1
|
Shen Q, Zeng X, Kong L, Sun X, Shi J, Wu Z, Guo Y, Pan D. Research Progress of Nitrite Metabolism in Fermented Meat Products. Foods 2023; 12:foods12071485. [PMID: 37048306 PMCID: PMC10094046 DOI: 10.3390/foods12071485] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Nitrite is a common color and flavor enhancer in fermented meat products, but its secondary amines may transfer to the carcinogen N-nitrosamines. This review focuses on the sources, degradation, limitations, and alteration techniques of nitrite. The transition among NO3− and NO2−, NH4+, and N2 constitutes the balance of nitrogen. Exogenous addition is the most common source of nitrite in fermented meat products, but it can also be produced by contamination and endogenous microbial synthesis. While nitrite is degraded by acids, enzymes, and other metabolites produced by lactic acid bacteria (LAB), four nitrite reductase enzymes play a leading role. At a deeper level, nitrite metabolism is primarily regulated by the genes found in these bacteria. By incorporating antioxidants, chromogenic agents, bacteriostats, LAB, or non-thermal plasma sterilization, the amount of nitrite supplied can be decreased, or even eliminated. Finally, the aim of producing low-nitrite fermented meat products is expected to be achieved.
Collapse
Affiliation(s)
- Qiyuan Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Lingyu Kong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Xiaoqian Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jingjing Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| |
Collapse
|
2
|
Karaca E, Kılıç B. Effects of cold‐set binding agents on oxidative stability and residual nitrite levels in thermally processed ground beef during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Esra Karaca
- Department of Food Engineering Faculty of Engineering Suleyman Demirel University Isparta Turkey
| | - Birol Kılıç
- Department of Food Engineering Faculty of Engineering Suleyman Demirel University Isparta Turkey
| |
Collapse
|
3
|
Huang L, Zeng X, Sun Z, Wu A, He J, Dang Y, Pan D. Production of a safe cured meat with low residual nitrite using nitrite substitutes. Meat Sci 2020; 162:108027. [DOI: 10.1016/j.meatsci.2019.108027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
|
4
|
Merino L, Darnerud PO, Toldrá F, Ilbäck NG. Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:186-92. [PMID: 26743589 PMCID: PMC4784486 DOI: 10.1080/19440049.2015.1125530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
The food additive nitrite (E249, E250) is commonly used in meat curing as a food preservation method. Because of potential negative health effects of nitrite, its use is strictly regulated. In an earlier study we have shown that the calculated intake of nitrite in children can exceed the acceptable daily intake (ADI) when conversion from dietary nitrate to nitrite is included. This study examined time-dependent changes in nitrite levels in four Swedish meat products frequently eaten by children: pork/beef sausage, liver paté and two types of chicken sausage, and how the production process, storage and also boiling (e.g., simmering in salted water) and frying affect the initial added nitrite level. The results showed a steep decrease in nitrite level between the point of addition to the product and the first sampling of the product 24 h later. After this time, residual nitrite levels continued to decrease, but much more slowly, until the recommended use-by date. Interestingly, this continuing decrease in nitrite was much smaller in the chicken products than in the pork/beef products. In a pilot study on pork/beef sausage, we found no effects of boiling on residual nitrite levels, but frying decreased nitrite levels by 50%. In scenarios of time-dependent depletion of nitrite using the data obtained for sausages to represent all cured meat products and including conversion from dietary nitrate, calculated nitrite intake in 4-year-old children generally exceeded the ADI. Moreover, the actual intake of nitrite from cured meat is dependent on the type of meat source, with a higher residual nitrite levels in chicken products compared with pork/beef products. This may result in increased nitrite exposure among consumers shifting their consumption pattern of processed meats from red to white meat products.
Collapse
Affiliation(s)
- Leonardo Merino
- a Chemistry Department , National Food Agency , Uppsala , Sweden.,b Department of Food Science, Instituto de Agroquímica y Tecnología de Alimentos (CSIC) , Paterna (Valencia) , Spain.,c Department of Food Science, Swedish University of Agricultural Sciences , Uppsala , Sweden
| | - Per Ola Darnerud
- d Risk Benefit Assessment Department , National Food Agency , Uppsala , Sweden
| | - Fidel Toldrá
- b Department of Food Science, Instituto de Agroquímica y Tecnología de Alimentos (CSIC) , Paterna (Valencia) , Spain
| | - Nils-Gunnar Ilbäck
- d Risk Benefit Assessment Department , National Food Agency , Uppsala , Sweden.,e Clinical Microbiology and Infectious Medicine, Dept. of Medical Sciences , Uppsala University , Uppsala , Sweden
| |
Collapse
|
7
|
Sindelar J, Cordray J, Sebranek J, Love J, Ahn D. Effects of Vegetable Juice Powder Concentration and Storage Time on Some Chemical and Sensory Quality Attributes of Uncured, Emulsified Cooked Sausages. J Food Sci 2007; 72:S324-32. [DOI: 10.1111/j.1750-3841.2007.00369.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ahn HJ, Jo C, Kim JH, Chung YJ, Lee CH, Byun MW. Monitoring of nitrite and N-nitrosamine levels in irradiated pork sausage. J Food Prot 2002; 65:1493-7. [PMID: 12233865 DOI: 10.4315/0362-028x-65.9.1493] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Residual nitrite and N-nitrosamine levels were monitored on irradiated emulsion-type cooked pork sausage in aerobic or vacuum packaging states during storage. The sausage was irradiated at 0, 5, 10, and 20 kGy and stored at 4 degrees C for 4 weeks. The residual nitrite levels were significantly reduced by gamma irradiation (P < 0.05), whereas the vacuum packaging was more effective for nitrite reduction than aerobic packaging during storage. N-nitrosodimethylamine (NDMA) and N-nitrosopyrrolidine (NPYR) levels were significantly reduced in the vacuum packaged sausage irradiated with 20 kGy after 4 weeks. Reduction of NPYR in aerobically packaged sausage was also found after 4 weeks by irradiating with a 5-kGy or higher dose. NDMA reduction was shown in vacuum packaging and irradiation at 20 kGy. Gamma irradiation was effective in reducing the residual nitrite all throughout storage and N-nitrosamines in sausage after storage.
Collapse
Affiliation(s)
- Hyun-Joo Ahn
- Graduate School of Biotechnology, Korea University, Seoul
| | | | | | | | | | | |
Collapse
|