1
|
Yuzbashian E, Berg E, de Campos Zani SC, Chan CB. Cow's Milk Bioactive Molecules in the Regulation of Glucose Homeostasis in Human and Animal Studies. Foods 2024; 13:2837. [PMID: 39272602 PMCID: PMC11395457 DOI: 10.3390/foods13172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity disrupts glucose metabolism, leading to insulin resistance (IR) and cardiometabolic diseases. Consumption of cow's milk and other dairy products may influence glucose metabolism. Within the complex matrix of cow's milk, various carbohydrates, lipids, and peptides act as bioactive molecules to alter human metabolism. Here, we summarize data from human studies and rodent experiments illustrating how these bioactive molecules regulate insulin and glucose homeostasis, supplemented with in vitro studies of the mechanisms behind their effects. Bioactive carbohydrates, including lactose, galactose, and oligosaccharides, generally reduce hyperglycemia, possibly by preventing gut microbiota dysbiosis. Milk-derived lipids of the milk fat globular membrane improve activation of insulin signaling pathways in animal trials but seem to have little impact on glycemia in human studies. However, other lipids produced by ruminants, including polar lipids, odd-chain, trans-, and branched-chain fatty acids, produce neutral or contradictory effects on glucose metabolism. Bioactive peptides derived from whey and casein may exert their effects both directly through their insulinotropic effects or renin-angiotensin-aldosterone system inhibition and indirectly by the regulation of incretin hormones. Overall, the results bolster many observational studies in humans and suggest that cow's milk intake reduces the risk of, and can perhaps be used in treating, metabolic disorders. However, the mechanisms of action for most bioactive compounds in milk are still largely undiscovered.
Collapse
Affiliation(s)
- Emad Yuzbashian
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Emily Berg
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Catherine B Chan
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
2
|
Chu N, Ling J, Jie H, Leung K, Poon E. The potential role of lactulose pharmacotherapy in the treatment and prevention of diabetes. Front Endocrinol (Lausanne) 2022; 13:956203. [PMID: 36187096 PMCID: PMC9519995 DOI: 10.3389/fendo.2022.956203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The non-absorbable disaccharide lactulose is mostly used in the treatment of various gastrointestinal disorders such as chronic constipation and hepatic encephalopathy. The mechanism of action of lactulose remains unclear, but it elicits more than osmotic laxative effects. As a prebiotic, lactulose may act as a bifidogenic factor with positive effects in preventing and controlling diabetes. In this review, we summarized the current evidence for the effect of lactulose on gut metabolism and type 2 diabetes (T2D) prevention. Similar to acarbose, lactulose can also increase the abundance of the short-chain fatty acid (SCFA)-producing bacteria Lactobacillus and Bifidobacterium as well as suppress the potentially pathogenic bacteria Escherichia coli. These bacterial activities have anti-inflammatory effects, nourishing the gut epithelial cells and providing a protective barrier from microorganism infection. Activation of peptide tyrosine tyrosine (PYY) and glucagon-like peptide 1 (GLP1) can influence secondary bile acids and reduce lipopolysaccharide (LPS) endotoxins. A low dose of lactulose with food delayed gastric emptying and increased the whole gut transit times, attenuating the hyperglycemic response without adverse gastrointestinal events. These findings suggest that lactulose may have a role as a pharmacotherapeutic agent in the management and prevention of type 2 diabetes via actions on the gut microbiota.
Collapse
|
3
|
Galuppo B, Cline G, Van Name M, Shabanova V, Wagner D, Kien CL, Santoro N. Colonic Fermentation and Acetate Production in Youth with and without Obesity. J Nutr 2021; 151:3292-3298. [PMID: 34494088 PMCID: PMC8562084 DOI: 10.1093/jn/nxab277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/12/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In the last few years, there has been a growing interest in the role of gut microbiota in the development of obesity and its complications. OBJECTIVES In this study, we tested the following hypotheses: 1) lean youth and youth with obesity experience a different capability of their gut microbiota to ferment carbohydrates and produce acetate; and 2) colonic acetate may serve as a substrate for hepatic de novo lipogenesis (DNL). METHODS Nineteen lean youth [mean ± SE BMI (in kg/m2): 21.8 ± 0.521] and 19 youth with obesity (BMI: 35.7 ± 1.66), ages 15-21 y, frequency-matched by age and sex, underwent a fasting 10-h sodium [d3]-acetate intravenous infusion to determine the rate of appearance of acetate (Raacet) into the peripheral circulation before and after an oral dose of 20 g of lactulose. Pre- and post-lactulose Raacet values were determined at a quasi-steady state and changes between groups were compared using a quantile regression model. Acetate-derived hepatic DNL was measured in 11 subjects (6 youth with obesity) and its association with Raacet was assessed using Spearman correlation. RESULTS Mean ± SE Raacet was not different before lactulose ingestion between the 2 groups (7.69 ± 1.02 μmol · kg-1 · min-1 in lean youth and 7.40 ± 1.73 μmol · kg-1 · min-1 in youth with obesity, P = 0.343). The increase in mean ± SE Raacet after lactulose ingestion was greater in lean youth than in youth with obesity (14.7 ± 2.33 μmol · kg-1 · min-1 and 9.29 ± 1.44 μmol · kg-1 · min-1, respectively, P = 0.001). DNL correlated with Raacet, calculated as changes from the pre- to the post-lactulose steady state (ρ = 0.621; P = 0.046). CONCLUSIONS These data suggest that youth with obesity ferment lactulose to a lesser degree than youth without obesity and that colonic acetate serves as a substrate for hepatic DNL.This trial was registered at clinicaltrials.gov as NCT03454828.
Collapse
Affiliation(s)
| | - Gary Cline
- Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | - C Lawrence Kien
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Nicola Santoro
- Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine and Health Sciences, “V. Tiberio” University of Molise, Campobasso, Italy
| |
Collapse
|
4
|
Karakan T, Tuohy KM, Janssen-van Solingen G. Low-Dose Lactulose as a Prebiotic for Improved Gut Health and Enhanced Mineral Absorption. Front Nutr 2021; 8:672925. [PMID: 34386514 PMCID: PMC8353095 DOI: 10.3389/fnut.2021.672925] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Although medium and high doses of lactulose are used routinely for the treatment of constipation and hepatic encephalopathy, respectively, a wealth of evidence demonstrates that, at low doses, lactulose can also be used as a prebiotic to stimulate the growth of health-promoting bacteria in the gastrointestinal tract. Indeed, multiple preclinical and clinical studies have shown that low doses of lactulose enhance the proliferation of health-promoting gut bacteria (e.g., Bifidobacterium and Lactobacillus spp.) and increase the production of beneficial metabolites [e.g., short-chain fatty acids (SCFAs)], while inhibiting the growth of potentially pathogenic bacteria (e.g., certain clostridia). SCFAs produced upon microbial fermentation of lactulose, the most abundant of which is acetate, are likely to contribute to immune regulation, which is important not only within the gut itself, but also systemically and for bone health. Low-dose lactulose has also been shown to enhance the absorption of minerals such as calcium and magnesium from the gut, an effect which may have important implications for bone health. This review provides an overview of the preclinical and clinical evidence published to date showing that low-dose lactulose stimulates the growth of health-promoting gut bacteria, inhibits the growth of pathogenic bacteria, increases the production of beneficial metabolites, improves mineral absorption, and has good overall tolerability. Implications of these data for the use of lactulose as a prebiotic are also discussed.
Collapse
Affiliation(s)
- Tarkan Karakan
- Department of Gastroenterology, Gazi University School of Medicine, Ankara, Turkey
| | - Kieran Michael Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | |
Collapse
|
5
|
Pieber TR, Svehlikova E, Mursic I, Esterl T, Wargenau M, Sartorius T, Pauly L, Schwejda-Guettes S, Neumann A, Faerber V, Stover JF, Gaigg B, Kuchinka-Koch A. Blood glucose response after oral lactulose intake in type 2 diabetic individuals. World J Diabetes 2021; 12:893-907. [PMID: 34168736 PMCID: PMC8192256 DOI: 10.4239/wjd.v12.i6.893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/07/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lactulose is approved for the symptomatic treatment of constipation, a gastrointestinal (GI) complication common in individuals with diabetes. Lactulose products contain carbohydrate impurities (e.g., lactose, fructose, galactose), which occur during the lactulose manufacturing process. These impurities may affect the blood glucose levels of individuals with type 2 diabetes mellitus (T2DM) using lactulose for the treatment of mild constipation. A previous study in healthy subjects revealed no increase in blood glucose levels after oral lactulose intake. However, it is still unclear whether the intake of lactulose increases blood glucose levels in individuals with diabetes.
AIM To evaluate the blood glucose profile after oral lactulose intake in mildly constipated, non-insulin-dependent subjects with T2DM in an outpatient setting.
METHODS This prospective, double-blind, randomized, controlled, single-center trial was conducted at the Clinical Research Center at the Medical University of Graz, Austria, in 24 adult Caucasian mildly constipated, non-insulin-dependent subjects with T2DM. Eligible subjects were randomized and assigned to one of six treatment sequences, each consisting of four treatments stratified by sex using an incomplete block design. Subjects received a single dose of 20 g or 30 g lactulose (crystal and liquid formulation), water as negative control or 30 g glucose as positive control. Capillary blood glucose concentrations were measured over a period of 180 min post dose. The primary endpoint was the baseline-corrected area under the curve of blood glucose concentrations over the complete assessment period [AUCbaseline_c (0-180 min)]. Quantitative comparisons were performed for both lactulose doses and formulations vs water for the equal lactulose dose vs glucose, as well as for liquid lactulose vs crystal lactulose. Safety parameters included GI tolerability, which was assessed at 180 min and 24 h post dose, and adverse events occurring up to 24 h post dose.
RESULTS In 24 randomized and analyzed subjects blood glucose concentration-time curves after intake of 20 g and 30 g lactulose were almost identical to those after water intake for both lactulose formulations despite the different amounts of carbohydrate impurities (≤ 3.0% for crystals and approx. 30% for liquid). The primary endpoint [AUCbaseline_c (0-180 min)] was not significantly different between lactulose and water regardless of lactulose dose and formulation. Also with regard to all secondary endpoints lactulose formulations showed comparable results to water with one exception concerning maximum glucose level. A minor increase in maximum blood glucose was observed after the 30 g dose, liquid lactulose, in comparison to water with a mean treatment difference of 0.63 mmol/L (95% confidence intervals: 0.19, 1.07). Intake of 30 g glucose significantly increased all blood glucose endpoints vs 30 g liquid and crystal lactulose, respectively (all P < 0.0001). No differences in blood glucose response were observed between the different lactulose formulations. As expected, lactulose increased the number of bowel movements and was generally well tolerated. Subjects experienced only mild to moderate GI symptoms due to the laxative action of lactulose.
CONCLUSION Blood glucose AUCbaseline_c (0-180 min) levels in mildly constipated, non-insulin dependent subjects with T2DM are not affected by the carbohydrate impurities contained in 20 g and 30 g crystal or liquid lactulose formulations.
Collapse
Affiliation(s)
- Thomas R Pieber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz 8036, Austria
| | - Eva Svehlikova
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz 8036, Austria
| | - Ines Mursic
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz 8036, Austria
| | - Tamara Esterl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz 8036, Austria
| | - Manfred Wargenau
- Department of Statistic, M.A.R.C.O. GmbH & Co. KG, Institute for Clinical Research and Statistics, Düsseldorf 40211, Germany
| | - Tina Sartorius
- Department of Nutritional CRO, BioTeSys GmbH, Esslingen 73728, Germany
| | - Lioba Pauly
- Department of Medical & Clinical Affairs, Market Access & Education Business Unit Enteral Nutrition, Bad Homburg 61352, Germany
| | - Susann Schwejda-Guettes
- Department of Medical & Clinical Affairs, Market Access & Education Business Unit Enteral Nutrition, Bad Homburg 61352, Germany
| | - Annalena Neumann
- Department of Medical, Clinical & Regulatory Affairs, Business Unit Parenteral Nutrition, Keto-Analogues and Standard I.V. Fluids, Fresenius Kabi Deutschland GmbH, Bad Homburg 61352, Germany
| | - Valentin Faerber
- Department of Medical, Clinical & Regulatory Affairs, Business Unit Parenteral Nutrition, Keto-Analogues and Standard I.V. Fluids, Fresenius Kabi Deutschland GmbH, Bad Homburg 61352, Germany
| | | | - Barbara Gaigg
- Market Unit Lactulose, Fresenius Kabi Austria GmbH, Linz 4020, Austria
| | | |
Collapse
|
6
|
Ruszkowski J, Witkowski JM. Lactulose: Patient- and dose-dependent prebiotic properties in humans. Anaerobe 2019; 59:100-106. [PMID: 31176002 DOI: 10.1016/j.anaerobe.2019.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023]
Abstract
Lactulose is a disaccharide used in clinical practice since 1957 and has since been tested in the treatment of many human disorders, including chronic constipation, hepatic encephalopathy, and chronic kidney disease. Its mode of action is based on the lactulose fermentation by intestinal microbiota. Based on in silico, in vitro and in vivo studies we comprehensively review here the impact of lactulose on human gut/fecal and vaginal microbiota composition and both fecal and blood metabolomes. However, both in vitro and in vivo studies summarized in this review have revealed that the effects of lactulose on human microbiota composition are both patient- and dose-dependent. This highlights the need of heterogeneity indication in clinical trials.
Collapse
Affiliation(s)
- Jakub Ruszkowski
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, ul. Dębinki 7, 80-211, Gdańsk, Poland.
| | - Jacek M Witkowski
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, ul. Dębinki 7, 80-211, Gdańsk, Poland
| |
Collapse
|