1
|
Pandey J, Jaishwal N, Jayswal M, Gupta DC, Dhakal B, Budean D, Lamichhane G, Devkota HP. Evaluation of Antioxidant, Xanthine Oxidase-Inhibitory, and Antibacterial Activity of Syzygium cumini Linn. Seed Extracts. PLANTS (BASEL, SWITZERLAND) 2025; 14:316. [PMID: 39942878 PMCID: PMC11820589 DOI: 10.3390/plants14030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025]
Abstract
Syzygium cumini (L.) Skeels, commonly known as the Jamun or Indian blackberry, is a tropical evergreen tree native to the Indian subcontinent, and it belongs to the Myrtaceae family. This research aimed to assess the antibacterial properties of the extracts derived from S. cumini seed kernels and evaluate their total flavonoid content, total phenol content, total carbohydrate content, antioxidant capacity, and inhibitory effects on xanthine oxidase. Cold maceration was chosen for its ability to preserve thermolabile compounds and efficiently extract bioactive constituents with minimal energy and equipment requirement, with hexane and methanol employed as extraction solvents. The methanolic seed kernel extract of S. cumini showed the highest flavonoid (127.78 μg quercetin equivalent/mg dried extract vs. 21.24 μg quercetin equivalent/mg in hexane dried extract) and polyphenol content (153.81 μg gallic acid equivalent/mg dried extract vs. 38.89 μg gallic acid equivalent/mg in hexane dried extract), along with significant carbohydrate content (475.61 μg glucose equivalent/mg dried extract vs. 5.57 μg GE/mg in hexane dried extract). It also demonstrated potent antioxidant activity (IC50: 9.23 μg/mL; ascorbic acid: 5.10 μg/mL) and xanthine oxidase inhibition (IC50: 14.88 μg/mL), comparable to the standard drug allopurinol (IC50: 6.54 μg/mL), suggesting its therapeutic potential. Moreover, the methanolic extract of seed kernels exhibited strong antibacterial activity, with inhibition zones of 19.00 mm against S. epidermidis, higher than the standard antibiotic (gentamicin: 18.33 mm) against K. pneumonia (ciprofloxacin: 33.66 mm). The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.32 mg/mL and 0.52 mg/mL, respectively, were observed for the same extract against S. epidermis. In conclusion, this study demonstrated the remarkable antibacterial effects of S. cumini methanolic seed kernel extract against various pathogenic microorganisms as well as significant inhibitory effects on xanthine oxidase and antioxidant activity.
Collapse
Affiliation(s)
- Jitendra Pandey
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Nitesh Jaishwal
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
| | - Mamta Jayswal
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
| | - Deep Chand Gupta
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
| | - Bishnu Dhakal
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
| | - David Budean
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan;
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
2
|
Cebrian RAV, Dalmagro M, Pinc MM, Donadel G, Engel LA, Bariccatti RA, de Almeida RM, de Aguiar KMFR, Lourenço ELB, Hoscheid J. Development and Characterization of Film-Forming Solution Loaded with Syzygium cumini (L.) Skeels for Topical Application in Post-Surgical Therapies. Pharmaceutics 2024; 16:1294. [PMID: 39458623 PMCID: PMC11510759 DOI: 10.3390/pharmaceutics16101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Considering the antioxidant and antimicrobial properties attributed to compounds in Syzygium cumini extract, this research aimed to advance postoperative therapeutic innovations. Specifically, the study assessed the physicochemical properties of a film-forming solution (FFS) incorporated with S. cumini, evaluating its therapeutic potential for postoperative applications. METHODS The S. cumini extract was meticulously characterized to determine its chemical composition, with particular emphasis on the concentration of phenolic compounds. Antioxidant and antimicrobial assays were conducted to assess the extract's efficacy in these domains. Following this, an FFS containing S. cumini was formulated and evaluated comprehensively for skin adhesion, mechanical and barrier properties, and thermal behavior. RESULTS The antioxidant and antimicrobial activities of the S. cumini extract demonstrated promising results, indicating its potential utility as an adjunct in postoperative care. The developed FFS exhibited favorable physicochemical properties for topical application, including adequate skin adhesion and appropriate pH levels. Moreover, chemical and thermal analyses confirmed the formulation's stability and the retention of the extract's beneficial properties. CONCLUSIONS Overall, the findings suggest that the S. cumini-loaded FFS holds significant potential as a valuable therapeutic tool for post-surgical management.
Collapse
Affiliation(s)
- Rosinéia Aparecida Vilela Cebrian
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Mariana Dalmagro
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Mariana Moraes Pinc
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Guilherme Donadel
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Larissa Aparecida Engel
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | | | | | | | - Emerson Luiz Botelho Lourenço
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Jaqueline Hoscheid
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| |
Collapse
|
3
|
Nguyen M, Thi BHB, Maskey S, Tran M, Nguyen Q. In vitro and in vivo antioxidant and antihyperglycemic potentials of phenolic fractions of Syzygium zeylanicum (L.) DC trunk-bark. Food Sci Nutr 2023; 11:3875-3884. [PMID: 37457151 PMCID: PMC10345726 DOI: 10.1002/fsn3.3373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 07/18/2023] Open
Abstract
Syzygium zeylanicum L. (DC) (SZL) has been used in antidiabetes treatment for ages. However, the scientific evidence of active agents that have antidiabetic activity and response against biological activities is limited. In this study, the active components of SZL trunk-bark extract (SZL extract) were identified using principal component analysis (PCA), and their antidiabetic activities were assessed. The results indicated that the ethyl acetate fraction (EAF) had the highest concentration of phenolic compounds, antioxidants, and antihyperglycemic activities in the postprandial zebrafish model. The major antioxidant contributors were gallic acid, catechin, epicatechin, ellagic acid, quercetin, caffeine, and apigenin, and their concentrated levels reduced α-amylase inhibitory activity, whereas rutin and ethyl gallate influenced the α-glucosidase inhibitory activity. This study showed the bio-functional properties of active phenolic compounds present in the SZL extract, potentially serving as a functional food to control hyperglycemia.
Collapse
Affiliation(s)
- Minh‐Trung Nguyen
- Institute of Biotechnology and EnvironmentTay Nguyen UniversityBuon Ma ThuotVietnam
- Faculty of Natural Science and TechnologyTay Nguyen UniversityBuon Ma ThuotVietnam
| | - Bich Huyen Bui Thi
- Institute of Biotechnology and EnvironmentTay Nguyen UniversityBuon Ma ThuotVietnam
| | - Shila Maskey
- Patan Multiple CampusTribhuvan UniversityPatanNepal
| | - Minh‐Dinh Tran
- Institute of Biotechnology and EnvironmentTay Nguyen UniversityBuon Ma ThuotVietnam
| | - Quang‐Vinh Nguyen
- Institute of Biotechnology and EnvironmentTay Nguyen UniversityBuon Ma ThuotVietnam
| |
Collapse
|
4
|
Abdulrahman MD, Hama HA. Anticancer of genus Syzygium: a systematic review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:273-293. [PMID: 37205310 PMCID: PMC10185443 DOI: 10.37349/etat.2023.00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/30/2023] [Indexed: 05/21/2023] Open
Abstract
Aim One in eight fatalities globally are considered cancer-related. The need for cancer therapy is growing. Natural products continue to play a role in drug development, as up to 50% of authorized drugs in the last 30 years have been isolated from natural sources. Methods Anticancer, antioxidant, antibacterial, antifungal, antiviral, analgesic, anti-inflammatory, and other actions have all been reported in research papers using plants from the Syzygium genus in the treatment and prevention of disease. Results Results from the anticancer test showed that the genus, especially Syzygium aqueum, Syzygium samarangense, and Syzygium cumini had significant promise as an anticancer agent in vitro against several cancer cell lines. Numerous factors, including phytochemical composition, increased apoptotic activity, decreased cell proliferation, stopped angiogenesis, and reduced inflammation. Conclusions These results, despite preliminary, show promise for further purification and investigation of bioactive compounds and extracts within the genus Syzygium for their anticancer properties.
Collapse
Affiliation(s)
- Mahmoud Dogara Abdulrahman
- Biology Education Department, Faculty of Education, Tishk International University, Kurdistan Region, Erbil 44001, Iraq
- Correspondence: Mahmoud Dogara Abdulrahman, Biology Education Department, Faculty of Education, Tishk International University, Kurdistan Region, Erbil 44001, Iraq. ;
| | - Harmand A. Hama
- Biology Education Department, Faculty of Education, Tishk International University, Kurdistan Region, Erbil 44001, Iraq
| |
Collapse
|
5
|
Tak Y, Kaur M, Jain MC, Samota MK, Meena NK, Kaur G, Kumar R, Sharma D, Lorenzo JM, Amarowicz R. Jamun Seed: A Review on Bioactive Constituents, Nutritional Value and Health Benefits. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/152568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Qamar M, Akhtar S, Ismail T, Wahid M, Abbas MW, Mubarak MS, Yuan Y, Barnard RT, Ziora ZM, Esatbeyoglu T. Phytochemical Profile, Biological Properties, and Food Applications of the Medicinal Plant Syzygium cumini. Foods 2022; 11:foods11030378. [PMID: 35159528 PMCID: PMC8834268 DOI: 10.3390/foods11030378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Syzygium cumini, locally known as Jamun in Asia, is a fruit-bearing crop belonging to the Myrtaceae family. This study aims to summarize the most recent literature related to botany, traditional applications, phytochemical ingredients, pharmacological activities, nutrition, and potential food applications of S. cumini. Traditionally, S. cumini has been utilized to combat diabetes and dysentery, and it is given to females with a history of abortions. Anatomical parts of S. cumini exhibit therapeutic potentials including antioxidant, anti-inflammatory, analgesic, antipyretic, antimalarial, anticancer, and antidiabetic activities attributed to the presence of various primary and secondary metabolites such as carbohydrates, proteins, amino acids, alkaloids, flavonoids (i.e., quercetin, myricetin, kaempferol), phenolic acids (gallic acid, caffeic acid, ellagic acid) and anthocyanins (delphinidin-3,5-O-diglucoside, petunidin-3,5-O-diglucoside, malvidin-3,5-O-diglucoside). Different fruit parts of S. cumini have been employed to enhance the nutritional and overall quality of jams, jellies, wines, and fermented products. Today, S. cumini is also used in edible films. So, we believe that S. cumini’s anatomical parts, extracts, and isolated compounds can be used in the food industry with applications in food packaging and as food additives. Future research should focus on the isolation and purification of compounds from S. cumini to treat various disorders. More importantly, clinical trials are required to develop low-cost medications with a low therapeutic index.
Collapse
Affiliation(s)
- Muhammad Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.Q.); (S.A.); (T.I.)
| | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.Q.); (S.A.); (T.I.)
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.Q.); (S.A.); (T.I.)
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 188, SE-221 00 Lund, Sweden
| | - Muqeet Wahid
- Department of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Malik Waseem Abbas
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | | | - Ye Yuan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.Y.); (Z.M.Z.)
| | - Ross T. Barnard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.Y.); (Z.M.Z.)
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
- Correspondence:
| |
Collapse
|
7
|
Narayanankutty A. Pharmacological potentials and Nutritional values of Tropical and Sub-tropical Fruits of India: Emphasis on their anticancer bioactive components. Recent Pat Anticancer Drug Discov 2021; 17:124-135. [PMID: 34847850 DOI: 10.2174/1574892816666211130165200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/12/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fruits are an important dietary component, which supply vitamins, minerals, as well as dietary fiber. In addition, they are rich sources of various biological and pharmacologically active compounds. Among these, temperate fruits are well studied for their pharmacological potentials, whereas tropical/subtropical fruits are less explored for their health impacts. In India, most of the consumed fruits are either tropical or subtropical. OBJECTIVES The present review aims to provide a health impact of major tropical and sub-tropical fruits of India, emphasizing their anticancer efficacy. In addition, the identified bioactive components from these fruits exhibiting anticancer efficacy are also discussed along with the patent literature published. METHODS The literature was collected from various repositories, including NCBI, ScienceDirect, Eurekaselect, and Web of Science; literature from predatory journals was omitted during the process. Patent literature was collected from google patents and similar patent databases. RESULTS Tropical fruits are rich sources of various nutrients and bioactive components including polyphenols, flavonoids, anthocyanin, etc. By virtue of these biomolecules, tropical fruits have been shown to interfere with various steps in carcinogenesis, metastasis, and drug resistance. Their mode of action is either by activation of apoptosis, regulation of cell cycle, inhibition of cell survival and proliferation pathways, increased lipid trafficking or inhibiting inflammatory pathways. Several molecules and combinations have been patented for their anticancer and chemoprotective properties. CONCLUSION Overall, the present concludes that Indian tropical/ subtropical fruits are nutritionally and pharmacologically active and may serve as a source of novel anticancer agents in the future.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, Post Graduate & Research Department of Zoology, St. Joseph' College (Autonomous), Devagiri, Calicut, Kerala. India
| |
Collapse
|
8
|
Evaluation of Na and K in anti-diabetic ayurvedic medicine using LIBS. Lasers Med Sci 2021; 37:513-522. [PMID: 33755860 DOI: 10.1007/s10103-021-03289-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Diabetes mellitus, known as diabetes, is a challenging issue, and to control diabetes, a large population is lining toward ayurvedic medicine. In the present study, four brands of anti-diabetic ayurvedic medicines, along with a home remedy, are analyzed using the laser-induced breakdown spectroscopic (LIBS) technique. The study is carried out to know the elements responsible for glycemic potential. The laser-induced breakdown (LIB) spectra elucidate the presence of organic and inorganic elements like Al, Ba, C, Ca, Cu, Fe, H, K, Mg, N, Na, O, Si, Sr, Zn, and the molecular band of CN molecule in medicines. LIBS result also reveals Na and K's distinct concentration, which plays a vital role in diabetes management. The presence of the CN band and organic elements indicate the presence of organic molecular compositions in medicines. For confirmation of organic composition in the drugs, Fourier transform infrared spectroscopy (FT-IR) has been performed. Principal component analysis (PCA) on the LIBS data of the medicines has been used for instant discrimination based on their elemental/molecular compositions.
Collapse
|
9
|
Anas M, Malik A. Impact of Sodium Alginate Packaging Film Synthesized Using Syzygium cumini Seed Extract on Multi Drug Resistant Escherichia coli Isolated from Raw Buffalo Meat. Indian J Microbiol 2021; 61:137-150. [PMID: 33927455 DOI: 10.1007/s12088-021-00923-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/07/2021] [Indexed: 01/21/2023] Open
Abstract
A total of 50 Escherichia coli were isolated from buffalo meat and their antibiotic profiling was carried out. 90% E. coli isolates showed resistant to two or more classes of 21 commonly used antibiotics. Moreover, there was also variation in resistance/sensitivity behavior towards antibiotics. Highest resistance was found to be against methicillin (84%) in the isolates followed by vancomicin (70%), sulphadiazine (68%) and cefaclor (66%), whereas, resistance was less common for kanamycin (8%) and chloramphenicol (4%). ECMB1, ECMA2, ECMA8, ECMS9 and ECMA31 strains showed highest MDR pattern with presence of bla CTX-M, qnr S and qnr B resistant genes. ECMB1 strain was resistant to 14 antibiotics belonging to 7 different classes. Therefore, ECMB1 was selected for further studies. Sodium Alginate Film incorporated with 10, 20, and 30% ethanolic extract of Syzygium cumini (EESC) were formulated and characterized using state-of-art techniques. A dose-dependent antibacterial activity against E. coli ECMB1 was recorded by the films made from EESC (EESCF). The growth kinetics of E. coli strain ECMB1 showed 9% decrease in log CFU when it was cultured in 30% EESCF as compared to control cells after 12 h of growth. Present finding highlight the efficacy and possible use of EESCF as meat packaging film to prevent food spoilage caused by MDR bacteria.
Collapse
Affiliation(s)
- Mohammad Anas
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Abdul Malik
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| |
Collapse
|
10
|
Aung EE, Kristanti AN, Aminah NS, Takaya Y, Ramadhan R. Plant description, phytochemical constituents and bioactivities of Syzygium genus: A review. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThis article attempts to report native growth, plant description, phytochemical constituents and bioactivities of Syzygium aqueum, S. aromaticum, S. cumini, S. guineense and S. samarangense. Those are the large public species in the Syzygium genus and some of them have been used as traditional medicines. Different parts (leaves, seeds, fruits, barks, stem barks and flower buds) of each species plant are rich in phytochemical constituents such as flavonoids, terpenoids, tannins, glycosides and phenolics. Antioxidant, antidiabetic, anticancer, toxicity, antimicrobial, anti-inflammatory and anthelmintic activities are reported in various extracts (methanol, ethanol and aqueous) from different parts of Syzygium sp. The bioactivities were studied by using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing antioxidant power assays for antioxidant, 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethyl-thiazoly)-3-(4-sulfophenyl) tetrazolium and 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assays for anticancer, α-glucosidase and α-amylase inhibition assays for antidiabetic, agar well diffusion method for antimicrobial and brine shrimp lethality assay for toxicity. Moreover, this review shows that phytochemical constituents of each species significantly presented various bioactivities. Therefore, this review suggests that there is great potential for obtaining the lead drug from these species.
Collapse
Affiliation(s)
- Ei Ei Aung
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jl. Mulyorejo, Surabaya, 60115, Indonesia
- Department of Chemistry, Yadanarbon University, Amarapura Township, Mandalay, Myanmar
| | - Alfinda Novi Kristanti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Nanik Siti Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Yoshiaki Takaya
- Faculty of Pharmacy, Meijo University, Tempaku, Nagoya, Japan
| | - Rico Ramadhan
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jl. Mulyorejo, Surabaya, 60115, Indonesia
| |
Collapse
|
11
|
Antibacterial performance of GO–Ag nanocomposite prepared via ecologically safe protocols. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01539-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Mazumder K, Biswas B, Raja IM, Fukase K. A Review of Cytotoxic Plants of the Indian Subcontinent and a Broad-Spectrum Analysis of Their Bioactive Compounds. Molecules 2020; 25:E1904. [PMID: 32326113 PMCID: PMC7221707 DOI: 10.3390/molecules25081904] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer or uncontrolled cell proliferation is a major health issue worldwide and is the second leading cause of deaths globally. The high mortality rate and toxicity associated with cancer chemotherapy or radiation therapy have encouraged the investigation of complementary and alternative treatment methods, such as plant-based drugs. Moreover, over 60% of the anti-cancer drugs are molecules derived from plants or their synthetic derivatives. Therefore, in the present review, an attempt has been made to summarize the cytotoxic plants available in the Indian subcontinent along with a description of their bio-active components. The review covers 99 plants of 57 families as well as over 110 isolated bioactive cytotoxic compounds, amongst which at least 20 are new compounds. Among the reported phytoconstituents, artemisinin, lupeol, curcumin, and quercetin are under clinical trials, while brazilin, catechin, ursolic acid, β-sitosterol, and myricetin are under pharmacokinetic development. However, for the remaining compounds, there is little or no information available. Therefore, further investigations are warranted on these subcontinent medicinal plants as an important source of novel cytotoxic agents.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (B.B.); (I.M.R.)
- School of Biomedical Sciences, Charles Sturt University, Boorooma St, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (B.B.); (I.M.R.)
| | - Iqbal Mahmud Raja
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (B.B.); (I.M.R.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Arafa ESA, Hassan W, Murtaza G, Buabeid MA. Ficus carica and Sizigium cumini Regulate Glucose and Lipid Parameters in High-Fat Diet and Streptozocin-Induced Rats. J Diabetes Res 2020; 2020:6745873. [PMID: 33178838 PMCID: PMC7644324 DOI: 10.1155/2020/6745873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022] Open
Abstract
Obesity linked diabetes, popularly known as diabesity, has been viewed as a direct product of the modern lifestyle in both developed and developing countries, and its increased prevalence is seen as a major threat to public health globally. Ficus carica (FC) and Syzigium cumini (SC) are part of indigenous flora with traditional medicinal properties. Fresh seeds of SC fruit and fruit of FC were collected and macerated to obtain the final extract. Wistar rats were divided into seven groups fed either on a normal diet or high-fat diet (HFD) along with streptozocin (STZ) to induce diabesity. The crude extract of FC (FC.Cr.) and SC (SC.Cr.) were administered at 250 mg/kg/day and 500 mg/kg/day in induced diabesity state. Body weights, blood glucose level, complete blood count (CBC), cholesterol, triglycerides (TG), low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) were recorded to analyze their effects on glucose and lipid metabolism. Further, superoxide dismutase (SOD) and malondialdehyde (MDA) were measured to examine their effects on lipid peroxidation and ant oxidative enzyme. Results showed that both FC.Cr. and SC.Cr. have the potential to control obesity-linked type 2 diabetes mellitus (T2DM) by lowering the body weights, serum glucose, cholesterol, TG, LDL, and VLDL, while increasing the protective effects of HDL dose-dependently. The crude extract of both plants showed significant activity to raise SOD and curb MDA under diabetic states. It was concluded that both FC.Cr. and SC.Cr. exhibited remarkable therapeutics potential in HFD-STZ-induced diabetic rats. However, we found that the effects of SC.Cr. are relatively more pronounced as compared to FC.Cr. in almost all parameters.
Collapse
Affiliation(s)
- El-Shaimaa A. Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, UAE
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Benisuef University, Beni-suef, 62514, Egypt
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Manal Ali Buabeid
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, UAE
| |
Collapse
|
14
|
Solai Prakash AK, Devaraj E. Cytotoxic potentials of S. cumini methanolic seed kernel extract in human hepatoma HepG2 cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:1313-1319. [PMID: 31423742 DOI: 10.1002/tox.22832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Syzygium cumini (Myrtaceae) is commonly called as Jamun or Jambolan. It has antidiabetic, anti-inflammatory, antipyretic, and antioxidant activities. Hepatocellular carcinoma is the most frequent and deadliest cancers worldwide. We investigated the cytotoxic potentials of S. cumini methanolic seed kernel extract against human hepatoma HepG2 cells. HepG2 cells were treated with 10, 20, and 40 μg/mL of seed kernel extract for 24 hours and cytotoxic analysis was performed by MTT assay. S. cumini induced apoptosis related morphological changes in HepG2 cells were analyzed by annexin V and propidium iodide double staining. Nuclear fragmentation and chromatin condensation were analyzed by Hoechst nuclear staining. Mitochondrial membrane potential (MMP) was investigated by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) staining. Protein expressions of hepatocyte nuclear factor-1α (HFN-1α) was performed using western blotting. S. cumini treatments caused a significant and a concentration-dependent increase in the cytotoxicity of HepG2 cells. S. cumini treatments increased the percentage of cells in an early and late apoptosis stage. This treatment also caused chromatin condensation and nuclear fragmentation. Further, S. cumini treatments decreased MMP and also caused a significant downregulation of HFN-1α protein expression. The present study demonstrated that S. cumini seed extract induced apoptosis in HepG2 cells through decrease in MMP and downregulation of HFN-1α.
Collapse
Affiliation(s)
- Ashwin Kumar Solai Prakash
- Department of Pharmacology, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospitals (SDCH), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (SU), Chennai, Tamil Nadu, India
| | - Ezhilarasan Devaraj
- Department of Pharmacology, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospitals (SDCH), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (SU), Chennai, Tamil Nadu, India
- Biomedical Research Unit and Laboratory Animal Centre, SDCH, SIMATS, SU, Chennai, Tamil Nadu, India
| |
Collapse
|
15
|
Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int J Biol Macromol 2019; 136:395-403. [DOI: 10.1016/j.ijbiomac.2019.06.018] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/18/2019] [Accepted: 06/03/2019] [Indexed: 02/03/2023]
|
16
|
Ezhilarasan D, Apoorva VS, Ashok Vardhan N. Syzygium cumini extract induced reactive oxygen species-mediated apoptosis in human oral squamous carcinoma cells. J Oral Pathol Med 2018; 48:115-121. [PMID: 30451321 DOI: 10.1111/jop.12806] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/17/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Syzygium cumini (L.) Skeels (jambolan) is commonly used in Indian traditional medicine to treat a variety of diseases such as obesity, diabetes etc. The cytotoxic potential of S. cumini (SC) against oral cancer cell line remains elusive. Therefore, in this study, we evaluated the cytotoxic effect of S. cumini in human oral squamous cell carcinoma (OSCC) cell line (SCC-25 cells). MATERIAL AND METHODS Oral squamous cell carcinoma cells are treated with different concentrations (10, 20, and 40 μg/mL) of S. cumuni for 24 hours and cytotoxicity was analyzed by MTT assay. The intracellular reactive oxygen species (ROS) was measured using the indicator dye, 2',7'-dichlorofluorescin diacetate staining. Apoptosis-related morphological changes were evaluated by dual acridine orange/ethidium bromide (AO/EB) fluorescent staining and phosphatidylserine externalization was measured by annexin V assays. The protein and gene expression of cadherin-1 was evaluated by western blotting and PCR analysis. RESULTS Syzygium cumini treatments caused cytotoxicity of OSCC cell line and induced intracellular ROS accumulation. This treatment also caused apoptosis-related morphological changes and externalization of phosphatidylserine in OSCC cells. Further, S. cumini treatments increased protein and gene expression of cadherin-1. CONCLUSION Syzygium cumini extract inhibits the proliferation of OSCC cells and induces apoptosis through ROS accumulation and therefore, it could be used for the prevention of OSCC.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.,Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Velluru S Apoorva
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Nandhigam Ashok Vardhan
- Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|