated lifetime TSH levels and the development of goiter over the years. CONCLUSIONS This cohort represents the largest long-term follow up of patients with TPO deficiency. Our results indicate that elevated TSH alone cannot explain the high rate of goiter occurrence in patients with TPO deficiency, suggesting additional factors in goiter development. The high rate of MNG development and the risk for thyroid carcinoma indicate a need for long-term follow up with annual ultrasound scans.
Collapse
Affiliation(s)
- Leraz Tobias
- Pediatric Department B, Ha’Emek Medical Center, Afula 1834111, Israel
| | - Ghadir Elias-Assad
- Pediatric Endocrine Institute, Ha’Emek Medical Center, Afula 1834111, Israel; (G.E.-A.); (O.A.); (Y.T.-R.)
- Technion Institute of Technology, Rappaport Faculty of Medicine, Haifa 3200003, Israel
| | - Morad Khayat
- Genetic Institute, Ha’Emek Medical Center, Afula 1834111, Israel;
| | - Osnat Admoni
- Pediatric Endocrine Institute, Ha’Emek Medical Center, Afula 1834111, Israel; (G.E.-A.); (O.A.); (Y.T.-R.)
| | - Shlomo Almashanu
- The National Newborn Screening Program, Ministry of Health, Tel-Hashomer, Ramat Gan 5262100, Israel;
| | - Yardena Tenenbaum-Rakover
- Pediatric Endocrine Institute, Ha’Emek Medical Center, Afula 1834111, Israel; (G.E.-A.); (O.A.); (Y.T.-R.)
- Technion Institute of Technology, Rappaport Faculty of Medicine, Haifa 3200003, Israel
| |
Collapse
|
4
|
Sorapipatcharoen K, Tim-Aroon T, Mahachoklertwattana P, Chantratita W, Iemwimangsa N, Sensorn I, Panthan B, Jiaranai P, Noojarern S, Khlairit P, Pongratanakul S, Suprasongsin C, Korwutthikulrangsri M, Sriphrapradang C, Poomthavorn P. DUOX2 variants are a frequent cause of congenital primary hypothyroidism in Thai patients. Endocr Connect 2020; 9:1121-1134. [PMID: 33310921 PMCID: PMC7774760 DOI: 10.1530/ec-20-0411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To identify the genetic etiologies of congenital primary hypothyroidism (CH) in Thai patients. DESIGN AND METHODS CH patients were enrolled. Clinical characteristics including age, signs and symptoms of CH, pedigree, family history, screened thyroid-stimulating hormone results, thyroid function tests, thyroid imaging, clinical course and treatment of CH were collected. Clinical exome sequencing by next-generation sequencing was performed. In-house gene list which covered 62 potential candidate genes related to CH and thyroid disorders was developed for targeted sequencing. Sanger sequencing was performed to validate the candidate variants. Thyroid function tests were determined in the heterozygous parents who carried the same DUOX2 or DUOXA2 variants as their offsprings. RESULTS There were 118 patients (63 males) included. Mean (SD) age at enrollment was 12.4 (7.9) years. Forty-five of 118 patients (38%) had disease-causing variants. Of 45 variants, 7 genes were involved (DUOX2, DUOXA2, TG, TPO, SLC5A5, PAX8 and TSHR). DUOX2, a gene causing thyroid dyshormonogenesis, was the most common defective gene (25/45, 56%). The most common DUOX2 variant found in this study was c.1588A>T. TG and TPO variants were less common. Fourteen novel variants were found. Thyroid function tests of most parents with heterozygous state of DUOX2 and DUOXA2 variants were normal. CONCLUSIONS DUOX2 variants were most common among Thai CH patients, while TG and TPO variants were less common. The c.1588A>T in DUOX2 gene was highly frequent in this population.
Collapse
Affiliation(s)
- Kinnaree Sorapipatcharoen
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thipwimol Tim-Aroon
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pat Mahachoklertwattana
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nareenart Iemwimangsa
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Insee Sensorn
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bhakbhoom Panthan
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Poramate Jiaranai
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Saisuda Noojarern
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Patcharin Khlairit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sarunyu Pongratanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chittiwat Suprasongsin
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Chutintorn Sriphrapradang
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Preamrudee Poomthavorn
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Correspondence should be addressed to P Poomthavorn:
| |
Collapse
|
5
|
Zhang J, Han R, Shen L, Xie J, Xiao Y, Jiang L, Zhou W, Li H, Liu Z, Zhou Y, Wang S, Ye L, Wang W. Mild TPO deficiency characterized by progressive goiter and normal serum TSH level. Endocrine 2020; 68:599-606. [PMID: 32078117 DOI: 10.1007/s12020-020-02224-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Mild thyroid peroxidase (TPO) deficiency is rare and can be extremely occult. This study aimed to replenish the phenotypic and genetic spectrum of mild TPO deficiency. METHODS Four unrelated patients with progressive goiter were described in this study. Genes associated with congenital hypothyroidism were analyzed and in vitro functional experiments were conducted to evaluate the residual TPO enzyme activities of each mutant. RESULTS The four patients (age: 5-27 years old) were characterized by progressive goiter, discordant alteration in thyroid hormones with free triiodothyronine (FT3) to free thyroxine (FT4) ratio ranging from 0.557 to 1.012, two with slightly elevated TSH level and two with normal TSH level. Six different mutations of TPO gene were identified including three novel mutations (p.Glu337Lys, p.Ala544Val, and p.Glu641Lysfs∗21). Two mutants (p.Asp224del and p.Ala544Val) with residual TPO activity of 41 and 65% may explain the mild TPO-deficient picture in our study. After levothyroxine (L-T4) therapy, three patients showed gradual decline of FT3 to FT4 ratio and two patients showed reduced thyroid size. CONCLUSION Patients with mild TPO deficiency can present with progressive goiter, normal TSH level, and largely reserved TPO activities.
Collapse
Affiliation(s)
- Jie Zhang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Rulai Han
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Liyun Shen
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Lei Jiang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Weiwei Zhou
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Haorong Li
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Ziyuan Liu
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yulin Zhou
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Shu Wang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Lei Ye
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
| | - Weiqing Wang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| |
Collapse
|
6
|
Abstract
Iodide Handling Disorders lead to defects of the biosynthesis of thyroid hormones (thyroid dyshormonogenesis, TD) and thereafter congenital hypothyroidism (CH), the most common endocrine disease characterized by low levels of circulating thyroid hormones. The prevalence of CH is 1 in 2000-3000 live births. Prevention of CH is based on prenatal diagnosis, carrier identification, and genetic counseling. In neonates a complete diagnosis of TD should include clinical examination, biochemical thyroid tests, thyroid ultrasound, radioiodine or technetium scintigraphy and perchlorate discharge test (PDT). Biosynthesis of thyroid hormones requires the presence of iodide, thyroid peroxidase (TPO), a supply of hydrogen peroxide (DUOX system), an iodine acceptor protein, thyroglobulin (TG), and the rescue and recycling of iodide by the action of iodotyrosine deiodinase or iodotyrosine dehalogenase 1 (IYD or DEHAL1). The iodide transport is a two-step process involving transporters located either in the basolateral or apical membranes, sodium iodide symporter (NIS) and pendrin (PDS), respectively. TD has been linked to mutations in the solute carrier family 5, member 5 transporter (SLC5A5, encoding NIS), solute carrier family 26, member 4 transporter (SLC26A4, encoding PDS), TPO, DUOX2, DUOXA2, TG and IYD genes. These mutations produce a heterogeneous spectrum of CH, with an autosomal recessive inheritance. Thereafter, the patients are usually homozygous or compound heterozygous for the gene mutations and the parents, carriers of one mutation. In the last two decades, considerable progress has been made in identifying the genetic and molecular causes of TD. Recent advances in DNA sequencing technology allow the massive screening and facilitate the studies of phenotype variability. In this article we included the most recent data related to disorders caused by mutations in NIS, TPO, TG and IYD.
Collapse
Affiliation(s)
- Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| | - Cintia E Citterio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| |
Collapse
|