1
|
López-García E, Romero-Gil V, Arroyo-López FN, Benítez-Cabello A. Impact of lactic acid bacteria inoculation on fungal diversity during Spanish-style green table olive fermentations. Int J Food Microbiol 2024; 417:110689. [PMID: 38621325 DOI: 10.1016/j.ijfoodmicro.2024.110689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
This study delved into the evolution of fungal population during the fermentation of Spanish-style green table olives (Manzanilla cultivar), determining the influence of different factors such as fermentation matrix (brine or fruit) or the use of a lactic acid bacteria inoculum, on its distribution. The samples (n = 24) were directly obtained from industrial fermentation vessels with approximately 10.000 kg of fruits and 6.000 L of brines. Our findings showcased a synchronized uptick in lactic acid bacteria counts alongside fungi proliferation. Metataxonomic analysis of the Internal Transcribed Spacer (ITS) region unearthed noteworthy disparities across different fermentation time points (0, 24, and 83 days). Statistical analysis pinpointed two Amplicon Sequence Variants (ASV), Candida and Aureobasidium, as accountable for the observed variances among the different fermentation time samples. Notably, Candida exhibited a marked increase during 83 days of fermentation, opposite to Aureobasidium, which demonstrated a decline. Fungal biodiversity was slightly higher in brines than in fruits, whilst no effect of inoculation was noticed. At the onset of fermentation, prominently detected genera were also Mycosphaerella (19.82 %) and Apohysomyces (16.31 %), hitherto unreported in the context of table olive processing. However, their prevalence dwindled to nearly negligible levels from 24th day fermentation onwards (<2 %). On the contrary, they were replaced by the fermentative yeasts Saccharomyces and Isstachenkia. Results obtained in this work will be useful for designing new strategies for better control of table olive fermentations.
Collapse
Affiliation(s)
- Elio López-García
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Ctra. Sevilla-Utrera, km 1. Building 46. Campus Universitario Pablo de Olavide, 41013 Seville, Spain
| | - Verónica Romero-Gil
- Department of Food Science and Technology, Agrifood Campus of International Excellence, University of Cordoba, 14014 Córdoba, Spain
| | - Francisco Noé Arroyo-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Ctra. Sevilla-Utrera, km 1. Building 46. Campus Universitario Pablo de Olavide, 41013 Seville, Spain
| | - Antonio Benítez-Cabello
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Ctra. Sevilla-Utrera, km 1. Building 46. Campus Universitario Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
2
|
Pyne ME, Bagley JA, Narcross L, Kevvai K, Exley K, Davies M, Wang Q, Whiteway M, Martin VJJ. Screening non-conventional yeasts for acid tolerance and engineering Pichia occidentalis for production of muconic acid. Nat Commun 2023; 14:5294. [PMID: 37652930 PMCID: PMC10471774 DOI: 10.1038/s41467-023-41064-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Saccharomyces cerevisiae is a workhorse of industrial biotechnology owing to the organism's prominence in alcohol fermentation and the suite of sophisticated genetic tools available to manipulate its metabolism. However, S. cerevisiae is not suited to overproduce many bulk bioproducts, as toxicity constrains production at high titers. Here, we employ a high-throughput assay to screen 108 publicly accessible yeast strains for tolerance to 20 g L-1 adipic acid (AA), a nylon precursor. We identify 15 tolerant yeasts and select Pichia occidentalis for production of cis,cis-muconic acid (CCM), the precursor to AA. By developing a genome editing toolkit for P. occidentalis, we demonstrate fed-batch production of CCM with a maximum titer (38.8 g L-1), yield (0.134 g g-1 glucose) and productivity (0.511 g L-1 h-1) that surpasses all metrics achieved using S. cerevisiae. This work brings us closer to the industrial bioproduction of AA and underscores the importance of host selection in bioprocessing.
Collapse
Affiliation(s)
- Michael E Pyne
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Department of Biology, University of Western Ontario, Ontario, Canada
| | - James A Bagley
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Lauren Narcross
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Amyris, Inc., Emeryville, CA, USA
| | - Kaspar Kevvai
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Pivot Bio, Berkeley, CA, USA
| | - Kealan Exley
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Novo Nordisk Foundation Center for Biosustainability, Lyngby, Denmark
| | - Meghan Davies
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- BenchSci, Toronto, ON, Canada
| | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Vincent J J Martin
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada.
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada.
| |
Collapse
|
3
|
Karam L, Ghonim F, Dahdah P, Attieh G, Al-Ahmad S, Ghonim S, Osaili T. Beyond Chemical Preservatives: Enhancing the Shelf-Life and Sensory Quality of Ready-to-Eat (RTE) Hummus with Vinegar and Other Natural Antimicrobials. Foods 2023; 12:2947. [PMID: 37569216 PMCID: PMC10418500 DOI: 10.3390/foods12152947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Hummus is a traditional and very popular Mediterranean ready-to-eat (RTE) food, with growing popularity worldwide. However, it has a high water activity and is susceptible to microbial growth and post-process contamination that limit its quality and shelf-life. For this purpose, the present study compared the use of several antimicrobials, alone or in combination, for hummus preservation during storage (4 °C), for up to 45 days. The chemical preservative potassium sorbate 0.09% (S) was evaluated, along with three natural antimicrobials: garlic 1.25% (G); vinegar 5% (V); natamycin 0.002% (N); or their combination: garlic 1.25%-vinegar 5% (GV); vinegar 5%-natamycin 0.002% (VN); garlic 1.25%-natamycin 0.002% (GN); and garlic 1.25%-vinegar 5%-natamycin 0.002% (GVN) to increase the shelf-life of hummus. A thymol and carvacrol mixture 0.2% (O) was also assessed to preserve and develop a new oregano-flavored hummus. All treatments that included vinegar used alone or in combination had significantly higher antimicrobial effectiveness than the other treatments. They achieved 2.2-3.2, 1.8-3.1, and 1.4-2.1 log reductions in total aerobic counts (TAC), Pseudomonas spp., and lactic acid bacteria (LAB), respectively, as compared to the control samples © at day 21. Therefore, the shelf-life of C, S, N, G, GN, and O was around (ca.) 19 days, compared to an extended one of ca. 25 days for V and VN, and ca. 30 days for GV and GVN. Sensory analysis showed the highest acceptability for C, N, S, V, and VN, followed by GV and GVN, and the lowest was for G, GN, and finally O. The findings provide potential alternatives to chemical preservatives, which could be used for natural hummus preservation and shelf-life extension.
Collapse
Affiliation(s)
- Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Fatma Ghonim
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Patricia Dahdah
- Department of Food Science and Technology, Faculty of Arts and Sciences, University of Balamand, Al Koura, Tripoli P.O. Box 100, Lebanon
- Department of Agriculture, Section of Agri-Food Biotechnology, University of Sassari, Viale Italia 39/A, 07100 Sassari, Italy
| | - Grace Attieh
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Shama Al-Ahmad
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Salma Ghonim
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Tareq Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
4
|
Öztürk Güngör F, Özdestan Ocak Ö, Ünal MK. Effects of different preservation methods and storage on Spanish‐style domat olives fermented with different chloride salts. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Özgül Özdestan Ocak
- Faculty of Engineering, Department of Food Engineering Ege University Izmir Turkey
| | - Mustafa Kemal Ünal
- Faculty of Engineering, Department of Food Engineering Ege University Izmir Turkey
| |
Collapse
|
5
|
Sporulation rate and viability of Eimeria tenella oocysts stored in potassium sorbate solution. Parasitol Res 2021; 120:2297-2301. [PMID: 34050827 DOI: 10.1007/s00436-020-06792-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/30/2020] [Indexed: 10/21/2022]
Abstract
In order to find a new preservation solution for avian coccidial oocysts that can replace potassium dichromate (K2Cr2O7) solution, Eimeria tenella oocysts were preserved in 0.1 to 10% potassium sorbate (C6H7KO2) solution in this study. The results showed that there was no significant difference between the sporulation rate of E. tenella oocysts preserved in 0.1 to 10% C6H7KO2 solution and in 2.5% K2Cr2O7 solution (p > 0.05). The 0.5 to 10% C6H7KO2 solution could also effectively inhibit the growth of bacterial microorganisms. E. tenella oocysts preserved in 1% C6H7KO2 solution at 4 °C for 3, 6, 9, and 12 months, with the oocyst production of E. tenella oocysts being 1.3-, 1.2-, 1.6-, and 1.3-fold higher than that of oocysts stored in 2.5% K2Cr2O7 solution (p < 0.05). In conclusion, C6H7KO2 could replace K2Cr2O7 as the preservation solution of avian coccidial oocysts.
Collapse
|
6
|
New Insights into Microbial Diversity of the Traditional Packed Table Olives Aloreña de Málaga through Metataxonomic Analysis. Microorganisms 2021; 9:microorganisms9030561. [PMID: 33803149 PMCID: PMC8000080 DOI: 10.3390/microorganisms9030561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
Aloreña de Málaga is a table olive especially characterised by its natural freshness and short shelf-life. In this work, we applied a metataxonomic approach to unravel the microbial diversity of bacterial and fungi populations through the shelf-life of traditionally packed Aloreña de Málaga. A significant increase in lactic acid bacteria and mesophilic aerobic populations was observed during shelf-life, reaching the maximum population levels (4-5 log10 CFU) at the end of the study (260 days). On the contrary, a rapid reduction in yeast and mould populations was reported. The use of a metataxonomic analysis based on the amplification of 16S (bacteria) and internal transcribed spacer (ITS) region (fungi) regions revealed a low diversity for both microbial groups. Lactiplantibacillus (65.05 ± 8.65% in brine vs. 58.70 ± 15.70% in fruit), Pediococcus (28.17 ± 7.36% in brine vs. 27.20 ± 15.95% in fruit), and Celerinatantimonas (4.64 ± 1.08% in brine vs. 11.82 ± 18.17% in fruit) were the main genera found among bacteria, and an increase in Lactiplantibacillus and a reduction in Celerinatantimonas populations during the shelf-life were observed. On the other hand, Citeromyces was the dominant fungi genus (54.11 ± 2.00% in brine vs. 50.91 ± 16.14% in fruit), followed by Candida (8.80 ± 2.57% in brine vs. 12.32 ± 8.61% in fruit) and Penicillium (6.48 ± 1.87% vs. 8.48 ± 4.43% in fruit). No food-borne pathogen genera were detected in any of the samples analysed, indicating the high level of food safety found in this ready-to-eat fermented vegetable. Data obtained in this work will help in the design of new strategies for the control of microbial populations during the shelf-life of Aloreña de Málaga.
Collapse
|
7
|
Öztürk Güngör F, Özdestan Ocak Ö, Ünal MK. Effect of ozone treatment on the physical, microbiological and sensorial properties of Spanish-style table olives. GRASAS Y ACEITES 2020. [DOI: 10.3989/gya.0103191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ozone has been widely used in the food industry as an effective antimicrobial agent. In this study the possibilities of using ozone in table olive preservation was investigated for the first time. For this purpose, the Domat variety of table olives was processed according to the Spanish style and treated with aqueous ozone for 5, 10, and 20 minutes at 0.5, 1, 2 and 4 ppm. The effects of ozonation on the microbiological, physical and sensory characteristics of the table olives were evaluated during the storage period (up to 180 days). The pH, color and firmness of the ozone treated table olives showed higher stability. Statistically significant reductions in the total bacteria and yeast/mould counts were obtained (p < 0.05). Enterobacteriaceae and Escherichia coli were not found in the samples. After 60 days of storage the control samples (ozone untreated olives) obtained low values for sensory analysis, and did not meet market requirements. The results indicate that treating green table olive with ozon (1 ppm concentration) for 10 min in aqueous form reduces the microbial population without any negative effects on the firmness, color (L*, a* b*) or sensory attributes of the table olives.
Collapse
|
8
|
Del Olmo A, Calzada J, Nuñez M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy. Crit Rev Food Sci Nutr 2018; 57:3084-3103. [PMID: 26587821 DOI: 10.1080/10408398.2015.1087964] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Benzoic acid is an aromatic carboxylic acid naturally present in plant and animal tissues, which can also be produced by microorganisms. Benzoic acid and a wide range of derivatives and related benzenic compounds, such as salts, alkyl esters, parabens, benzyl alcohol, benzaldehyde, and benzoyl peroxide, are commonly used as antibacterial and antifungal preservatives and as flavoring agents in food, cosmetic, hygiene, and pharmaceutical products. As a result of their widespread occurrence, production, and uses, these compounds are largely distributed in the environment and found in water, soil, and air. Consequently, human exposure to them can be high, common, and lengthy. This review is mainly focused on the presence and use of benzoic acid in foods but it also covers the occurrence, uses, human exposure, metabolism, toxicology, analytical methods for detection, and legal limits for benzoic acid and its derivatives. Their controversial effects and potential public health concerns are discussed.
Collapse
Affiliation(s)
- Ana Del Olmo
- a Departamento de Tecnología de Alimentos , INIA , Madrid , Spain
| | - Javier Calzada
- a Departamento de Tecnología de Alimentos , INIA , Madrid , Spain
| | - Manuel Nuñez
- a Departamento de Tecnología de Alimentos , INIA , Madrid , Spain
| |
Collapse
|
9
|
Yang W, Wu Z, Huang ZY, Miao X. Preservation of orange juice using propolis. Journal of Food Science and Technology 2017; 54:3375-3383. [PMID: 29051632 DOI: 10.1007/s13197-017-2754-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/16/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022]
Abstract
Orange juice is one of the most popular and the most consumed fruit juices all over the world, especially in Europe and the chemical food preservatives, such as sodium benzoate, potassium sorbate and their mixtures, have long been used in orange juice sold on the market. Excessive consumption of these preservatives may be hazardous to human health. Propolis, composed of resins collected from plant buds and exudates and mixed with salivary gland secretions and beeswax by honey bee workers, has been used as a human medicine and natural food preservative. We hypothesis that propolis, without alcohol, can serve as an alternative and non-synthetic preservative of orange juice. In this study, the preservative effect of propolis emulsion on orange juice was determined up to 35 days. Propolis emulsion (0.02 g/mL propolis, 12 mL), emulsion control (12 mL containing Tween-80, hydrophilic phospholipid and polyethylene glycol 400), sodium benzoate (0.4 g) and potassium sorbate (0.4 g) was each added to 388, 388, 400 and 400 mL orange juice respectively. Propolis emulsion showed significant inhibition of bacteria growth and l-ascorbic acid degradation. Orange juice pH value, titratable acidity, total phenolic content, color and antioxidant capacity were effectively maintained by propolis emulsion. A control solution with all the same emulsifying agents without propolis did not show these properties. It was concluded that propolis can be used as a natural additive agent in orange juice or other fruit juices as an alternative to chemical preservatives.
Collapse
Affiliation(s)
- Wenchao Yang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian People's Republic of China
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, 350002 Fujian People's Republic of China
| | - Zhenhong Wu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian People's Republic of China
- Department of Entomology, Michigan State University, East Lansing, MI 48912 USA
| | - Zachary Y Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian People's Republic of China
- Department of Entomology, Michigan State University, East Lansing, MI 48912 USA
| | - Xiaoqing Miao
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian People's Republic of China
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, 350002 Fujian People's Republic of China
| |
Collapse
|
10
|
Lactobacillus pentosus is the dominant species in spoilt packaged Aloreña de Málaga table olives. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.02.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Alnoman M, Udompijitkul P, Paredes-Sabja D, Sarker MR. The inhibitory effects of sorbate and benzoate against Clostridium perfringens type A isolates. Food Microbiol 2014; 48:89-98. [PMID: 25790996 DOI: 10.1016/j.fm.2014.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 11/30/2022]
Abstract
This study evaluated the inhibitory effects of sorbate and benzoate against Clostridium perfringens type A food poisoning (FP) and non-food-borne (NFB) disease isolates. No significant inhibition of germination of spores of both FP and NFB isolates was observed in rich medium (pH 7.0) supplemented with permissive level of sodium sorbate (0.3% ≈ 0.13 mM undissociated sorbic acid) or sodium benzoate (0.1% ≈ 0.01 mM undissociated benzoic acid) used in foods. However, these levels of sorbate and benzoate effectively arrested outgrowth of germinated C. perfringens spores in rich medium. Lowering the pH of the medium increases the inhibitory effects of sorbate and benzoate against germination of spores of NFB isolates, and outgrowth of spores of both FP and NFB isolates. Furthermore, sorbate and benzoate inhibited vegetative growth of C. perfringens isolates. However, the permissible levels of these organic salts could not control the growth of C. perfringens spores in chicken meat stored under extremely abusive conditions. In summary, although sorbate and benzoate showed inhibitory activities against C. perfringens in the rich medium, no such effect was observed in cooked chicken meat. Therefore, caution should be taken when applying these organic salts into meat products to reduce or eliminate C. perfringens spores.
Collapse
Affiliation(s)
- Maryam Alnoman
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Pathima Udompijitkul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Daniel Paredes-Sabja
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA; Laboratorio de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
12
|
Abriouel H, Benomar N, Gálvez A, Pérez Pulido R. Preservation of Manzanilla Aloreña cracked green table olives by high hydrostatic pressure treatments singly or in combination with natural antimicrobials. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Bevilacqua A, Cannarsi M, Gallo M, Sinigaglia M, Corbo MR. Characterization and implications of Enterobacter cloacae strains, isolated from Italian table olives "Bella di Cerignola". J Food Sci 2010; 75:M53-60. [PMID: 20492186 DOI: 10.1111/j.1750-3841.2009.01445.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enterobacter cloacae can be recovered in the spontaneous fermentations of Italian table olives. In this study, the effects of salt (20 to 100 g/L), temperature (10 to 37 degrees C), pH (4 to 5 and 8 to 10), p-coumaric and vanillic acids (0.5 to 2 g/L), and the acidification of the medium through lactic, citric, and ascorbic acids were investigated on 15 strains of E. cloacae, isolated from Italian table olives "Bella di Cerignola." Finally, a confirmatory experiment in synthetic brine was run. The strains were inhibited only by an NaCl amount of 70 to 80 g/L and by p-coumaric acid; on the other hand, they showed the ability to grow also at low temperatures (10 to 15 degrees C). The confirmatory experiment highlighted their ability to survive both at 15 degrees C and at pH 5. Enterobacter cloacae could be a real problem for the fermentation of table olives in southern Italy; some hurdles could be used (salt or brine acidification), but some environmental conditions (for example, the temperature) should be controlled carefully to maintain olive safety at acceptable levels.
Collapse
Affiliation(s)
- Antonio Bevilacqua
- Dept. of Food Science, Faculty of Agricultural Science, Univ. of Foggia, Italy
| | | | | | | | | |
Collapse
|
14
|
Arroyo-López F, Bautista-Gallego J, Segovia-Bravo K, García-García P, Durán-Quintana M, Romero C, Rodríguez-Gómez F, Garrido-Fernández A. Instability profile of fresh packed “seasoned” Manzanilla-Aloreña table olives. Lebensm Wiss Technol 2009. [DOI: 10.1016/j.lwt.2009.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Hou-Rui Z, Xiang-Xiang Q, Silva SS, Sarrouh BF, Ai-Hua C, Yu-Heng Z, Ke J, Qiu X. Novel isolates for biological detoxification of lignocellulosic hydrolysate. Appl Biochem Biotechnol 2008; 152:199-212. [PMID: 18649037 DOI: 10.1007/s12010-008-8249-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 04/18/2008] [Indexed: 10/21/2022]
Abstract
In this paper, two new strians, Issatchenkia occidentalis (Lj-3, CCTCC M 2006097) and Issatchenkia orienalis (S-7, CCTCC M 2006098), isolated from different environments on solid media, were used in the detoxification process of the hemicellulosic hydrolysate of sugarcane bagasse. High-pressure liquid chromatography elution curve of UV-absorption compounds represented by acetic acid, furfural, and guaiacol (toxic compounds found in the hemicellulosic hydrolysate) showed that several chromatographic peaks were evidently diminished for the case of detoxified hydrolysate with isolate strains compared to the high peaks resulted for no detoxified hydrolysate. It was clear that these inhibitors were degraded by the two new isolates during their cultivation process. Fermentation results for the biodetoxified hydrolysate showed an increase in xylitol productivity (Q (p)) by 1.97 and 1.95 times (2.03 and 2.01 g l(-1) h(-1)) and in xylitol yield (Y (p)) by 1.72 and 1.65 times (0.93 and 0.89 g xylitol per gram xylose) for hydrolysate treated with S-7 and Lj-3, respectively, in comparison with no detoxified hydrolysate (1.03 g l(-1) h(-1) and 0.54 g xylitol per gram xylose). This present work demonstrated the importance of Issatchenkia yeast in providing an effective biological detoxification approach to remove inhibitors and improve hydrolysate fermentability, leading to a high xylitol productivity and yield.
Collapse
Affiliation(s)
- Zhang Hou-Rui
- Phytochemical Department, Guangxi Institute of Botany, The Chinese Academy of Sciences, Yanshan, Guilin City, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Arroyo-López F, Bautista-Gallego J, Durán-Quintana M, Garrido-Fernández A. Modelling the inhibition of sorbic and benzoic acids on a native yeast cocktail from table olives. Food Microbiol 2008; 25:566-74. [DOI: 10.1016/j.fm.2008.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|
17
|
Arroyo López FN, Quintana MCD, Fernández AG. Modelling of the growth–no growth interface of Issatchenkia occidentalis, an olive spoiling yeast, as a function of the culture media, NaCl, citric and sorbic acid concentrations: Study of its inactivation in the no growth region. Int J Food Microbiol 2007; 117:150-9. [PMID: 17445929 DOI: 10.1016/j.ijfoodmicro.2007.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/06/2007] [Accepted: 03/14/2007] [Indexed: 11/19/2022]
Abstract
A global logistic model incorporating a dummy variable for the growth medium (laboratory media or table olives brine) was used for the estimation of the growth-no growth interface of Issatchenkia occidentalis as a function of NaCl, citric and sorbic acid concentrations. The model permitted the deduction of the region where the combination of citric and sorbic acids in laboratory media (above 0.3% and 0.03% wt/vol, respectively) and brine (above 0.1% and 0.03% wt/vol), at 5% NaCl, inhibited the growth of the yeast. Subsequently, the model was validated in laboratory media within the no growth region by a response surface D-optimal design. Inactivation concentrations of sorbic acid produced a progressive loss of viability in I. occidentalis that followed a first order kinetic or downward concave inactivation curves, depending on environmental variables. These curves were properly described by a (primary) model deduced from the Weibull distribution, whose parameters, first decimal reduction time (D(beta)) and shape (beta), were expressed as a function of sorbic acid concentrations (secondary model). At 5% NaCl and within the experimental region checked, an increase of 0.010% and 0.008% sorbic acid reduced D(beta) in 10 h and decrease beta by 10%. Finally, the model was also validated in real "seasoned" table olives packing reporting a complete inactivation of the yeasts' population.
Collapse
Affiliation(s)
- F N Arroyo López
- Department of Food Biotechnology, Instituto de la Grasa (C.S.I.C), Av\ Padre García Tejero no. 4. 41012, Seville, Spain.
| | | | | |
Collapse
|