1
|
Deepika B, Janani G, Jessy Mercy D, Udayakumar S, Girigoswami A, Girigoswami K. Inhibitory Effect of Nano-Formulated Extract of Passiflora incarnata on Dalton's Lymphoma Ascites-Bearing Swiss albino Mice. Pharmaceutics 2025; 17:270. [PMID: 40006638 PMCID: PMC11859039 DOI: 10.3390/pharmaceutics17020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: This study explored the antitumor effect of Passiflora incarnata leaves' nanoformulation (N-EEP) in fibroblasts, A375 cell lines, and in vivo using Dalton's lymphoma ascites (DLA)-bearing mice. Methods: N-EEP treatment could significantly slow scratch closing in A375 cells compared to in the extract itself (EEP). Results: The hemolytic assay showed that N-EEP had less than 2% hemolysis, making the formulation highly biocompatible. In vivo N-EEP administration delayed the tumor growth rate, reduced weight gain, and increased the tumor-bearing mice's life span. Furthermore, the ascitic cells were aspirated from the tumor and investigated for various gene expressions. The tumor suppressor gene p53, which plays a significant role in the mitochondrial-mediated apoptosis pathway, was found to be elevated in animals treated with N-EEP. We assessed the cytotoxicity of isolated DLA cells from induced mice using both the trypan blue and MTT assays, while apoptotic studies were conducted using Hoechst staining. Results from the trypan blue and MTT assays indicated that nearly 80% of the cells were killed by N-EEP treatment (200 μg/mL). Additionally, apoptosis, characterized by condensed nuclei, was observed after N-EEP treatment, confirming that one of the modes of cell death was caspase-dependent apoptosis. Conclusions: Our study suggests that N-EEP delayed the growth of DLA by upregulating p53 gene expression and inducing apoptosis.
Collapse
Affiliation(s)
- Balasubramanian Deepika
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam 603103, India; (B.D.); (G.J.); (D.J.M.); (S.U.)
| | - Gopalarethinam Janani
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam 603103, India; (B.D.); (G.J.); (D.J.M.); (S.U.)
| | - Devadass Jessy Mercy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam 603103, India; (B.D.); (G.J.); (D.J.M.); (S.U.)
| | - Saranya Udayakumar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam 603103, India; (B.D.); (G.J.); (D.J.M.); (S.U.)
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam 603103, India; (B.D.); (G.J.); (D.J.M.); (S.U.)
| | - Koyeli Girigoswami
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam 602101, India
| |
Collapse
|
2
|
Gahtori R, Tripathi AH, Kumari A, Negi N, Paliwal A, Tripathi P, Joshi P, Rai RC, Upadhyay SK. Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Abstract
Background
Over the years, phytomedicines have been widely used as natural modalities for the treatment and prevention of various diseases by different ethnic groups across the globe. Although, 25% of drugs in the USA contain at least one plant-derived therapeutic compound, currently there is a paucity of plant-derived active medicinal ingredients in the pharmaceutical industry. Scientific evidence-based translation of plant-derived ethnomedicines for their clinical application is an urgent need. The anticancer and associated properties (antioxidative, anti-inflammatory, pro-apoptotic and epithelial-mesenchymal transition (EMT) inhibition) of various plant extracts and phytochemicals have been elucidated earlier. Several of the plant derivatives are already in use under prophylactic/therapeutic settings against cancer and many are being investigated under different phases of clinical trials.
Main body
The purpose of this study is to systematically comprehend the progress made in the area of prophylactic and therapeutic potential of the anticancerous plant derivatives. Besides, we aim to understand their anticancer potential in terms of specific sub-phenomena, such as anti-oxidative, anti-inflammatory, pro-apoptotic and inhibition of EMT, with an insight of the molecules/pathways associated with them. The study also provides details of classes of anticancer compounds, their plant source(s) and the molecular pathway(s) targeted by them. In addition to the antioxidative and antiproliferative potentials of anticancer plant derivatives, this study emphasizes on their EMT-inhibition potential and other ‘anticancer related’ properties. The EMT is highlighted as a phenomenon of choice for targeting cancer due to its role in the induction of metastasis and drug resistance. Different phytochemicals in pre-clinical or clinical trials, with promising chemopreventive/anticancer activities have been enlisted and the plant compounds showing synergistic anticancer activity in combination with the existing drugs have been discussed. The review also unravels the need of carrying out pan-signalome studies for identifying the cardinal pathways modulated by phytomedicine(s), as in many cases, the molecular pathway(s) has/have been randomly studied.
Conclusion
This review systematically compiles the studies regarding the impact of various plant derivatives in different cancers and oncogenic processes, as tested in diverse experimental model systems. Availability of more comprehensive information on anticancer phyto-constituents, their relative abundance in crude drugs, pathways/molecules targeted by phytomedicines, their long-term toxicity data and information regarding their safe use under the combinatorial settings, would open greater avenues of their utilization in future against this dreaded disease.
Graphical Abstract
Collapse
|
3
|
Ziziphus nummularia Attenuates the Malignant Phenotype of Human Pancreatic Cancer Cells: Role of ROS. Molecules 2021; 26:molecules26144295. [PMID: 34299570 PMCID: PMC8307183 DOI: 10.3390/molecules26144295] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer (PC) is the fourth leading cause of all cancer-related deaths. Despite major improvements in treating PC, low survival rate remains a major challenge, indicating the need for alternative approaches, including herbal medicine. Among medicinal plants is Ziziphus nummularia (family Rhamnaceae), which is a thorny shrub rich in bioactive molecules. Leaves of Ziziphus nummularia have been used to treat many pathological conditions, including cancer. However, their effects on human PC are still unknown. Here, we show that the treatment of human pancreatic ductal adenocarcinoma cells (Capan-2) with Ziziphus nummularia ethanolic extract (ZNE) (100–300 μg/mL) attenuated cell proliferation in a time- and concentration-dependent manner. Pretreatment with N-acetylcysteine, an ROS scavenger, attenuated the anti-proliferative effect of ZNE. In addition, ZNE significantly decreased the migratory and invasive capacity of Capan-2 with a concomitant downregulation of integrin α2 and increased cell–cell aggregation. In addition, ZNE inhibited in ovo angiogenesis as well as reduced VEGF and nitric oxide levels. Furthermore, ZNE downregulated the ERK1/2 and NF-κB signaling pathways, which are known to drive tumorigenic and metastatic events. Taken together, our results suggest that ZNE can attenuate the malignant phenotype of Capan-2 by inhibiting hallmarks of PC. Our data also provide evidence for the potential anticancer effect of Ziziphus nummularia, which may represent a new resource of novel anticancer compounds, especially ones that can be utilized for the management of PC.
Collapse
|
4
|
Anti-brain cancer activity of chloroform and hexane extracts of Tinospora cordifolia Miers: an in vitro perspective. Ann Neurosci 2020; 26:10-20. [PMID: 31975767 PMCID: PMC6894632 DOI: 10.5214/ans.0972.7531.260104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023] Open
Abstract
Background Plants have been suggested as safest source of therapeutic agents, with multi targeted mode of action and least side effects. Tinospora cordifolia, commonly known as Guduchi in India, is one of the most highly valued herbs in Ayurvedic medicine. It possesses potential anti-cancer, anti-inflammatory, hepatoprotective, anti-diabetic, immune-stimulatory and various other beneficial activities. Purpose The present study was aimed to investigate the differentiation inducing potential of chloroform and hexane extracts of T. cordifolia using U87MG glioblastoma and IMR-32 neuroblastoma cell lines as model system. Results Chloroform (Chl-TCE) and hexane (Hex-TCE) extracts significantly reduced the rate of proliferation and induced cell differentiation as evidenced by MTT assay and immunostaining for GFAP and MAP-2 in glioblastoma and neuroblastoma, respectively. Further these extracts increased the expression of stress markers HSP70 and Mortalin and induced senescence. Chloroform and hexane extracts also inhibited the migration of U87MG glioblastoma and IMR-32 neuroblastoma as indicated by wound scratch assay and supported by reduced expression of NCAM. Furthermore these extracts are not toxic to normal cells as they showed no inhibitory effects on primary astrocytic and neuronal cultures. Conclusions The present study suggests that chloroform and hexane extracts of T. cordifolia retard the rate of proliferation, induce differentiation and inhibit migration of human glioblastomas and neuroblastomas, thus may act as potential phytotherapeutic intervention in treatment of neural cancers.
Collapse
|
5
|
Kaushik M, Mahendru S, Chaudhary S, Kumar M, Kukreti S. Prerequisite of a Holistic Blend of Traditional and Modern Approaches of Cancer Management. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666180417160750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
With the advent of changes in lifestyle of people all around the world,
cancer cases have been showing an exponential rise. Researchers from varied fields have been trying
to solve this tricky issue.
Methods:
We undertook a systematic search of bibliographic databases of peer-reviewed research
literature to evaluate the holistic blend of modern and traditional approaches, especially the
Ayurvedic perspective of treatment of cancer along with the effect of our diet and lifestyle on the
management (both prevention and cure) of cancer.
Results:
On the basis of extensive literature survey, it was found that Ayurveda as one of the ancient
medicinal systems had been very well documented for utilizing its best practices for the
treatment of various diseases including cancer, by utilization of several herbal plants and dietary
interventions as therapeutics. Active components present in various herbs, which interfere with
certain molecular targets to inhibit carcinogenesis are also summarized. Further, beneficial effects
of yoga and exercise on psychological distress, cancer-related fatigue and global side-effects as
well as their mechanism of action are also discussed. In addition, we recapitulate an upcoming
field of Ayurgenomics to understand the possible correlation of Prakriti with genetics as well as
epigenetics.
Conclusion:
Both genetic as well as environmental factors have shown their linkage with cancer.
Substantial advancements in the field of targeted therapies have opened new horizons for the cancer
patients. To fight with this grave situation, a combination of ancient and modern medicinal
systems seems to be the need of the hour.
Collapse
Affiliation(s)
- Mahima Kaushik
- Department of Chemistry, University of Delhi, Delhi, India
| | - Swati Mahendru
- Department of Chemistry, University of Delhi, Delhi, India
| | | | - Mohan Kumar
- Department of Chemistry, University of Delhi, Delhi, India
| | | |
Collapse
|
6
|
Hening P, Mataram Auriva MB, Wijayanti N, Kusindarta DL, Wihadmadyatami H. The neuroprotective effect of Ocimum sanctum Linn. ethanolic extract on human embryonic kidney-293 cells as in vitro model of neurodegenerative disease. Vet World 2018; 11:1237-1243. [PMID: 30410227 PMCID: PMC6200556 DOI: 10.14202/vetworld.2018.1237-1243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022] Open
Abstract
Aim: This study aimed to analyze the neuroprotective effect of Ocimum sanctum Linn. ethanolic extract (OSE) on human embryonic kidney-293 (HEK-293) cells as the in vitro model of neurodegenerative diseases. Materials and Methods: In this research, HEK-293 cells divided into five groups consisting of normal and healthy cells (NT), cells treated with Camptothecin 500 µM as the negative control, cells treated with trimethyltin 10 µM (TMT), cells treated with OSE 75 µg/ml, and cells pre-treated with OSE 75 µg/ml then induced by TMT 10 µM (OSE+TMT). MTT assay and phase contrast microscopy were applied to observe the cell viability quantitatively and morphological after Ocimum sanctum Linn extract treatment. Finally, the reverse transcription polymerase chain reaction was employed to study the expression of choline acetyltransferase (ChAT). Results: The MTT assay and phase contrast microscopy showed that OSE pre-treatment significantly increased the viability of TMT-induced apoptotic cells and maintained cell viability of the normal HEK-293 cells. Expression of ChAT markedly reduced on TMT treatment group, but OSE administration stabilized ChAT expression in TMT-induced HEK-293 cells. Conclusion: This present study proved that OSE administration has neuroprotective effect by increased HEK-293 cells viability and maintain ChAT expression.
Collapse
Affiliation(s)
- Puspa Hening
- Research Center of Biotechnology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Made Bagus Mataram Auriva
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Nastiti Wijayanti
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
7
|
Vengoji R, Macha MA, Batra SK, Shonka NA. Natural products: a hope for glioblastoma patients. Oncotarget 2018; 9:22194-22219. [PMID: 29774132 PMCID: PMC5955138 DOI: 10.18632/oncotarget.25175] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive malignant tumors with an overall dismal survival averaging one year despite multimodality therapeutic interventions including surgery, radiotherapy and concomitant and adjuvant chemotherapy. Few drugs are FDA approved for GBM, and the addition of temozolomide (TMZ) to standard therapy increases the median survival by only 2.5 months. Targeted therapy appeared promising in in vitro monolayer cultures, but disappointed in preclinical and clinical trials, partly due to the poor penetration of drugs through the blood brain barrier (BBB). Cancer stem cells (CSCs) have intrinsic resistance to initial chemoradiation therapy (CRT) and acquire further resistance via deregulation of many signaling pathways. Due to the failure of classical chemotherapies and targeted drugs, research efforts focusing on the use of less toxic agents have increased. Interestingly, multiple natural compounds have shown antitumor and apoptotic effects in TMZ resistant and p53 mutant GBM cell lines and also displayed synergistic effects with TMZ. In this review, we have summarized the current literature on natural products or product analogs used to modulate the BBB permeability, induce cell death, eradicate CSCs and sensitize GBM to CRT.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muzafar A. Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nicole A. Shonka
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
8
|
Kusindarta DL, Wihadmadyatami H, Haryanto A. The analysis of hippocampus neuronal density (CA1 and CA3) after Ocimum sanctum ethanolic extract treatment on the young adulthood and middle age rat model. Vet World 2018; 11:135-140. [PMID: 29657393 PMCID: PMC5891864 DOI: 10.14202/vetworld.2018.135-140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023] Open
Abstract
Aim: This study aimed to assess the changes in neuronal density in CA1 and CA3 regions in the hippocampus of young adulthood and middle age rat model after feeding by Ocimum sanctum ethanolic extract. Materials and Methods: In this research, 30 male Wistar rats consist of young to middle-aged rats were divided into three groups (3, 6, and 9 months old) and treated with a different dosage of O. sanctum ethanolic extract (0, 50, and 100 mg/kg b.w.) for 45 days. Furthermore, cresyl violet staining was performed to analyze hippocampus formation mainly in CA1 and CA3 area. The concentrations of acetylcholine (Ach) in brain tissues were analyzed by enzyme-linked immunosorbent assay. Results: In our in vivo models using rat model, we found that the administration of O. sanctum ethanolic extract with a dosage of 100 mg/kg b.w. for 45 days induced the density of pyramidal cells significantly in CA1 and CA3 of the hippocampus. These results were supported by an increase of Ach concentrations on the brain tissue. Conclusions: The administration of O. sanctum ethanolic extract may promote the density of the pyramidal cells in the CA1 and CA3 mediated by the up-regulated concentration of Ach.
Collapse
Affiliation(s)
- Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aris Haryanto
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
9
|
Rashmi KC, Atreya HS, Harsha Raj M, Salimath BP, Aparna HS. A pyrrole-based natural small molecule mitigates HSP90 expression in MDA-MB-231 cells and inhibits tumor angiogenesis in mice by inactivating HSF-1. Cell Stress Chaperones 2017; 22:751-766. [PMID: 28717943 PMCID: PMC5573693 DOI: 10.1007/s12192-017-0802-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 12/15/2022] Open
Abstract
Heat shock proteins (HSPs), molecular chaperones, are crucial for the cancer cells to facilitate proper functioning of various oncoproteins involved in cell survival, proliferation, migration, and tumor angiogenesis. Tumor cells are said to be "addicted" to HSPs. HSPs are overexpressed in many cancers due to upregulation of transcription factor Heat-shock factor 1 (HSF-1), the multifaceted master regulator of heat shock response. Therefore, pharmacological targeting of HSPs via HSF-1 is an effective strategy to treat malignant cancers like triple negative breast cancer. In the current study, we evaluated the efficacy of a pyrrole derivative [bis(2-ethylhexyl)1H-pyrrole-3,4-dicarboxylate], TCCP, purified from leaves of Tinospora cordifolia for its ability to suppress heat shock response and angiogenesis using MDA-MB-231 cells and the murine mammary carcinoma: Ehrlich ascites tumor model. HSP90 was downregulated by TCCP by inactivation of HSF-1 resulting in inhibition of tumor cell proliferation, VEGF-induced cell migration, and concomitant decrease in tumor burden and neo-angiogenesis in vivo. The mechanism of suppression of HSPs involves inactivation of PI3K/Akt and phosphorylation on serine 307 of HSF-1 by the activation of ERK1. HSF-1 and HSP90 and 70 localization and expression were ascertained by immunolocalization, immunoblotting, and qPCR experiments. The anti-angiogenic effect of TCCP was studied in vivo in tumor-bearing mice and ex vivo using rat corneal micro-pocket assay. All the results thus corroborate the logic behind inactivating HSF-1 using TCCP as an alternative approach for cancer therapy.
Collapse
Affiliation(s)
- K C Rashmi
- Department of Studies in Biotechnology, University of Mysore, Mysuru, Karnataka, 570 006, India
| | - H S Atreya
- NMR Research Centre, Indian Institute of Science, Bengaluru, 560 012, India
| | - M Harsha Raj
- Department of Studies in Biotechnology, University of Mysore, Mysuru, Karnataka, 570 006, India
| | - Bharathi P Salimath
- Department of Studies in Biotechnology, University of Mysore, Mysuru, Karnataka, 570 006, India
| | - H S Aparna
- Department of Studies in Biotechnology, University of Mysore, Mysuru, Karnataka, 570 006, India.
| |
Collapse
|
10
|
Kusindarta DL, Wihadmadyatami H, Haryanto A. Ocimum sanctum Linn. stimulate the expression of choline acetyltransferase on the human cerebral microvascular endothelial cells. Vet World 2016; 9:1348-1354. [PMID: 28096604 PMCID: PMC5234046 DOI: 10.14202/vetworld.2016.1348-1354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/13/2016] [Indexed: 11/16/2022] Open
Abstract
AIM This research was conducted to identify the expression of choline acetyltransferase (ChAT) in human cerebral microvascular endothelial cells (HCMECs) and to clarify the capability of Ocimum sanctum Linn. ethanolic extract to stimulate the presence of ChAT in the aging HCMECs. MATERIALS AND METHODS In this study, we perform an in vitro analysis some in the presence of an ethanolic extract of O. sanctum Linn. as a stimulator for the ChAT expression. HCMECs are divided become two groups, the first is in low passage cells as a model of young aged and the second is in a high passage as a model of aging. Furthermore to analysis the expression of ChAT without and with extract treatments, immunocytochemistry and flow cytometry analysis were performed. In addition, ChAT sandwich enzyme-linked immunosorbent assay is developed to detect the increasing activity of the ChAT under normal, and aging HCMECs on the condition treated and untreated cells. RESULTS In our in vitro models using HCMECs, we found that ChAT is expressed throughout intracytoplasmic areas. On the status of aging, the ethanolic extract from O. sanctum Linn. is capable to stimulate and restore the expression of ChAT. The increasing of ChAT expression is in line with the increasing activity of this enzyme on the aging treated HCMECs. CONCLUSIONS Our observation indicates that HCMECs is one of the noncholinergic cells which is produced ChAT. The administrated of O. sanctum Linn. ethanolic extract may stimulate and restore the expression of ChAT on the deteriorating cells of HCMECs, thus its may give nerve protection and help the production of acetylcholine.
Collapse
Affiliation(s)
- Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aris Haryanto
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
11
|
Anti-proliferative and apoptotic effects of Ziziphus Jujube on cervical and breast cancer cells. AVICENNA JOURNAL OF PHYTOMEDICINE 2016; 6:142-8. [PMID: 27222827 PMCID: PMC4877962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Ziziphus Jujube (Jujube) plant has exhibited numerous medicinal and pharmacological properties including antioxidant and anti-inflammatory effects. This study was carried out to investigate its anti-cancer and pro-apoptotic abilities in human cervical and breast cancer cells in vitro. MATERIALS AND METHODS The cervical OV2008 and breast MCF-7 cancer cells were incubated with different concentrations of Jujube aqueous extraction (0-3 mg/ml) for various times (0-72 h). Cell viability was assessed by Trypan Blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of two apoptosis-related genes in treated cells evaluated by quantitative Real Time -PCR analysis. RESULTS Jujube significantly inhibited cancer cell viability in a dose- and time- dependent manner. Herb-induced apoptosis was associated with enhanced expression of Bax and decreased Bcl2 gene leading eventually to a time-dependent six fold increase in the Bax/Bcl-2 ratio. CONCLUSION These results indicated that Jujube may be a natural potential and promising agent to prevent or treat human cancers.
Collapse
|
12
|
Ramamoorthy A, Janardhanan S, Jeevakarunyam S, Jeddy N, Eagappan S. Integrative oncology in Indian subcontinent: an overview. J Clin Diagn Res 2015; 9:XE01-XE03. [PMID: 25954692 DOI: 10.7860/jcdr/2015/12185.5714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/10/2015] [Indexed: 01/23/2023]
Abstract
Integrative oncology is a combination of one where complementary and alternative medicine (CAM) with conventional cancer treatment modalities is used to manage symptoms, control side-effects and improve the state of mental wellbeing. The ancient Indian medicinal approach in cancer treatment and management has a wide array of herbs and practices. There is an increasing demand for traditional and natural medicine by the cancer patients. The conventional oncologic surgeons and physicians should be aware of the role of cCAM that are available in Indian subcontinent and provide a treatment that focuses on the physical and mental state of wellness in combating cancer.
Collapse
Affiliation(s)
- Ananthalakshmi Ramamoorthy
- Reader, Department of Oral Pathology and Microbiology, Thai Moogambigai Dental College and Hospital , Chennai, India
| | - Sunitha Janardhanan
- Senior Lecturer, Department of Oral Pathology and Microbiology, Thai Moogambigai Dental College and Hospital , Chennai, India
| | - Sathiyajeeva Jeevakarunyam
- Senior Lecturer, Department of Oral Pathology and Microbiology, Thai Moogambigai Dental College and Hospital , Chennai, India
| | - Nadheem Jeddy
- Professor, Department of Oral Pathology and Microbiology, Thai Moogambigai Dental College and Hospital , Chennai, India
| | - Senthil Eagappan
- Lecturer, Department of Pedodontics and Preventive Dentistry, Chettinad Dental College and Research Institute , Chennai, India
| |
Collapse
|
13
|
Jafarian A, Zolfaghari B, Shirani K. Cytotoxicity of different extracts of arial parts of Ziziphus spina-christi on Hela and MDA-MB-468 tumor cells. Adv Biomed Res 2014; 3:38. [PMID: 24627846 PMCID: PMC3949327 DOI: 10.4103/2277-9175.125727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/23/2012] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND It has been shown that plants from the family Rhamnaceae possess anticancer activity. In this study, we sought to determine if Ziziphus spina-christi, a species from this family, has cytotoxic effect on cancer cell lines. MATERIALS AND METHODS Using maceration method, different extracts of leaves of Z. spina-christi were prepared. Hexane, chloroform, chloroform-methanol (9:1), methanol-water (7:1) methanol, butanol and water were used for extraction, after preliminary phytochemical analyses were done. The cytotoxic activity of the extracts against Hela and MDA-MB-468 tumor cells was evaluated by MTT assay. Briefly, cells were seeded in microplates and different concentrations of extracts were added. After incubation of cells for 72 h, their viability was evaluated by addition of tetrazolium salt solution. After 3 h medium was aspirated, dimethyl sulfoxide was added and absorbance was determined at 540 nm with an ELISA plate reader. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. RESULTS Hexane, chloroform, chloroform-methanol, butanol, methanol-water and aqueous extracts of Z. spina-christi significantly and concentration-dependently reduced viability of Hela and MAD-MB-468 cells. In the both cell lines, chloroform-methanol extract of Z. spina-christi was more potent than the other extracts. RESULTS From the finding of this study it can be concluded that Z. spina-christi is a good candidate for further study for new cytotoxic agents.
Collapse
Affiliation(s)
- Abbas Jafarian
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behzad Zolfaghari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kobra Shirani
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Aqueous ethanolic extract of Tinospora cordifolia as a potential candidate for differentiation based therapy of glioblastomas. PLoS One 2013; 8:e78764. [PMID: 24205314 PMCID: PMC3811968 DOI: 10.1371/journal.pone.0078764] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/16/2013] [Indexed: 12/20/2022] Open
Abstract
Glioblastomas are the most aggressive primary brain tumors and their heterogeneity and complexity often renders them non responsive to various conventional treatments. Search for herbal products having potential anti-cancer activity is an active area of research in the Indian traditional system of medicine i.e., Ayurveda. Tinospora cordifolia, also named as ‘heavenly elixir’ is used in various ayurvedic decoctions as panacea to treat several body ailments. The current study investigated the anti-brain cancer potential of 50% ethanolic extract of Tinospora cordifolia (TCE) using C6 glioma cells. TCE significantly reduced cell proliferation in dose-dependent manner and induced differentiation in C6 glioma cells, resulting in astrocyte-like morphology as indicated by phase contrast images, GFAP expression and process outgrowth data of TCE treated cells which exhibited higher number and longer processes than untreated cells. Reduced proliferation of cells was accompanied by enhanced expression of senescence marker, mortalin and its translocation from perinuclear to pancytoplasmic spaces. Further, TCE showed anti-migratory and anti-invasive potential as depicted by wound scratch assay and reduced expression of plasticity markers NCAM and PSA-NCAM along with MMP-2 and 9. On analysis of the cell cycle and apoptotic markers, TCE treatment was seen to arrest the C6 cells in G0/G1 and G2/M phase, suppressing expression of G1/S phase specific protein cyclin D1 and anti-apoptotic protein Bcl-xL, thus supporting its anti-proliferative and apoptosis inducing potential. Present study provides the first evidence for the presence of anti-proliferative, differentiation-inducing and anti-migratory/anti-metastatic potential of TCE in glioma cells and possible signaling pathways involved in its mode of action. Our primary data suggests that TCE and its active components may prove to be promising phytotherapeutic interventions in gliobalstoma multiformae.
Collapse
|
15
|
Kumar A, Bharti AC, Singh SM. Effect of aspirin administration on reversal of tumor-induced suppression of myelopoiesis in T-cell lymphoma bearing host. Blood Cells Mol Dis 2012; 48:238-46. [DOI: 10.1016/j.bcmd.2012.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/17/2012] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
|
16
|
Evaluation of native and exotic Brazilian plants for anticancer activity. J Nat Med 2010; 64:231-8. [DOI: 10.1007/s11418-010-0390-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/18/2009] [Indexed: 11/25/2022]
|