1
|
Jedli O, Ben-Nasr H, Zammel N, Rebai T, Saoudi M, Elkahoui S, Jamal A, Siddiqui AJ, Sulieman AE, Alreshidi MM, Naïli H, Badraoui R. Attenuation of ovalbumin-induced inflammation and lung oxidative injury in asthmatic rats by Zingiber officinale extract: combined in silico and in vivo study on antioxidant potential, STAT6 and TNF- α pathways. 3 Biotech 2022; 12:191. [PMID: 35910291 PMCID: PMC9325939 DOI: 10.1007/s13205-022-03249-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/02/2022] [Indexed: 01/18/2023] Open
Abstract
In the present study we focused on the anti-asthmatic and antioxidant effects of Zingiber officinalis roscoe L. (ZO) aqueous extract. This study includes 20 adult male rats, which were grouped into four; Group I: control group; Group II: asthmatic group (Ovalbumin sensitized/challenge model, Oval group); Group III: received ovalbumin sensitized/challenge associated a dose of 207 mg/kg body weight (BW) of ZO (Oval + D1 group); Group IV: received ovalbumin sensitized/challenge associated a dose of 414 mg/k BW of ZO (Oval + D2 group). After 21 days, blood and lung samples were collected for biochemical, hematological, and histopathological analyses. The ameliorative effect of ZO phytochemical compounds was also assessed by in silico approach on transducer and activator of transcription 6 (STAT6) and tumor necrosis factor-α (TNF-α) receptors. The oxidative/antioxidative status was evaluated in the lung tissues. Our results show that ZO extract alleviated the ovalbumin-induced hematological and biochemical disruptions associated oxidative injury. In fact, white and red blood cells (WBC and RBC, respectively), aspartate aminotransaminase (ASAT), malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase (GPx) were significantly disrupted (p < 0.05) in Oval group and alleviated following ZO treatment. Besides, several histopathological features were outlined in lung tissues of Oval group. Interestingly, ZO was found to exert ameliorative effects on tissue level. In silico analyses, particularly the binding affinities, the number of H-bonds, the embedding distance and the molecular interactions of ZO phytochemical compounds with either STAT6 or TNF-α supported the in vivo results. These findings confirm the potential ethno-pharmacological effects of ZO against asthma and its associated complications.
Collapse
Affiliation(s)
- Olfa Jedli
- Laboratory of Histo-Embryology & Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Magida Boulila Street, 3029 Sfax, Tunisia
| | - Hmed Ben-Nasr
- Laboratory of Pharmacology, Medicine Faculty of Sfax, University of Sfax, Majida Boulila Street, 3029 Sfax, Tunisia
| | - Nourhène Zammel
- Laboratory of Histo-Embryology & Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Magida Boulila Street, 3029 Sfax, Tunisia
| | - Tarek Rebai
- Laboratory of Histo-Embryology & Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Magida Boulila Street, 3029 Sfax, Tunisia
| | - Mongi Saoudi
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University of Sfax, 3054 Sfax, Tunisia
| | - Salem Elkahoui
- Laboratory of General Biology, Department of Biology, University Ha’il, Ha’il, 81451 Saudi Arabia
| | - Arshad Jamal
- Laboratory of General Biology, Department of Biology, University Ha’il, Ha’il, 81451 Saudi Arabia
| | - Arif J. Siddiqui
- Laboratory of General Biology, Department of Biology, University Ha’il, Ha’il, 81451 Saudi Arabia
| | - Abdelmoneim E. Sulieman
- Laboratory of General Biology, Department of Biology, University Ha’il, Ha’il, 81451 Saudi Arabia
| | - Mousa M. Alreshidi
- Laboratory of General Biology, Department of Biology, University Ha’il, Ha’il, 81451 Saudi Arabia
| | - Houcine Naïli
- Laboratory of Solid State (LR11ES51), Faculty of Sciences, University of Sfax, 3000 Sfax, Tunisia
| | - Riadh Badraoui
- Laboratory of General Biology, Department of Biology, University Ha’il, Ha’il, 81451 Saudi Arabia
- Section of Histology Cytology, Medicine Faculty of Tunis, El Manar University, 1007 La Rabta-Tunis, Tunisia
| |
Collapse
|
2
|
Nattagh-Eshtivani E, Gheflati A, Barghchi H, Rahbarinejad P, Hachem K, Shalaby MN, Abdelbasset WK, Ranjbar G, Olegovich Bokov D, Rahimi P, Gholizadeh Navashenaq J, Pahlavani N. The role of Pycnogenol in the control of inflammation and oxidative stress in chronic diseases: Molecular aspects. Phytother Res 2022; 36:2352-2374. [PMID: 35583807 DOI: 10.1002/ptr.7454] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
The prevalence of chronic diseases has increased significantly with the rising trend of sedentary lifestyles, reduced physical activity, and dietary modifications in recent decades. Inflammation and oxidative stress play a key role in the pathophysiology of several chronic diseases, such as type II diabetes, cardiovascular diseases, and hepatic conditions. Therefore, reducing inflammation and oxidative stress may be beneficial in the prevention and treatment of various chronic disorders. Since chronic diseases are not completely curable, various methods have been proposed for their control. Complementary therapies and the use of natural antioxidant and antiinflammatory compounds are among these novel approaches. Pycnogenol (PYC) is a natural compound that could control inflammation and oxidative stress. Furthermore, some previous studies have shown that PYC could effectively reduce inflammation through signaling the downstream of insulin receptors, inhibiting the phosphorylation of the serine residues of insulin receptor substrate-1, reducing pro-inflammatory cytokines and oxidative stress indices through the stimulation of antioxidant pathways, increasing free radical scavenging activities, preventing lipid peroxidation, and protecting the erythrocytes in glucose-6-phosphate dehydrogenase-deficient individuals, although these effects have not been fully proved. The present study aimed to comprehensively review the evidence concerning the positive physiological and pharmacological properties of PYC, with an emphasis on the therapeutic potential of this natural component for enhancing human health.
Collapse
Affiliation(s)
- Elyas Nattagh-Eshtivani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Gheflati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Barghchi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Rahbarinejad
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences, University of Saida- Dr Moulay Tahar, Saida, Algeria
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Golnaz Ranjbar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Pegah Rahimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
3
|
Al-Abkal F, Abdel-Wahab BA, El-Kareem HFA, Moustafa YM, Khodeer DM. Protective Effect of Pycnogenol against Methotrexate-Induced Hepatic, Renal, and Cardiac Toxicity: An In Vivo Study. Pharmaceuticals (Basel) 2022; 15:ph15060674. [PMID: 35745592 PMCID: PMC9229807 DOI: 10.3390/ph15060674] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Methotrexate (MTX) is one of the most commonly used chemotherapies for various types of cancer, including leukemia, breast cancer, hepatocarcinoma, and gastric cancers. However, the efficacy of MTX is frequently limited by serious side effects. Several studies have reported that the cytotoxic effect of MTX is not limited to cancer cells but can also affect normal tissues, leading to prospective damage to many organs. In the present study, we extensively investigated the molecular and microscopic basis of MTX-induced toxicity in different organs (liver, kidney, and heart) and explored the possible protective effect of pycnogenol, a polyphenolic component extracted from the bark of P. pinaster, to attenuate these effects. Biochemical analysis revealed that administration of MTX significantly reduced the function of the liver, kidney, and heart. Histological and immunohistochemical analysis indicated that MTX treatment caused damage to tissues of different organs. Interestingly, administration of pycnogenol (10, 20, and 30 mg/kg) significantly attenuated the deterioration effects of MTX on different organs in a dose-dependent manner, as demonstrated by biochemical and histological analysis. Our results reveal that pycnogenol successfully ameliorated oxidative damage and reduced toxicity, inflammatory response, and histological markers induced by methotrexate treatment. Taken together, this study provides solid evidence for the pharmacological application of pycnogenol to attenuate damage to different organs induced by MTX treatment.
Collapse
Affiliation(s)
- Faten Al-Abkal
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (F.A.-A.); (Y.M.M.)
| | - Basel A. Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 7111, Egypt;
| | - Hanaa F. Abd El-Kareem
- Zoology Department, Faculty of Science, Ain Shams University, Abbasseya, Cairo 11566, Egypt;
| | - Yasser M. Moustafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (F.A.-A.); (Y.M.M.)
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University, Cairo 11829, Egypt
| | - Dina M. Khodeer
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (F.A.-A.); (Y.M.M.)
- Correspondence: ; Tel.: +20-100-93345855
| |
Collapse
|
4
|
SUNAR M, YAZICI GN. Deneysel İskemi / Reperfüzyon Modeli Uygulanmış Dişi Sıçanlarda Tuba Uterina Dokusuna Pycnogenol ’un Etkisinin Değerlendirilmesi. DICLE MEDICAL JOURNAL 2022. [DOI: 10.5798/dicletip.1086382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Ghaffari T, Hong JH, Asnaashari S, Farajnia S, Delazar A, Hamishehkar H, Kim KH. Natural Phytochemicals Derived from Gymnosperms in the Prevention and Treatment of Cancers. Int J Mol Sci 2021; 22:6636. [PMID: 34205739 PMCID: PMC8234227 DOI: 10.3390/ijms22126636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of various types of cancer is increasing globally. To reduce the critical side effects of cancer chemotherapy, naturally derived compounds have been considered for cancer treatment. Gymnosperms are a group of plants found worldwide that have traditionally been used for therapeutic applications. Paclitaxel is a commercially available anticancer drug derived from gymnosperms. Other natural compounds with anticancer activities, such as pinostrobin and pinocembrin, are extracted from pine heartwood, and pycnogenol and enzogenol from pine bark. Gymnosperms have great potential for further study for the discovery of new anticancer compounds. This review aims to provide a rational understanding and the latest developments in potential anticancer compounds derived from gymnosperms.
Collapse
Affiliation(s)
- Tayyebeh Ghaffari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran;
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
| | - Abbas Delazar
- Research Center for Evidence based Medicine, Tabriz University of Medical Sciences, Tabriz 15731, Iran;
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
| | - Ki-Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| |
Collapse
|
6
|
Bavarsad K, Riahi MM, Saadat S, Barreto G, Atkin SL, Sahebkar A. Protective effects of curcumin against ischemia-reperfusion injury in the liver. Pharmacol Res 2019; 141:53-62. [DOI: 10.1016/j.phrs.2018.12.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022]
|