1
|
Salau VF, Erukainure OL, Aljoundi A, Akintemi EO, Elamin G, Odewole OA. Exploring the inhibitory action of betulinic acid on key digestive enzymes linked to diabetes via in vitro and computational models: approaches to anti-diabetic mechanisms. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:411-432. [PMID: 38764437 DOI: 10.1080/1062936x.2024.2352729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
Phytochemicals are now increasingly exploited as remedial agents for the management of diabetes due to side effects attributable to commercial antidiabetic agents. This study investigated the structural and molecular mechanisms by which betulinic acid exhibits its antidiabetic effect via in vitro and computational techniques. In vitro antidiabetic potential was analysed via on α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin inhibitory assays. Its structural and molecular inhibitory mechanisms were investigated using Density Functional Theory (DFT) analysis, molecular docking and molecular dynamics (MD) simulation. Betulinic acid significantly (p < 0.05) inhibited α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin enzymes with IC50 of 70.02 μg/mL, 0.27 μg/mL, 1.70 μg/mL and 8.44 μg/mL, respectively. According to DFT studies, betulinic acid possesses similar reaction in gaseous phase and water due to close values observed for highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) and the chemical descriptors. The dipole moment indicates that betulinic acid has high polarity. Molecular electrostatic potential surface revealed the electrophilic and nucleophilic attack-prone atoms of the molecule. Molecular dynamic studies revealed a stable complex between betulinic acid and α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin. The study elucidated the potent antidiabetic properties of betulinic acid by revealing its conformational inhibitory mode of action on enzymes involved in the onset of diabetes.
Collapse
Affiliation(s)
- V F Salau
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - O L Erukainure
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - A Aljoundi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Attahadi, Tripoli, Libya
| | - E O Akintemi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - G Elamin
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - O A Odewole
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
2
|
Salau VF, Erukainure OL, Koorbanally NA, Islam MS. Kolaviron modulates dysregulated metabolism in oxidative pancreatic injury and inhibits intestinal glucose absorption with concomitant stimulation of muscle glucose uptake. Arch Physiol Biochem 2023; 129:157-167. [PMID: 32799570 DOI: 10.1080/13813455.2020.1806331] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This present study investigated the antioxidative and antidiabetic properties of kolaviron by analysing its inhibitory effect on key metabolic activities linked to T2D, in vitro and ex vivo. Kolaviron significantly inhibited α-glucosidase and α-amylase activities, and intestinal glucose absorption dose-dependently, while promoting muscle glucose uptake. Induction of oxidative pancreatic injury significantly depleted glutathione level, superoxide dismutase, catalase, and ATPase activities, while elevating malondialdehyde and nitric oxide levels, acetylcholinesterase and chymotrypsin activities. These levels and activities were significantly reversed in tissues treated with kolaviron. Kolaviron depleted oxidative-induced metabolites, with concomitant restoration of oxidative-depleted metabolites. It also inactivated oxidative-induced ascorbate and aldarate metabolism, pentose and glucuronate interconversions, fructose and mannose metabolism, amino sugar and nucleotide sugar metabolism, and arginine and proline metabolism, while reactivating selenocompound metabolism. These results depict the antidiabetic properties of kolaviron as indicated by its ability to attenuate oxidative-induced enzyme activities and dysregulated metabolisms, and modulated the enzyme activities linked to hyperglycaemia.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
- Department of Biochemistry, Veritas University, Bwari, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Gabriel BO, Idu MD. Anti-diuretic and anti-glycemic properties of Jatropha gossypiifolia L. leave extract on wistar rats. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Jatropha gossypiifolia L. is a widespread plant in tropical and sub-tropical countries used in traditional medicine. This study investigated the anti-diuretic and anti-hyperglycemia activities of J. gossypiifolia leave extract on streptozotocin-induced diabetic rats.
Methods
The leaves was shade dried, pulverized and prepared into extract. 30, 50 and 100 mg/kg of the leaves extracts of J. gossypiifolia was subject to diuretics and hyperglycemic properties using established protocol of diuretic and diabetes test on the rat bladders emptied via mild compression in the pelvic region and gently pulling of their tails. 0.5 ml/kg normal saline, reference drug and the tested were administered with a single dose of the various drugs, and Streptozotocin (STZ) was freshly prepared in 0.1 M citrate buffer with pH 4.5 prior to induction, animals were fasted 24 h and single dose of 45 mg STZ per kg body weight was administered intraperitoneally. Urine and blood samples were isolated from rats and centrifuged for the determination of renal function test. Diuretic and antidiabetic indexes where evaluated using adopted method.
Results
This study showed that, graded doses of the extract significantly increased diuretic effect, specifically at 100 mg/kg increased diuretic index at 4.29 and urine volume 5.06 and 10 mg/kg Hydrochlorothiazide with 6.23 ml when compared untreated group (1.18 ml) (p < 0.0001). Also, it regulated renal function in homeostatic state. Graded doses at (30, 50 and 100 mg/kg) of the extract significantly reduced streptozotocine induced increased blood glucose level at day 14 (84.00, 60.67 and 42.00 IU/mL) when compared with 20 mg/kg glibenclamide and diabetics control (81.67 and 463.00 IU/mL) (p > 0.05). Also, the extract maintained a normal body mass indexes, biochemical and anatomical structure.
Conclusion
The effect associated with J. gossypiifolia potentiated its anti-diuretic and anti-hyperglycemic properties as early stated in the ethnomedicinal reports.
Collapse
|
4
|
Verma R, Tapwal A, Kumar D, Puri S. Antimicrobial potential and phytochemical profiling of ethnomedicinal plant Trillium govanianum Wall. ex D. Don in Western Himalaya. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Erukainure OL, Salau VF, Atolani O, Ravichandran R, Banerjee P, Preissner R, Koorbanally NA, Islam MS. L-leucine stimulation of glucose uptake and utilization involves modulation of glucose - lipid metabolic switch and improved bioenergetic homeostasis in isolated rat psoas muscle ex vivo. Amino Acids 2021; 53:1135-1151. [PMID: 34152488 DOI: 10.1007/s00726-021-03021-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022]
Abstract
The antidiabetic effect of l-leucine has been attributed to its modulatory effect on glucose uptake and lipid metabolism in muscles. However, there is a dearth on its effect on glucose metabolism in muscles. Thus, the present study investigated the effect of l-leucine - stimulated glucose uptake on glucose metabolism, dysregulated lipid metabolic pathways, redox and bioenergetic homeostasis, and proteolysis in isolated psoas muscle from Sprague Dawley male rats. Isolated psoas muscles were incubated with l-leucine (30-240 μg/mL) in the presence of 11.1 mMol glucose at 37 ˚C for 2 h. Muscles incubated in only glucose served as the control, while muscles not incubated in l-leucine and/or glucose served as the normal control. Metformin (6.04 mM) was used as the standard antidiabetic drug. Incubation with l-leucine caused a significant increase in muscle glucose uptake, with an elevation of glutathione levels, superoxide dismutase, catalase, E-NTPDase and 5'nucleotidase activities. It also led to the depletion of malondialdehyde and nitric oxide levels, ATPase, chymotrypsin, acetylcholinesterase, glycogen phosphorylase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and lipase activities. There was an alteration in lipid metabolites, with concomitant activation of glycerolipid metabolism, fatty acid metabolism, and fatty acid elongation in mitochondria in the glucose-incubated muscle (negative control). Incubation with l-leucine reversed these alterations, and concomitantly deactivated the pathways. These results indicate that l-leucine-enhanced muscle glucose uptake involves improved redox and bioenergetic homeostasis, with concomitant suppressed proteolytic, glycogenolytic and gluconeogenetic activities, while modulating glucose - lipid metabolic switch.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | | | - Rahul Ravichandran
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Priyanka Banerjee
- Institute for Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Robert Preissner
- Institute for Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Md Shahidul Islam
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| |
Collapse
|
6
|
Erukainure OL, Atolani O, Banerjee P, Abel R, Pooe OJ, Adeyemi OS, Preissner R, Chukwuma CI, Koorbanally NA, Islam MS. Oxidative testicular injury: effect of l-leucine on redox, cholinergic and purinergic dysfunctions, and dysregulated metabolic pathways. Amino Acids 2021; 53:359-380. [DOI: 10.1007/s00726-021-02954-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
|
7
|
Salau VF, Erukainure OL, Koorbanally NA, Islam MS. Ferulic acid promotes muscle glucose uptake and modulate dysregulated redox balance and metabolic pathways in ferric-induced pancreatic oxidative injury. J Food Biochem 2021; 46:e13641. [PMID: 33555086 DOI: 10.1111/jfbc.13641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/10/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
The antidiabetic properties of ferulic acid and its protective role against Fe2+ -induced oxidative pancreatic injury were investigated in this study using in vitro and ex vivo models. Induction of oxidative injury in the pancreas was achieved by incubating normal pancreatic tissue with 0.1 mM FeSO4 and treated by co-incubating with different concentrations of ferulic acid for 30 min at 37°C. Ferulic acid inhibited the activities of α-glucosidase, α-amylase, and pancreatic lipase significantly (p < .05) and promoted glucose uptake in isolated rat psoas muscles. Induction of oxidative pancreatic injury caused significant (p < .05) depletion of glutathione (GSH) level, superoxide dismutase (SOD), and catalase activities, as well as elevation of malondialdehyde (MDA) and nitric oxide (NO) levels, acetylcholinesterase and chymotrypsin activities. Treatment of tissues with ferulic acid significantly (p < .05) reversed these levels and activities. LC-MS analysis of the extracted metabolites revealed 25% depletion of the normal metabolites with concomitant generation of m-Chlorohippuric acid, triglyceride, fructose 1,6-bisphosphate, and ganglioside GM1 in oxidative-injured pancreatic tissues. Treatment with ferulic acid restored uridine diphosphate glucuronic acid and adenosine tetraphosphate and generated P1,P4-Bis(5'-uridyl) tetraphosphate and L-Homocysteic acid, while totally inactivating oxidative-generated metabolites. Ferulic acid also inactivated oxidative-activated pathways, with concomitant reactivation of nucleotide sugars metabolism, starch and sucrose metabolism, and rostenedione metabolism, estrone metabolism, androgen and estrogen metabolism, porphyrin metabolism, and purine metabolism pathways. Taken together, our results indicate the antidiabetic and protective potential of ferulic acid as depicted by its ability to facilitate muscle glucose uptake, inhibit carbohydrate and lipid hydrolyzing enzymes, and modulate oxidative-mediated dysregulated metabolisms. PRACTICAL APPLICATIONS: There have been increasing concerns on the side effects associated with the use of synthetic antidiabetic drug, coupled with their expenses particularly in developing countries. This has necessitated continuous search for alternative treatments especially from natural products having less or no side effects and are readily available. Ferulic acid is among the common phenolics commonly found in fruits and vegetables. In this present study, ferulic acid was able to attenuate oxidative stress, cholinergic dysfunction, and proteolysis in oxidative pancreatic injury, as well as inhibit carbohydrate digesting enzymes. Thus, indicating the ability of the phenolic to protect against complications linked to diabetes. Crops rich in ferulic acid maybe beneficial in managing this disease.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal (Westville Campus), Durban, South Africa.,Department of Biochemistry, Veritas University, Bwari, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal (Westville Campus), Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| |
Collapse
|
8
|
Salau VF, Erukainure OL, Ayeni G, Ibeji CU, Islam MS. Modulatory effect of ursolic acid on neurodegenerative activities in oxidative brain injury: An ex vivo study. J Food Biochem 2021; 45:e13597. [PMID: 33368405 DOI: 10.1111/jfbc.13597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Natural products-based antioxidants have been well reported for their therapeutic benefits in the treatment and management of neurodegenerative diseases. The neuroprotective effect of ursolic acid (UA) against oxidative injury was investigated in isolated rat brain. Induction of oxidative injury in isolated rat brains with 0.1 mM FeSO4 led to depleted levels of glutathione, superoxide dismutase, catalase, and ENTPDase activities, with concomitant exacerbation of malondialdehyde and nitric oxide levels, α-chymotrypsin, ATPase, and acetylcholinesterase activities. These levels and activities were significantly reversed following treatment of the brain tissues with UA. Molecular docking studies revealed strong molecular interactions between UA, catalase, and ATPase. Overall, these results indicate the neuroprotective effect of UA against oxidative injury in isolated rat brains as depicted by their ability to mitigate oxidative stress, purinergic, and cholinergic dysfunctions, with concomitant suppression of proteolytic activity. PRACTICAL APPLICATIONS: Neurodegenerative diseases are among the common diseases associated with aging and has been implicated as oxidative mediated. Natural products have received increasing recognition in their use as treatment remedy for various oxidative-mediated diseases including neurodegeneration. These natural products include plant secondary metabolites commonly known as phytochemicals. Ursolic acid is a phytochemical usually present in leafy vegetables and fruits. The present study describes the possible therapeutic mechanism of ursolic acid in the amelioration of complications linked to neurodegeneration in oxidative-mediated brain injury. These findings thus give insights into the use of natural products of plant origin in treating and managing neurodegenerative diseases, which may have little or no side effects.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
- Department of Biochemistry, Veritas University, Bwari, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Gideon Ayeni
- Department of Biochemistry, Kogi State University, Anyigba, Nigeria
| | - Collins U Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Salau VF, Erukainure OL, Ibeji CU, Koorbanally NA, Islam MS. Ferric-Induced Pancreatic Injury Involves Exacerbation of Cholinergic and Proteolytic Activities, and Dysregulation of Metabolic Pathways: Protective Effect of Caffeic Acid. Biol Trace Elem Res 2020; 196:517-527. [PMID: 31691895 DOI: 10.1007/s12011-019-01937-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
The protective effect of caffeic acid on ferric-induced pancreatic injury was investigated using ex vivo and in silico models. Incubation of pancreatic tissues with Fe2+ led to significant depleted levels of glutathione (GSH) and SOD and catalase activities, with concomitant elevated levels of malondialdehyde (MDA) and nitric oxide (NO) and acetylcholinesterase and α-chymotrypsin activities. Treatment with caffeic acid led to significant reversion of these levels and activities. Molecular docking revealed a higher binding affinity of caffeic acid with acetylcholinesterase via hydrogen bonding, Pi-Pi stacking, and Van der Waals interactions. FTIR spectroscopy of pancreatic metabolite revealed little or no effect by caffeic acid on functional groups in ferric-induced injured pancreas. The LC-MS analysis of the metabolites revealed Fe2+ caused a 20% depletion of the normal metabolites, with concomitant generation of glyceraldehyde and 3,4-dihydroxymandelaldehyde. Treatment with caffeic acid led to the restoration of TG(22:4(7Z,10Z,13Z,16Z)/24:0/22:5(7Z,10Z,13Z,16Z,19Z)) and dTDP-D-glucose, while depleting glyceraldehyde as well as activating gluconeogenesis. These results indicate the ability of caffeic acid to protect against ferric toxicity by exacerbating antioxidative activities, with concomitant inhibition of MDA and NO levels while deactivating metabolic pathways linked to oxidative stress.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
- Department of Biochemistry, Veritas University, Bwari, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa
| | - Collins U Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
10
|
Salau VF, Erukainure OL, Ibeji CU, Koorbanally NA, Islam MS. Umbelliferone stimulates glucose uptake; modulates gluconeogenic and nucleotide-hydrolyzing enzymes activities, and dysregulated lipid metabolic pathways in isolated psoas muscle. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
The genus Jatropha (Euphorbiaceae): A review on secondary chemical metabolites and biological aspects. Chem Biol Interact 2020; 318:108976. [PMID: 32035864 DOI: 10.1016/j.cbi.2020.108976] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 11/23/2022]
Abstract
The genus Jatropha belongs to the Euphorbiaceae family and has about 175 species. Originally from tropical America, the Jatropha genus can be found all over the tropics and subtropics of Asia and Africa. Jatropha species are recognized to be important sources of secondary metabolites with a broad spectrum of biological functions. Extracts and isolated compounds from species of this genus have been known to have properties of cytotoxicity, antimicrobial, antifungal, anti-inflammatory, antioxidant, insecticidal, larvicidal, inhibition AChE, and toxicity activities. Investigations on the chemical aspects of the genus Jatropha have led to the identification of cyclic peptides, lignans, flavonoids, coumarins, alkaloids, eudesmenoic acids, and mainly terpenes. In this review, we provide a comprehensive picture of the phytochemical and biological characteristics of Jatropha species. The information gathered and approached in this paper might support the planning and discussion of future studies on the topic.
Collapse
|
12
|
Ofusori AE, Moodley R, Jonnalagadda SB. Antiulcerogenic effects of Celosia trigyna plant extracts on ethanol-induced gastric ulcer in adult Wistar rats. J Tradit Complement Med 2019; 10:586-593. [PMID: 33134135 PMCID: PMC7588333 DOI: 10.1016/j.jtcme.2019.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background and aim Gastric ulcer is a chronic disease and serious health issue. Celosia trigyna is a medicinal plant used traditionally for wound healing. This study aimed to isolate the bioactive compounds from Celosia trigyna and to investigate the in vitro and in vivo anti-ulcerogenic effects of the extracts on ethanol-induced gastric ulcer on adult Wistar rats to determine their regenerative potential. Experimental procedure Seven groups (A – negative control, B – vehicle control, C, D, E, F and G – positive control, n = 5) of five adult Wistar rats received treatment for ethanol-induced gastric ulcer. Results and conclusion Phytochemical analysis led to the isolation of chondrillasterol, lutein, pheophytin a and chondrillasterol acetate. The in vitro results showed dichloromethane and hexane extracts to have maximum chymotrypsin inhibition relative to the standard (chymostatin) while in vivo results showed a significant increase in ulcer parameters of the vehicle control relative to groups treated with plant extracts (P < 0.05). Ulcer parameters and DNA density in groups treated with dichloromethane and hexane extracts were comparable to the negative control. Gross and histopathological findings confirmed gastric mucosa lesions in the vehicle control. There were mild ulcerations in groups treated with the ethyl acetate and methanol extracts with no observable ulcerations in the groups treated with dichloromethane and hexane extracts as the histoarchitectural outlines do not show any form of necrosis, distortion or cellular vacuolation. It was concluded that non-polar, hydrophobic compounds are able to remediate the degree of ulceration but not polar compounds. Pheophytin a, chondrillasterol acetate, chondrillasterol and lutein were isolated. Plant extracts showed maximum in vitro chymotrypsin inhibitory activity. There was total amelioration of ulcer in groups treated with plant extracts. Ulcer index for extracts was close to negative and positive controls. The DNA density was improved in groups treated with plant extracts.
Collapse
Affiliation(s)
| | - Roshila Moodley
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4000, South Africa
| | | |
Collapse
|
13
|
Gamiotea-Turro D, Camaforte NAP, Valerino-Diaz AB, Ortiz Nuñez Y, Rinaldo D, Dokkedal AL, Bosqueiro JR, Santos LCD. Qualitative and Quantitative Analysis of Ethanolic Extract and Phenolic Fraction of Jatropha aethiopica (Euphorbiaceae) Leaves and Their Hypoglycemic Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1419-1427. [PMID: 29345910 DOI: 10.1021/acs.jafc.7b05648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although Jatropha aethiopica, popularly known in Cuba as "mata diabetes", is used in salads and as a dietary supplement, its chemical composition and antidiabetic properties yet remains unclear. In this work, we evaluate the qualitative and quantitative composition of ethanolic extract (EE) and phenolic fraction (PF) of Jatropha aethiopica leaves and their hypoglycemic and hypolipidemic activity. Chemical fractionation of the ethanolic extract yielded nine compounds, which included protocatechuic acid (1), chlorogenic acid (2), caffeic acid (3), quercetin 3-O-α-l-rhamnopyranosyl-(1 → 2)-[α-l-rhamnopyranolsyl-(1 → 6)]-β-d-galactopyranoside (4), a new kaempferol 3-O-α-l-rhamnopyranosyl-(1 → 4)-[α-l-rhamnopyranolsyl-(1 → 6)]-β-d-galactopyranoside (5), kaempferol 3-O-α-l-rhamnopyranosyl-(1 → 2)-[α-l-rhamnopyranolsyl-(1 → 6)]-β-d-glucopyranoside (6), rutin (7), kaempferol 3-O-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside (8), and quercetin (9). The compounds (1, 4-7) were quantified by high-performance liquid chromatography photodiode array detection (HPLC-PDA) in both the ethanolic extract (62.65 ± 0.15 mg/g) and phenolic fraction (61.72 ± 0.23 mg/g). The results obtained show that both ethanolic extract and phenolic fraction contributed toward the improvement of glucose tolerance, which in turn led to a decline in the glucose levels. Remarkably, the ethanolic extract presented a relatively higher promising effect compared to metformin.
Collapse
Affiliation(s)
- Daylin Gamiotea-Turro
- UNESP-São Paulo State University, Chemistry Institute-Araraquara. Rua Prof. Francisco Degni , 55 Bairro: Quitandinha, 14800-060 Araraquara, São Paulo, Brazil
- Institute of Fundamental Research in Tropical Agriculture "Alejandro de Humboldt" (INIFAT) , Calles 1 y 2, No. 17200, Santiago de las Vegas, C.P. 17200, Havana, Cuba
| | - Nathalia A P Camaforte
- UNESP - São Paulo State University , Department of Biological Sciences, Faculty of Sciences-Bauru, Av. Eng. Luiz Edmundo C. Coube 14-01, Bairro: Núcleo Habitacional Presidente Geisel, CEP 17033-360, Bauru, São Paulo, Brazil
| | - Alexander B Valerino-Diaz
- UNESP-São Paulo State University, Chemistry Institute-Araraquara. Rua Prof. Francisco Degni , 55 Bairro: Quitandinha, 14800-060 Araraquara, São Paulo, Brazil
| | - Yarelis Ortiz Nuñez
- Institute of Fundamental Research in Tropical Agriculture "Alejandro de Humboldt" (INIFAT) , Calles 1 y 2, No. 17200, Santiago de las Vegas, C.P. 17200, Havana, Cuba
| | - Daniel Rinaldo
- UNESP - São Paulo State University , Department of Chemistry-Bauru, Av. Eng. Luiz Edmundo C. Coube 14-01, Bairro: Núcleo Habitacional Presidente Geisel, CEP 17033-360, Bauru, São Paulo, Brazil
| | - Anne L Dokkedal
- UNESP - São Paulo State University , Department of Biological Sciences, Faculty of Sciences-Bauru, Av. Eng. Luiz Edmundo C. Coube 14-01, Bairro: Núcleo Habitacional Presidente Geisel, CEP 17033-360, Bauru, São Paulo, Brazil
| | - José R Bosqueiro
- UNESP - São Paulo State University , Department of Biological Sciences, Faculty of Sciences-Bauru, Av. Eng. Luiz Edmundo C. Coube 14-01, Bairro: Núcleo Habitacional Presidente Geisel, CEP 17033-360, Bauru, São Paulo, Brazil
| | - Lourdes Campaner Dos Santos
- UNESP-São Paulo State University, Chemistry Institute-Araraquara. Rua Prof. Francisco Degni , 55 Bairro: Quitandinha, 14800-060 Araraquara, São Paulo, Brazil
| |
Collapse
|