1
|
Popa SA, Herman V, Tîrziu E, Morar A, Ban-Cucerzan A, Imre M, Pătrînjan RT, Imre K. Public Health Risk of Campylobacter spp. Isolated from Slaughterhouse and Retail Poultry Meat: Prevalence and Antimicrobial Resistance Profiles. Pathogens 2025; 14:316. [PMID: 40333059 PMCID: PMC12029987 DOI: 10.3390/pathogens14040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 05/09/2025] Open
Abstract
Campylobacter spp. represents one of the most frequently incriminated pathogens in the evolution of foodborne gastroenteritis in humans worldwide. Alongside Salmonella spp., Yersinia spp., Escherichia coli, and Listeria monocytogenes, these pathogens represent a principal threat to public health because they are vehiculated to humans via food products and many of them have developed alarming resistance to different classes of antimicrobials. Thus, the present study aimed to provide scientifically relevant data on the public health risk represented by Campylobacter spp., contamination of chicken carcasses at the slaughterhouse and retail levels, and the antimicrobial resistance of the isolated strains. A total of 130 samples collected from slaughterhouses (n = 40) and retail stores (n = 90) were analyzed using standardized microbiological methods (ISO 10272-1:2017). Of these, the overall prevalence of Campylobacter spp. was 27.7%, with a prevalence at the slaughterhouse level of 32.5% and at the retail level of 25.5%. Following antimicrobial resistance profile determinations using the Kirby-Bauer disc diffusion assay, the isolated strains showed resistance to the following antimicrobials in descending order: ciprofloxacin (41.6%), tetracycline (25.0%), chloramphenicol (16.6%), gentamicin (11.1%), ertapenem (5.6%), and erythromycin (2.8%). The study results confirm that chicken meat may pose a threat to public health and, moreover, that due to the widespread use of antimicrobials, a large number of strains have developed antimicrobial resistance, leading to difficulties in the treatment of various foodborne diseases.
Collapse
Affiliation(s)
- Sebastian Alexandru Popa
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (V.H.); (E.T.); (A.M.); (A.B.-C.); (M.I.); (R.-T.P.)
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ‘’King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Viorel Herman
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (V.H.); (E.T.); (A.M.); (A.B.-C.); (M.I.); (R.-T.P.)
| | - Emil Tîrziu
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (V.H.); (E.T.); (A.M.); (A.B.-C.); (M.I.); (R.-T.P.)
| | - Adriana Morar
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (V.H.); (E.T.); (A.M.); (A.B.-C.); (M.I.); (R.-T.P.)
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ‘’King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Alexandra Ban-Cucerzan
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (V.H.); (E.T.); (A.M.); (A.B.-C.); (M.I.); (R.-T.P.)
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ‘’King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Mirela Imre
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (V.H.); (E.T.); (A.M.); (A.B.-C.); (M.I.); (R.-T.P.)
| | - Răzvan-Tudor Pătrînjan
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (V.H.); (E.T.); (A.M.); (A.B.-C.); (M.I.); (R.-T.P.)
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ‘’King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Kálmán Imre
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (V.H.); (E.T.); (A.M.); (A.B.-C.); (M.I.); (R.-T.P.)
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ‘’King Mihai I” from Timisoara, 300645 Timisoara, Romania
| |
Collapse
|
2
|
Ma J, Gong Z, Kang M, Tian Z, You L, Ding C. Effects of multidrug-resistant bacteria and multi-antibiotic combination on intestinal microbiota in mice. Front Microbiol 2025; 15:1504396. [PMID: 39974373 PMCID: PMC11835796 DOI: 10.3389/fmicb.2024.1504396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/31/2024] [Indexed: 02/21/2025] Open
Abstract
Multidrug-resistant bacteria are a clinical and an epidemiological challenge. However, the effects of multidrug-resistant bacteria and multi-antibiotic combination on gut microbiota are unclear. In this study, the effects of multidrug-resistant bacteria and multi-antibiotic combination on intestinal microbiota in mice have been observed by high-throughput sequencing. Resistant Escherichia coli (RP4) and 0.5, 1, and 2 mg/L antibiotics (Amp, Km, and Tet multi-antibiotic combination) could decrease the number of specific operational taxonomic units from 223 in the normal saline control group to 178 in the antibiotic-resistant bacteria group and 34 in the antibiotic group, and antibiotics are the biggest influencing factor. Multidrug-resistant bacteria and multi-antibiotic combination could affect the function of intestinal microbiota, and the effect of multidrug-resistant bacteria was similar to that of multi-antibiotic combination. Small intestine is the main colonization site of antibiotic-resistant bacteria, and Proteobacteria and Bacteroidetes are the major antibiotic-resistance acquired bacteria as determined by transmission electron microscopy and agarose plate screening culture.
Collapse
Affiliation(s)
- Jing Ma
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Zheng Gong
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Meiling Kang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Zhongjing Tian
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Liping You
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Chengshi Ding
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| |
Collapse
|
3
|
Singh S, Rawat N, Kaushik A, Chauhan M, Devi PP, Sabu B, Kumar N, Rajagopal R. Houseflies (Musca domestica) as vectors of multidrug-resistant, ESBL-producing Escherichia coli in broiler poultry farms of North India: implications for antibiotic resistance transmission. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3664-3678. [PMID: 39820970 DOI: 10.1007/s11356-025-35921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
The transmission of antibiotic resistance (AR) from farm animals to healthy human communities, beyond the food chain, is often facilitated by biological vectors, notably houseflies (Musca domestica). This study aimed to evaluate the role of M. domestica collected from commercial broiler chicken farms as a carrier of multidrug-resistant (MDR), extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. E. coli were isolated separately from the housefly's external surface (ES) and internal homogenate (IH) to determine the primary AR transmission route within houseflies. Remarkably, 68.6% houseflies harboured E. coli. Isolated E. coli were evaluated for susceptibility to clinically relevant antibiotics and screened for the presence of 22 plasmid-borne AR genes (ARGs) using PCR. Results revealed significant resistance to key antibiotics, with > 70% of isolates resistant to ampicillin and > 50% resistant to tetracycline and nalidixic acid in both ES- and IH-derived E. coli. Notably, a significant prevalence of resistance was observed to third-generation cephalosporins. Additionally, > 80% of E. coli isolates were MDR. A statistically significant difference (unpaired t-test, p < 0.05) was observed in the presence of ESBL-producing E. coli between the houseflies' ES (28.14%) and IH (38.14%). ARGs such as, ampC, tetA, qnrS, strA, strB, and sul3 were frequently detected in both ES- and IH-derived E. coli isolates. Among the ESBL-producing genes, blaCTX-M was the most abundant. Pearson's correlation analysis predicted the ARGs responsible for phenotypic resistance to specific antibiotics. Farm-derived flies harboured a significantly higher number of MDR E. coli (unpaired t-test, p < 0.05) than the ones isolated from flies housing a distant non-farm environment. Conclusively, this study illustrates the role of houseflies as vectors for AR transmission from AR hotspots to human communities.
Collapse
Affiliation(s)
- Shreyata Singh
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Nitish Rawat
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Anjali Kaushik
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Department of Zoology, Deen Dayal Upadhyay College, University of Delhi, New Delhi, 110078, India
| | - Mehul Chauhan
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pukhrambam Pushpa Devi
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Department of Zoology, Kirori Mal College, University of Delhi, New Delhi, 110007, India
| | - Benoy Sabu
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Narendra Kumar
- Department of Zoology, Shaheed Mangal Pandey Government Girls Post Graduate College, Meerut, Uttar Pradesh, 250002, India
| | - Raman Rajagopal
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
4
|
Mendes Pedro D, Santos D, Meneses M, Gonçalves F, Domingos GJ, Caneiras C. Risk of Colonization with Multidrug-Resistant Gram-Negative Bacteria Among Travellers and Migrants: A Narrative Review. Trop Med Infect Dis 2025; 10:26. [PMID: 39852677 PMCID: PMC11769174 DOI: 10.3390/tropicalmed10010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Globalization in the 21st century has posed several challenges. In particular, the spread of multidrug-resistant bacterial strains, especially Gram-negative bacteria, which are prevalent in certain regions of the world, is one of the most critical issues. This raises concerns about the risks associated with the booming tourism industry and migratory flows. In fact, even transient colonization with multidrug-resistant strains can present significant challenges to individual, family, and public health. Understanding the epidemiology and mechanisms of resistance, associated risk factors and prevention policies is therefore essential to ensure that strategies are in place to limit the global spread of high-risk bacterial clones and thereby protect public health.
Collapse
Affiliation(s)
- Diogo Mendes Pedro
- Laboratory of Microbiology Research in Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal; (D.S.); (M.M.); (C.C.)
- Infectious Diseases Department, ULS Santa Maria, 1649-028 Lisboa, Portugal; (F.G.); (G.J.D.)
- Infectious Diseases University Clinic, Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal
| | - Daniela Santos
- Laboratory of Microbiology Research in Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal; (D.S.); (M.M.); (C.C.)
| | - Maria Meneses
- Laboratory of Microbiology Research in Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal; (D.S.); (M.M.); (C.C.)
| | - Fátima Gonçalves
- Infectious Diseases Department, ULS Santa Maria, 1649-028 Lisboa, Portugal; (F.G.); (G.J.D.)
| | | | - Cátia Caneiras
- Laboratory of Microbiology Research in Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal; (D.S.); (M.M.); (C.C.)
- Egas Moniz Interdisciplinary Research Center, Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
- Institute of Preventive Medicine and Public Health (IMP&SP), Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal
| |
Collapse
|
5
|
Abou-Jaoudeh C, Andary J, Abou-Khalil R. Antibiotic residues in poultry products and bacterial resistance: A review in developing countries. J Infect Public Health 2024; 17:102592. [PMID: 39551017 DOI: 10.1016/j.jiph.2024.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing global concern, particularly in poultry farming, where antibiotics are widely used for both disease prevention and growth promotion. This review examines the misuse of antibiotics in poultry production, especially in developing countries, and its contribution to the emergence of antibiotic-resistant bacteria. The findings highlight that factors such as increasing demand for poultry protein, the availability of inexpensive antibiotics, and weak regulatory oversight have led to widespread misuse, accelerating the spread of resistance genes. Although evidence links poultry farming to AMR, significant data gaps remain, especially regarding resistance transmission from poultry to humans. The review underscores the urgent need for stronger regulatory frameworks, phased-out use of antimicrobial growth promoters, and enhanced awareness campaigns to address this issue. Improving the capacity of regulatory bodies and developing more robust national data monitoring systems are essential steps to mitigate the threat of AMR in poultry farming and to protect both animal and human health.
Collapse
Affiliation(s)
- Chantal Abou-Jaoudeh
- Holy Spirit University of Kaslik, Faculty of Arts and Sciences, Biology Department, B.P. 446 Jounieh, Lebanon
| | - Jeanne Andary
- Modern University for Business and Science, Faculty of Health Sciences, Lebanon
| | - Rony Abou-Khalil
- Holy Spirit University of Kaslik, Faculty of Arts and Sciences, Biology Department, B.P. 446 Jounieh, Lebanon.
| |
Collapse
|
6
|
Zhang Z, Kuang D, Xu X, Zhan Z, Ren H, Shi C. Dissemination of IncC plasmids in Salmonella enterica serovar Thompson recovered from seafood and human diarrheic patients in China. Int J Food Microbiol 2024; 417:110708. [PMID: 38653121 DOI: 10.1016/j.ijfoodmicro.2024.110708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Salmonella Thompson is a prevalent foodborne pathogen and a major threat to food safety and public health. This study aims to reveal the dissemination mechanism of S. Thompson with co-resistance to ceftriaxone and ciprofloxacin. In this study, 181 S. Thompson isolates were obtained from a retrospective screening on 2118 serotyped Salmonella isolates from foods and patients, which were disseminated in 12 of 16 districts in Shanghai, China. A total of 10 (5.5 %) S. Thompson isolates exhibited resistance to ceftriaxone (MIC ranging from 8 to 32 μg/mL) and ciprofloxacin (MIC ranging from 2 to 8 μg/mL). The AmpC β-lactamase gene blaCMY-2 and plasmid-mediated quinolone resistance (PMQR) genes of qnrS and qepA were identified in the 9 isolates. Conjugation results showed that the co-transfer of blaCMY-2, qnrS, and qepA occurred on the IncC plasmids with sizes of ∼150 (n = 8) or ∼138 (n = 1) kbp. Three typical modules of ISEcp1-blaCMY-2-blc-sugE, IS26-IS15DIV-qnrS-ISKpn19, and ISCR3-qepA-intl1 were identified in an ST3 IncC plasmid pSH11G0791. Phylogenetic analysis indicated that IncC plasmids evolved into Lineages 1, 2, and 3. IncC plasmids from China including pSH11G0791 in this study fell into Lineage 1 with those from the USA, suggesting their close genotype relationship. In conclusion, to our knowledge, it is the first report of the co-existence of blaCMY-2, qnrS, and qepA in IncC plasmids, and the conjugational transfer contributed to their dissemination in S. Thompson. These findings underline further challenges for the prevention and treatment of Enterobacteriaceae infections posed by IncC plasmids bearing blaCMY-2, qnrS, and qepA.
Collapse
Affiliation(s)
- Zengfeng Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dai Kuang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; National Health Commission (NHC) Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, China
| | - Xuebin Xu
- Laboratory of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200050, China
| | - Zeqiang Zhan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Ren
- Xianyang Center for Food and Drug Control, Shaanxi, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Mak PHW, Rehman MA, Kiarie EG, Topp E, Diarra MS. Production systems and important antimicrobial resistant-pathogenic bacteria in poultry: a review. J Anim Sci Biotechnol 2022; 13:148. [PMID: 36514172 DOI: 10.1186/s40104-022-00786-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
Economic losses and market constraints caused by bacterial diseases such as colibacillosis due to avian pathogenic Escherichia coli and necrotic enteritis due to Clostridium perfringens remain major problems for poultry producers, despite substantial efforts in prevention and control. Antibiotics have been used not only for the treatment and prevention of such diseases, but also for growth promotion. Consequently, these practices have been linked to the selection and spread of antimicrobial resistant bacteria which constitute a significant global threat to humans, animals, and the environment. To break down the antimicrobial resistance (AMR), poultry producers are restricting the antimicrobial use (AMU) while adopting the antibiotic-free (ABF) and organic production practices to satisfy consumers' demands. However, it is not well understood how ABF and organic poultry production practices influence AMR profiles in the poultry gut microbiome. Various Gram-negative (Salmonella enterica serovars, Campylobacter jejuni/coli, E. coli) and Gram-positive (Enterococcus spp., Staphylococcus spp. and C. perfringens) bacteria harboring multiple AMR determinants have been reported in poultry including organically- and ABF-raised chickens. In this review, we discussed major poultry production systems (conventional, ABF and organic) and their impacts on AMR in some potential pathogenic Gram-negative and Gram-positive bacteria which could allow identifying issues and opportunities to develop efficient and safe production practices in controlling pathogens.
Collapse
Affiliation(s)
- Philip H W Mak
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada.,Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Muhammad Attiq Rehman
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Edward Topp
- London Research and Development Center, AAFC, London, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada.
| |
Collapse
|
8
|
Khong MJ, Snyder AM, Magnaterra AK, Young MM, Barbieri NL, Weimer SL. Antimicrobial resistance profile of Escherichia coli isolated from poultry litter. Poult Sci 2022; 102:102305. [PMID: 36603238 PMCID: PMC9792562 DOI: 10.1016/j.psj.2022.102305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Antimicrobial resistance is a threat to animal and human health. As a commensal and zoonotic bacterium, Escherichia coli has the potential to be a pathogenic source of antimicrobial resistance. The purpose of this study aimed to investigate the antimicrobial resistance profile of E. coli isolated from litter collected from pens in a broiler chicken experiment. E. coli was isolated from litter samples (n = 68 isolates) of 16 pens housing broilers to d 53 of age. Resistance to 10 antimicrobials was observed by disc diffusion. The presence of 23 antimicrobial and heavy metal resistance genes, O serogroups, and avian pathogenic E. coli (APEC-like) minimal predictor genes were identified through PCR. E. coli isolates presented the greatest resistance to cephalothin (54.4%), tetracycline (27.9%), streptomycin (29.4%), ampicillin (20.6%), colistin (13.2%), sulphonamides (8.8%), and imipenem (1.5%). Multidrug resistance to at least 3 antimicrobials was observed in 22.1% of isolates. The identified O-types of the E. coli isolates were O15, O75, O78, and O91. There was a greater likelihood that the genes groEL, aph(3)IA, silP, sull, aadA, qacEdelta1, iroN, ompTp, and hlyF were present in isolates that exhibited ampicillin resistance (P ≤ 0.05). There was a greater likelihood that the groEL gene was present in isolates resistant to ampicillin, colistin, tetracycline, sulphonamides, or cephalothin (P ≤ 0.05). Further characterizing E. coli antimicrobial resistance is essential and aids in developing effective solutions, thereby furthering the One Health objective.
Collapse
Affiliation(s)
- M J Khong
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - A M Snyder
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - A K Magnaterra
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - M M Young
- Department of Population Health, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - N L Barbieri
- Department of Population Health, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - S L Weimer
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA; Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
9
|
Rehman MA, Rempel H, Carrillo CD, Ziebell K, Allen K, Manges AR, Topp E, Diarra MS. Virulence Genotype and Phenotype of Multiple Antimicrobial-Resistant Escherichia coli Isolates from Broilers Assessed from a "One-Health" Perspective. J Food Prot 2022; 85:336-354. [PMID: 34762732 DOI: 10.4315/jfp-21-273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/09/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Extraintestinal pathogenic Escherichia coli (ExPEC) include several serotypes that have been associated with colibacillosis in poultry and with urinary tract infections (UTIs) and newborn meningitis in humans. In this study, 57 antimicrobial-resistant E. coli from apparently healthy broiler chickens were characterized for their health and safety risks. These isolates belonged to 12 serotypes, and isolates of the same serotype were clonal based on single nucleotide variant analysis. Most of the isolates harbored plasmids; IncC and IncFIA were frequently detected. The majority of the resistant isolates harbored plasmid-mediated resistance genes, including aph(3″)-Ib, aph(6)-Id, blaCMY-2, floR, sul1, sul2, tet(A), and tet(B), in agreement with their resistant phenotypes. The class 1 integron was detected in all E. coli serotypes except O124:H25 and O7:H6. Of the 57 broiler E. coli isolates, 27 were avian pathogenic, among which 18 were also uropathogenic E. coli and the remainder were other ExPEC. The two isolates of serotype O161:H4 (ST117) were genetically related to the control avian pathogenic strains and a clinical isolate associated with UTIs. A strain of serotype O159:H45 (ST101) also was closely related to a UTI isolate. The detected virulence factors included adhesins, invasins, siderophores, type III secretion systems, and toxins in combination with other virulence determinants. A broiler isolate of serotype O7:H18 (ST38) carried the ibeA gene encoding a protein involved in invasion of brain endothelium on a 102-kbp genetic island. This isolate moderately adhered and invaded Caco-2 cells and induced mortality (42.5%) in a day-old-chick infection model. The results of this study suggest that multiple antimicrobial-resistant E. coli isolates recovered from apparent healthy broilers can be pathogenic and act as reservoirs for antimicrobial resistance genes, highlighting the necessity of their assessment in a "One-Heath" context. HIGHLIGHTS
Collapse
Affiliation(s)
- Muhammad Attiq Rehman
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Heidi Rempel
- Agassiz Research and Development Center, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada V0M 1A2
| | - Catherine D Carrillo
- Canadian Food Inspection Agency, Ottawa Laboratory (Carling), Ottawa, Ontario, Canada K1Y 4K7
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency Canada, Guelph, Ontario, Canada N1G 3W4
| | - Kevin Allen
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, British Columbia, Canada V6T 1Z3.,British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada V5Z 4R4
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada N5V 4T3
| | - Moussa S Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| |
Collapse
|
10
|
Gupta CL, Blum SE, Kattusamy K, Daniel T, Druyan S, Shapira R, Krifucks O, Zhu YG, Zhou XY, Su JQ, Cytryn E. Longitudinal study on the effects of growth-promoting and therapeutic antibiotics on the dynamics of chicken cloacal and litter microbiomes and resistomes. MICROBIOME 2021; 9:178. [PMID: 34454634 PMCID: PMC8403378 DOI: 10.1186/s40168-021-01136-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/20/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Therapeutic and growth-promoting antibiotics are frequently used in broiler production. Indirect evidence indicates that these practices are linked to the proliferation of antimicrobial resistance (AMR), the spread of antibiotic-resistant bacteria from food animals to humans, and the environment, but there is a lack of comprehensive experimental data supporting this. We investigated the effects of growth promotor (bacitracin) and therapeutic (enrofloxacin) antibiotic administration on AMR in broilers for the duration of a production cycle, using a holistic approach that integrated both culture-dependent and culture-independent methods. We specifically focused on pathogen-harboring families (Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae). RESULTS Antibiotic-resistant bacteria and antibiotic resistance genes were ubiquitous in chicken cloaca and litter regardless of antibiotic administration. Environment (cloaca vs. litter) and growth stage were the primary drivers of variation in the microbiomes and resistomes, with increased bacterial diversity and a general decrease in abundance of the pathogen-harboring families with age. Bacitracin-fed groups had higher levels of bacitracin resistance genes and of vancomycin-resistant Enterococcaceae (total Enterococcaceae counts were not higher). Although metagenomic analyses classified 28-76% of the Enterococcaceae as the commensal human pathogens E. faecalis and E. faecium, culture-based analysis suggested that approximately 98% of the vancomycin-resistant Enterococcaceae were avian and not human-associated, suggesting differences in the taxonomic profiles of the resistant and non-resistant strains. Enrofloxacin treatments had varying effects, but generally facilitated increased relative abundance of multidrug-resistant Enterobacteriaceae strains, which were primarily E. coli. Metagenomic approaches revealed a diverse array of Staphylococcus spp., but the opportunistic pathogen S. aureus and methicillin resistance genes were not detected in culture-based or metagenomic analyses. Camphylobacteriaceae were significantly more abundant in the cloacal samples, especially in enrofloxacin-treated chickens, where a metagenome-assembled C. jejuni genome harboring fluoroquinolone and β-lactam resistance genes was identified. CONCLUSIONS Within a "farm-to-fork, one health" perspective, considering the evidence that bacitracin and enrofloxacin used in poultry production can select for resistance, we recommend their use be regulated. Furthermore, we suggest routine surveillance of ESBL E. coli, vancomycin-resistant E. faecalis and E. faecium, and fluoroquinolone-resistant C. jejuni strains considering their pathogenic nature and capacity to disseminate AMR to the environment. Video Abstract.
Collapse
Affiliation(s)
- Chhedi Lal Gupta
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, 7528809, Rishon LeZion, Israel
| | - Shlomo E Blum
- Department of Bacteriology, Kimron Veterinary Institute, 50250, Beit Dagan, Israel.
| | - Karuppasamy Kattusamy
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, 7528809, Rishon LeZion, Israel
| | - Tali Daniel
- Department of Bacteriology, Kimron Veterinary Institute, 50250, Beit Dagan, Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shelly Druyan
- Institute of Animal Science, Poultry and Aquaculture, The Volcani Institute, Agricultural Research Organization, 7505101, Rishon LeZion, Israel
| | - Roni Shapira
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oleg Krifucks
- Department of Bacteriology, Kimron Veterinary Institute, 50250, Beit Dagan, Israel
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Research Center for Eco-environmental Sciences, Beijing, 100049, China
| | - Xin-Yuan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, 7528809, Rishon LeZion, Israel.
| |
Collapse
|
11
|
Bean-Hodgins L, Kiarie EG. Mandated restrictions on the use of medically important antibiotics in broiler chicken production in Canada: implications, emerging challenges, and opportunities for bolstering gastrointestinal function and health– A review. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chicken Farmers of Canada has been progressively phasing out prophylactic use of antibiotics in broiler chicken production. Consequently, hatcheries, veterinarians, and nutritionists have been mandated to contend with less reliance on use of preventive antibiotics. A topical concern is the increased risk of proliferation of enteric pathogens leading to poor performance, increased mortality and compromised welfare. Moreover, the gut harbors several taxa such as Campylobacter and Salmonella capable of causing significant illnesses in humans via contaminated poultry products. This has created opportunity for research and development of dietary strategies designed to modulate gastrointestinal environment for enhanced performance and food safety. Albeit with inconsistent responses, literature data suggests that dietary strategies such as feed enzymes, probiotics/prebiotics and phytogenic feed additives can bolster gut health and function in broiler chickens. However, much of the efficacy data was generated at controlled research settings that vary significantly with the complex commercial broiler production operations due to variation in dietary, health and environmental conditions. This review will summarize implications of mandated restrictions on the preventative use of antibiotics and emerging Canadian broiler production programs to meet processor specifications. Challenges and opportunities for integrating alternative dietary strategies in commercial broiler production settings will be highlighted.
Collapse
Affiliation(s)
- Lisa Bean-Hodgins
- New-Life Mills, A division of Parrish & Heimbecker, Cambridge , Ontario, Canada
- University of Guelph, 3653, Department of Animal Biosciences, Guelph, Ontario, Canada
| | - Elijah G. Kiarie
- University of Guelph, Department of Animal Biosciences, 50 Stone Road East, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
12
|
Hosain MZ, Kabir SML, Kamal MM. Antimicrobial uses for livestock production in developing countries. Vet World 2021; 14:210-221. [PMID: 33642806 PMCID: PMC7896880 DOI: 10.14202/vetworld.2021.210-221] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/15/2020] [Indexed: 01/13/2023] Open
Abstract
Antimicrobial is an indispensable part of veterinary medicine used for the treatment and control of diseases as well as a growth promoter in livestock production. Frequent use of antimicrobials in veterinary practices may lead to the residue in animal originated products and creates some potential problems for human health. The presence of antimicrobial residues in animal originated foods may induce serious health problems such as allergic reaction, antimicrobial resistance (AMR), and lead to carcinogenic and mutagenic effects in the human body. The misuse or abuse of antibiotics in human medicine is thought to be a principal cause of AMR but some antimicrobial-resistant bacteria and their resistant genes originating from animals are also responsible for developing AMR. However, the residual effect of antimicrobials in feed and food products of animal origin is undeniable. In developing countries, the community is unaware of this residual effect due to lack of proper information about antibiotic usage, AMR surveillance, and residue monitoring system. It is imperative to reveal the current situation of antimicrobial use in livestock production and its impacts on public health. Moreover, the safety levels of animal feeds and food products of animal origin must be strictly monitored and public awareness should be developed against the indiscriminate use of antimicrobial in animal production. Therefore, the current review summarizes the literature on antimicrobial use in livestock production and its hazardous residual impacts on the human body in developing countries.
Collapse
Affiliation(s)
- Md. Zahangir Hosain
- Quality Control Laboratory, Department of Livestock Services, Savar, Dhaka-1343, Bangladesh
| | - S. M. Lutful Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md. Mostofa Kamal
- Quality Control Laboratory, Department of Livestock Services, Savar, Dhaka-1343, Bangladesh
| |
Collapse
|
13
|
Kamel NM, Farghaly EM, Shawky HM, Samir A. Molecular characterisation of extended-spectrum β-lactamase-producing Escherichia coli and Salmonella isolated from poultry and poultry products in Egypt. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extended-spectrum β-lactamase (ESBL) producing E. coli and salmonellae have spread rapidly worldwide and pose a serious threat to human and animal health. The present study was conduct-ed to determine the prevalence of ESBL-producing E.coli and salmonellae, to perform molecular characterisation of the ESBL-related bla genes, including blaTEM, blaSHV and blaCTX, and the sus-ceptibilities of these bacteria to various antimicrobial agents. From a total of 300 poultry samples, 25 and 20 samples were recognised as Salmonella and E. coli, respectively by microbiological and molecular methods. All E. coli and Salmonella isolates were positive for an ESBL phenotype. Mo-lecular detection for antibiotic resistance gene revealed blaTEM in all isolates of salmonellae and E. coli (100%), while blaSHV was detected in 5 (20%) and 2 (10%) of salmonellae and E. coli isolates, respectively. None of the isolates contained blaCTX gene. Serotyping of Salmonella spp. in chick-ens revealed that S. enteritidis was the major isolates followed by S. Infantis (21.4%), S. Kentucky (14.2%) and S. Typhimurium, S. Kapemba, S. Newport, S. Vejle and S. Magherafelt were detected at 7.1% respectively. S. Infantis was the major isolate detected in chicks (60%), while in ducks S. Typhimurium and S. Blegdam were identified. In ducklings, S. Sinchew, S. Infantis and S. Sekon-di were equally prevalent. Only S. Newmexico was identified in poultry products. E. coli in chick-en were serotyped into O1, O8, O29, O125, O128 and O157. In chicks, O29 and O126 serotypes were detected. In poultry products only O8 was detected. The results indicate that ESBL frequen-cy has reached an alarming level in poultry isolates in Egypt, with TEM enzymes being the pre-dominant β-lactamases detected.
Collapse
|
14
|
El Zowalaty ME, Hickman RA, Gambushe SM, Zishiri OT, El Zowalaty AE, Järhult JD. Genome sequences of two multidrug-resistant Escherichia coli strains MEZEC8 and MEZEC10 isolated from livestock in South Africa. J Glob Antimicrob Resist 2020; 23:445-449. [PMID: 33246212 DOI: 10.1016/j.jgar.2020.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES The emergence of antimicrobial-resistant livestock-associated Escherichia coli represents a great public health concern. Here we report the draft genome sequences of two multidrug-resistant livestock-associated E. coli strains MEZEC8 and MEZEC10 isolated from sheep in South Africa. METHODS Genomic DNA of E. coli strains MEZEC8 and MEZEC10 was sequenced using an Illumina MiSeq platform. Generated reads were trimmed and de novo assembled. The assembled contigs were analysed for antimicrobial resistance genes, chromosomal mutations and extrachromosomal plasmids, and the sequence type (ST) was determined by multilocus sequence typing (MLST). To compare strains MEZEC8 and MEZEC10 with other previously published sequences of E. coli strains, raw read sequences of E. coli from livestock were downloaded from the NCBI's Sequence Read Archive and all sequence files were treated identically to generate a core genome bootstrapped maximum likelihood phylogenetic tree. RESULTS Antimicrobial resistance genes were detected in MEZEC8 and MEZEC10 conferring resistance to tetracycline and macrolides. MEZEC10 harboured two extrachromosomal plasmids (pO111 and Incl2), while MEZEC8 did not contain any extrachromosomal plasmids. Strain MEZEC8 belonged to serotype H25:O9 and ST58, whereas strain MEZEC10 belonged to serotype H49:O8 and ST1844. CONCLUSION The genome sequences of E. coli strains MEZEC8 and MEZEC10 will serve as a reference point for molecular epidemiological studies of antimicrobial-resistant livestock-associated E. coli in Africa. In addition, this study allows in-depth analysis of genomic structure and will provide valuable information enabling us understand the antimicrobial resistance of livestock-associated E. coli.
Collapse
Affiliation(s)
- Mohamed E El Zowalaty
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Sharjah Institute of Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE-75 123, Sweden.
| | - Rachel A Hickman
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE-75 123, Sweden
| | - Sydney M Gambushe
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Oliver T Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Ahmed E El Zowalaty
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, SE-75 185, Sweden
| |
Collapse
|
15
|
Saharan VV, Verma P, Singh AP. Escherichia coli,Salmonellaspp., andStaphylococcus aureussusceptibility to antimicrobials of human and veterinary importance in poultry sector of India. J Food Saf 2019. [DOI: 10.1111/jfs.12742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Vijay Veer Saharan
- Department of Microbiology, School of Life SciencesCentral University of Rajasthan Rajasthan India
| | - Preeti Verma
- Department of Microbiology, School of Life SciencesCentral University of Rajasthan Rajasthan India
| | - Arvind Pratap Singh
- Department of Microbiology, School of Life SciencesCentral University of Rajasthan Rajasthan India
| |
Collapse
|
16
|
Islam MR, Lepp D, Godfrey DV, Orban S, Ross K, Delaquis P, Diarra MS. Effects of wild blueberry (Vaccinium angustifolium) pomace feeding on gut microbiota and blood metabolites in free-range pastured broiler chickens. Poult Sci 2019; 98:3739-3755. [PMID: 30918964 DOI: 10.3382/ps/pez062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 03/18/2019] [Indexed: 12/19/2022] Open
Abstract
There is a need to develop cost-effective approaches to modulate gut microbiota, promote bird health, and prevent infections in pasture-raised broiler chickens. The present study evaluated the efficacy of organic wild blueberry (Vaccinium angustifolium) also called low-bush blueberry pomace (LBBP)-supplemented feed to modulate the chicken gut microbiota, and blood metabolites in order to improve bird health and productivity. Slow-growing broiler chickens were reared on pasture up to 64 D for sampling after 2 wk of treatment during brooding with 0, 1, and 2% LBBP in feed. Intestinal samples were collected at different time-points throughout the trial for bacterial culture and microbial community analysis by 16S rRNA gene sequencing using Illumina MiSeq. Blood sera were also analyzed for metabolites at each sampling time. Of the 14 bacterial phyla, the predominant taxa across all sampling time-points were Firmicutes, Proteobacteria, Bacteroidetes, and Tenericutes, representing >97% of all sequences. Bacteroidetes seemed to be replacing Firmicutes by LBBP supplementation, with the most noticeable effect at day 64 with 1% LBBP. LBBP inclusion enriched Lactobacillus, Bacteroides, and Bifidobacterium, while Escherichia coli, Clostridium_Clostridiaceae, Helicobacter, and Enterococcus showed higher abundances in control birds at the end of trial. Principal co-ordinate analysis showed a clear clustering of the intestinal samples from control and LBBP-treated groups at day 29. Application of LBBP resulted in a decrease (P < 0.05) in cholesterol at day 21, and an increase (P < 0.05) in high-density lipoprotein cholesterol in 14-day-old broilers. Higher (P < 0.05) levels of phosphorus, magnesium, and globulin at day 21 as well as iron and albumin at day 36 were also observed in 1% LBBP-fed birds. Despite limitations consisting essentially of low sampled birds for measurements, this study indicated that dietary supplementation of LBBP could positively influence gut microbiota and blood metabolites that may contribute to the overall health of pasture-raised broiler chickens.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - David V Godfrey
- Summerland Research and Development Centre, AAFC, Summerland, BC V0H 1Z0, Canada
| | - Steve Orban
- Summerland Research and Development Centre, AAFC, Summerland, BC V0H 1Z0, Canada
| | - Kelly Ross
- Summerland Research and Development Centre, AAFC, Summerland, BC V0H 1Z0, Canada
| | - Pascal Delaquis
- Summerland Research and Development Centre, AAFC, Summerland, BC V0H 1Z0, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| |
Collapse
|
17
|
Rehman MA, Hasted TL, Persaud-Lachhman MG, Yin X, Carrillo C, Diarra MS. Genome Analysis and Multiplex PCR Method for the Molecular Detection of Coresistance to Cephalosporins and Fosfomycin in Salmonella enterica Serovar Heidelberg. J Food Prot 2019; 82:1938-1949. [PMID: 31633426 DOI: 10.4315/0362-028x.jfp-19-205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heidelberg is among the top three Salmonella enterica serovars associated with human foodborne illness in Canada. Traditional culture and antimicrobial susceptibility testing techniques can be time-consuming to identify Salmonella Heidelberg resistant to cephalosporins and fosfomycin. Rapid and accurate detection of such antibiotic-resistant Salmonella Heidelberg isolates is essential to adopt appropriate control measures. In this study, 15 Salmonella Heidelberg strains isolated from feces of Canadian broiler chickens were characterized by whole genome sequencing. Salmonella Heidelberg genomes had an average coverage of greater than 80-fold, an average of 4,761 protein-coding genes, and all belonged to multilocus sequence type ST15. Genome sequences were compared with genomes in the National Center for Biotechnology Information Pathogen Detection database ( www.ncbi.nlm.nih.gov/pathogens/ ), including human outbreak isolates. The Canadian broiler isolates clustered with chicken isolates from the United States and an equine clinical isolate from Ontario, Canada. In agreement with their antimicrobial resistance phenotypes, several chromosomally encoded specific antimicrobial resistance genes including fosA7 and multidrug resistance efflux pump determinants were detected. An AmpC-like β-lactamase gene, blaCMY-2, linked with a quaternary ammonium compound resistance gene, sugE, on a replicon type IncI1 plasmid was detected in all 15 broiler Salmonella Heidelberg isolates. Of the 205,031 published Salmonella genomes screened in silico, 4,954 (2.4%) contained blaCMY-2, 8,143 (4.0%) contained fosA7, and 919 (0.4%) contained both resistance genes. The combination of both resistance genes (fosA7 and blaCMY-2) was detected in 64% of the Heidelberg genomes and in a small proportion of various other serovars. A PCR method was developed to detect Salmonella Heidelberg in pure culture and chicken feces based on specific primers targeting genes conferring fosfomycin (fosA7) and third-generation cephalosporin (blaCMY-2) resistance as well as the Salmonella-specific invA gene and the universal 16S rRNA genes. The PCR assay was specific and sensitive for blaCMY-2 and fosA7 harboring Salmonella Heidelberg. However, some other Salmonella serovars containing these two resistance genes could also be detected by the developed PCR method.
Collapse
Affiliation(s)
- Muhammad Attiq Rehman
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93, Stone Road West, Guelph, Ontario, Canada N1G 5C9 (ORCID: https://orcid.org/0000-0002-2062-1969 [M.A.R.])
| | - Teri-Lyn Hasted
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93, Stone Road West, Guelph, Ontario, Canada N1G 5C9 (ORCID: https://orcid.org/0000-0002-2062-1969 [M.A.R.])
| | - Marissa G Persaud-Lachhman
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93, Stone Road West, Guelph, Ontario, Canada N1G 5C9 (ORCID: https://orcid.org/0000-0002-2062-1969 [M.A.R.])
| | - Xianhua Yin
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93, Stone Road West, Guelph, Ontario, Canada N1G 5C9 (ORCID: https://orcid.org/0000-0002-2062-1969 [M.A.R.])
| | - Catherine Carrillo
- Canadian Food Inspection Agency, 960, Carling Avenue, Building 22, Ottawa, Ontario, Canada K1A 0Y9
| | - Moussa S Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93, Stone Road West, Guelph, Ontario, Canada N1G 5C9 (ORCID: https://orcid.org/0000-0002-2062-1969 [M.A.R.])
| |
Collapse
|
18
|
Epidemiological significance of poultry litter for spreading the antibiotic-resistant strains of Escherichia coli. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s004393391600043x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Das Q, Lepp D, Yin X, Ross K, McCallum JL, Warriner K, Marcone MF, Diarra MS. Transcriptional profiling of Salmonella enterica serovar Enteritidis exposed to ethanolic extract of organic cranberry pomace. PLoS One 2019; 14:e0219163. [PMID: 31269043 PMCID: PMC6608956 DOI: 10.1371/journal.pone.0219163] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/17/2019] [Indexed: 11/19/2022] Open
Abstract
Non-typhoidal Salmonella enterica serovars continue to be an important food safety issue worldwide. Cranberry (Vaccinium macrocarpon Ait) fruits possess antimicrobial properties due to their various acids and phenolic compounds; however, the underlying mechanism of actions is poorly understood. We evaluated the effects of cranberry extracts on the growth rate of Salmonella enterica serovars Typhimurium, Enteritidis and Heidelberg and on the transcriptomic profile of Salmonella Enteritidis to gain insight into phenotypic and transcriptional changes induced by cranberry extracts on this pathogen. An ethanolic extract from cranberry pomaces (KCOH) and two of its sub-fractions, anthocyanins (CRFa20) and non-anthocyanin polyphenols (CRFp85), were used. The minimum inhibitory (MICs) and bactericidal (MBCs) concentrations of these fractions against tested pathogens were obtained using the broth micro-dilution method according to the Clinical Laboratory Standard Institute’s guidelines. Transcriptional profiles of S. Enteritidis grown in cation-adjusted Mueller-Hinton broth supplemented with or without 2 or 4 mg/ml of KCOH were compared by RNASeq to reveal gene modulations serving as markers for biological activity. The MIC and MBC values of KCOH were 8 and 16 mg/mL, respectively, against all tested S. enterica isolates. The MIC value was 4 mg/mL for both CRFa20 and CRFp85 sub-fractions, and a reduced MBC value was obtained for CRFp85 (4 mg/ml). Treatment of S. Enteritidis with KCOH revealed a concentration-dependent transcriptional signature. Compared to the control, 2 mg/ml of KCOH exposure resulted in 89 differentially expressed genes (DEGs), of which 53 and 36 were downregulated and upregulated, respectively. The upregulated genes included those involved in citrate metabolism, enterobactin synthesis and transport, and virulence. Exposure to 4 mg/ml KCOH led to the modulated expression of 376 genes, of which 233 were downregulated and 143 upregulated, which is 4.2 times more DEGs than from exposure to 2 mg/ml KCOH. The downregulated genes were related to flagellar motility, Salmonella Pathogenicity Island-1 (SPI-1), cell wall/membrane biogenesis, and transcription. Moreover, genes involved in energy production and conversion, carbohydrate transport and metabolism, and coenzyme transport and metabolism were upregulated during exposure to 4 mg/ml KCOH. Overall, 57 genes were differentially expressed (48 downregulated and 9 upregulated) in response to both concentrations. Both concentrations of KCOH downregulated expression of hilA, which is a major SPI-1 transcriptional regulator. This study provides information on the response of Salmonella exposed to cranberry extracts, which could be used in the control of this important foodborne pathogen.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Ontario, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Kelly Ross
- Summerland Research and Development Center, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Jason L. McCallum
- Charlottetown Research and Development Center, Agriculture and Agri-Food Canada, Charlottetown, Prince Edward Island, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Ontario, Canada
| | | | - Moussa S. Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
20
|
Roth N, Hofacre C, Zitz U, Mathis GF, Moder K, Doupovec B, Berghouse R, Domig KJ. Prevalence of antibiotic-resistant E. coli in broilers challenged with a multi-resistant E. coli strain and received ampicillin, an organic acid-based feed additive or a synbiotic preparation. Poult Sci 2019; 98:2598-2607. [PMID: 30690607 PMCID: PMC6527514 DOI: 10.3382/ps/pez004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/08/2019] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate the effect of ampicillin, an organic acid-based feed additive and a synbiotic preparation on the prevalence of antibiotic-resistant E. coli in the ceca of broilers. A total of 2000 broiler chickens (Ross 708) were randomly assigned to 5 groups with 8 replicates. The negative control group was the only group that was not subjected to avian pathogenic E. coli challenge, while all the other 4 groups received a multi-resistant E. coli strain that was resistant to ampicillin, cephalexin, and nalidixic acid as an oral challenge. The second group served as a challenge control, and the third group received the antibiotic ampicillin via water for 5 d. The fourth group received a feed additive based on organic acids and cinnamaldehyde, and the fifth group received a synbiotic preparation via feed and water. On day 17 and 38 of the trial, cecal samples from 3 birds from each of the 40 pens were obtained, and the E. coli counts and abundances of antibiotic-resistant E. coli were determined. Oral challenge with an avian pathogenic E. coli strain did not influence the performance, and there was no significant difference in growth performance between groups. The total E. coli count was lower (P < 0.05) in the group supplemented with the synbiotic than in the challenge control group on day 38 of the trial. Administration of an antibiotic for 5 d led to a significant increase in the abundance of E. coli strains resistant to ampicillin, amoxicillin-clavulanic acid, cefoxitin, and ceftriaxone. There was no increase in the abundance of antibiotic-resistant E. coli observed in the groups that received feed supplemented with an organic acid/cinnamaldehyde-based feed additive or a synbiotic. Moreover, the effects of the tested feed additives on the prevalence of resistant E. coli are demonstrated by the lower ceftriaxone minimal inhibitory concentration values for this group than for the antibiotic group. Additionally, the synbiotic group exhibited lower ceftriaxone minimal inhibitory concentration values than the antibiotic group.
Collapse
Affiliation(s)
- Nataliya Roth
- Department of Food Science and Technology, Institute of Food Science, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Charles Hofacre
- Department of Population Health, Poultry Diagnostics and Research Center, University of Georgia, 30602 Athens, Georgia, USA
| | - Ulrike Zitz
- Department of Food Science and Technology, Institute of Food Science, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Greg F Mathis
- Department of Population Health, Poultry Diagnostics and Research Center, University of Georgia, 30602 Athens, Georgia, USA
| | - Karl Moder
- Institute of Applied Statistics and Computing, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | | | - Roy Berghouse
- Southern Poultry Research Group, Inc. 30607-3153 Athens, Georgia, USA
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
21
|
Peralta-Sánchez JM, Martín-Platero AM, Ariza-Romero JJ, Rabelo-Ruiz M, Zurita-González MJ, Baños A, Rodríguez-Ruano SM, Maqueda M, Valdivia E, Martínez-Bueno M. Egg Production in Poultry Farming Is Improved by Probiotic Bacteria. Front Microbiol 2019; 10:1042. [PMID: 31178831 PMCID: PMC6543855 DOI: 10.3389/fmicb.2019.01042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the most serious threats for human health in the near future. Livestock has played an important role in the appearance of antibiotic-resistant bacteria, intestinal dysbiosis in farming animals, or the spread of AMR among pathogenic bacteria of human concern. The development of alternatives like probiotics is focused on maintaining or improving production levels while diminishing these negative effects of antibiotics. To this end, we supplied the potential probiotic Enterococcus faecalis UGRA10 in the diet of laying hens at a final concentration of 108 Colony Forming Units per gram (CFU/g) of fodder. Its effects have been analyzed by: (i) investigating the response of the ileum and caecum microbiome; and (ii) analyzing the outcome on eggs production. During the second half of the experimental period (40 to 76 days), hens fed E. faecalis UGRA10 maintained egg production, while control animals dropped egg production. Supplementation diet with E. faecalis UGRA10 significantly increased ileum and caecum bacterial diversity (higher bacterial operational taxonomic unit richness and Faith’s diversity index) of laying hens, with animals fed the same diet showing a higher similarity in microbial composition. These results point out to the beneficial effects of E. faecalis UGRA10 in egg production. Future experiments are necessary to unveil the underlying mechanisms that mediate the positive response of animals to this treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Baños
- Departamento de Microbiología y Biotecnología - DMC Research Center, Granada, Spain
| | - Sonia María Rodríguez-Ruano
- Departamento de Microbiología, Universidad de Granada, Granada, Spain.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Mercedes Maqueda
- Departamento de Microbiología, Universidad de Granada, Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Universidad de Granada, Granada, Spain.,Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Granada, Spain.,Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| |
Collapse
|
22
|
Chekabab SM, Rehman MA, Yin X, Carrillo C, Mondor M, Diarra MS. Growth of Salmonella enterica Serovars Typhimurium and Enteritidis in Iron-Poor Media and in Meat: Role of Catecholate and Hydroxamate Siderophore Transporters. J Food Prot 2019; 82:548-560. [PMID: 30901525 DOI: 10.4315/0362-028x.jfp-18-371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enteritidis and Typhimurium are among the top Salmonella enterica serovars implicated in human salmonellosis worldwide. This study examined the individual and combined roles of catecholate-iron and hydroxamate-iron transporters in the survival in meat of Salmonella Enteritidis and Typhimurium. Catecholate-iron-III (Fe3+) and hydroxamate-Fe3+ transporter genes fepA, iroN, and fhuACDB were deleted in isolates of these serovars to generate single, double, and triple mutants. Growth rate in high- and low-iron media was compared among mutants, complements, and their wild-type parents. Susceptibility to 14 antibiotics, the ability to produce and utilize siderophores, and survival on cooked chicken breast were evaluated. In iron-poor liquid media, differences were observed between the growth characteristics of mutant Salmonella Enteritidis and Typhimurium. The double Δ iroNΔ fepA and the triple Δ fhuΔ iroNΔ fepA mutants of Salmonella Enteritidis exhibited prolonged lag phases (λ = 9.72 and 9.53 h) and a slow growth rate (μmax = 0.35 and 0.25 h-1) similar to that of its Δ tonB mutant (λ = 10.12 h and μmax = 0.30 h-1). In Salmonella Typhimurium, double Δ iroNΔ fepA and triple Δ fhuΔ iroNΔ fepA mutations induced a similar growth pattern as its Δ tonB mutant. Double deletions of fepA and iroN reduced the siderophore production and the use of enterobactin as an iron source. In the Δ iroNΔ fepA mutant, but not in Δ fhuΔ iroNΔ fepA, the ferrichrome or deferrioxamine promoted growth for both serovars, confirming the specific role of the FhuACDB system in the uptake and transport of hydroxamate Fe3+. Survival of the mutants was also evaluated in a meat assay, and no difference in survival was observed among the mutants compared with wild type. This study showed differences between serovars in the importance of catecholate-iron and hydroxamate-iron uptake on Salmonella growth in iron-restricted media. Data also confirmed that both Salmonella Enteritidis and Typhimurium are well equipped to survive on cooked chicken meat, offering a rich iron condition.
Collapse
Affiliation(s)
- Samuel Mohammed Chekabab
- 1 Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Muhammad Attiq Rehman
- 1 Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Xianhua Yin
- 1 Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Catherine Carrillo
- 2 Canadian Food Inspection Agency, 960 Carling Avenue, Building 22, Ottawa, Ontario, Canada K1A 0Y9
| | - Martin Mondor
- 3 Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Québec, Canada J2S 8E3
| | - Moussa S Diarra
- 1 Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| |
Collapse
|
23
|
Ozdemir Z, Tras B, Uney K, Eser Faki H, Besoluk TM. Determination of milk/plasma ratio and milk and plasma pharmacokinetics of amoxicillin after intramuscular administration in lactating cows. J Vet Pharmacol Ther 2018; 42:45-51. [DOI: 10.1111/jvp.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Zeynep Ozdemir
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; University of Selcuk; Konya Turkey
| | - Bunyamin Tras
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; University of Selcuk; Konya Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; University of Selcuk; Konya Turkey
| | - Hatice Eser Faki
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; University of Selcuk; Konya Turkey
| | - Tugba Melike Besoluk
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; University of Selcuk; Konya Turkey
| |
Collapse
|
24
|
Antimicrobial Resistance in the Food Chain in the European Union. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 86:115-136. [PMID: 30077219 DOI: 10.1016/bs.afnr.2018.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Consumers require safety foods but without losing enough supply and low prices. Food concerns about antimicrobial residues and antimicrobial-resistant (AMR) bacteria are not usually appropriately separated and could be perceived as the same problem. The monitoring of residues of antimicrobials in animal food is well established at different levels (farm, slaughterhouse, and industry), and it is preceded by the legislation of veterinary medicines where maximum residues limits are required for medicines to be used in food animal. Following the strategy of the World Health Organization, one of the proposed measures consists in controlling the use of critical antibiotics. The European Union surveillance program currently includes the animal species with the highest meat production (pigs, chickens, turkeys, and cattle) and the food derived from them, investigating antimicrobial resistance of zoonotic (Salmonella and Campylobacter) and indicator (Escherichia coli and enterococci) bacteria. AMR mechanisms encoded by genes have a greater impact on transfer than mutations. Sometimes these genes are found in mobile genetic elements such as plasmids, transposons, or integrons, capable of passing from one bacterium to another by horizontal transfer. It is important to know that depending on how the resistance mechanism is transferred, the power of dissemination is different. By vertical transfer of the resistance gene, whatever its origin, will be transmitted to the following generations. In the case of horizontal transfer, the resistance gene moves to neighboring bacteria and therefore the range of resistance can be much greater.
Collapse
|
25
|
Roth N, Mayrhofer S, Gierus M, Weingut C, Schwarz C, Doupovec B, Berrios R, Domig KJ. Effect of an organic acids based feed additive and enrofloxacin on the prevalence of antibiotic-resistant E. coli in cecum of broilers. Poult Sci 2018; 96:4053-4060. [PMID: 29050428 DOI: 10.3382/ps/pex232] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/16/2017] [Indexed: 11/20/2022] Open
Abstract
Increasing antibiotic resistance is a major public health concern. Fluoroquinolones are used to treat and prevent poultry diseases worldwide. Fluoroquinolone resistance rates are high in their countries of use. The aim of this study was to evaluate the effect of an acids-based feed additive, as well as fluoroquinolone antibiotics, on the prevalence of antibiotic-resistant E. coli. A total of 480 broiler chickens (Ross 308) were randomly assigned to 3 treatments: a control group receiving a basal diet; a group receiving a feed additive (FA) based on formic acid, acetic acid and propionic acid; and an antibiotic enrofloxacin (AB) group given the same diet, but supplemented with enrofloxacin in water. A pooled fecal sample of one-day-old chicks was collected upon arrival at the experimental farm. On d 17 and d 38 of the trial, cecal samples from each of the 8 pens were taken, and the count of E. coli and antibiotic-resistant E. coli was determined.The results of the present study show a high prevalence of antibiotic-resistant E. coli in one-day-old chicks. Supplementation of the diet with FA and treatment of broilers with AB did not have a significant influence on the total number of E. coli in the cecal content on d 17 and d 38 of the trial. Supplementation with FA contributed to better growth performance and to a significant decrease (P ≤ 0.05) in E. coli resistant to ampicillin and tetracycline compared to the control and AB groups, as well as to a decrease (P ≤ 0.05) in sulfamethoxazole and ciprofloxacin-resistant E. coli compared to the AB group. Treatment with AB increased (P ≤ 0.05) the average daily weight compared to the control group and increased (P ≤ 0.05) the number of E. coli resistant to ciprofloxacin, streptomycin, sulfamethoxazole and tetracycline; it also decreased (P ≤ 0.05) the number of E. coli resistant to cefotaxime and extended spectrum beta-lactamase- (ESBL-) producing E. coli in the ceca of broilers.
Collapse
Affiliation(s)
- Nataliya Roth
- Department of Food Science and Technology, Institute of Food Science, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sigrid Mayrhofer
- Department of Food Science and Technology, Institute of Food Science, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Martin Gierus
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christine Weingut
- Department of Food Science and Technology, Institute of Food Science, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christiane Schwarz
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
26
|
Doregiraee F, Alebouyeh M, Nayeri Fasaei B, Charkhkar S, Tajeddin E, Zali MR. Changes in antimicrobial resistance patterns and dominance of extended spectrum β-lactamase genes among faecal Escherichia coli isolates from broilers and workers during two rearing periods. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1415703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatemeh Doregiraee
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Alebouyeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahar Nayeri Fasaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Charkhkar
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Elahe Tajeddin
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Antibiotic resistance, serogroups, virulence genes, and phylogenetic groups of Escherichia coli isolated from yaks with diarrhea in Qinghai Plateau, China. Gut Pathog 2017; 9:24. [PMID: 28546830 PMCID: PMC5443361 DOI: 10.1186/s13099-017-0174-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/21/2017] [Indexed: 11/15/2022] Open
Abstract
Background Ruminants serve as one of the most important reservoirs for pathogenic Escherichia coli. Infection with E. coli, a foodborne enteropathogen, can lead to asymptomatic infections that can cause life-threatening complications in humans. Therefore, from a clinical and human health perspective, it is important to know which virulence genes, phylogenetic groups, serogroups, and antibiotic resistance patterns are present in E. coli strains in yaks with diarrheic infections. Methods Two-hundred and ninety-two rectal swabs were collected from diarrheic yaks in Qinghai Plateau, China. The antimicrobial sensitivity of each resulting isolate was evaluated according to the disk diffusion method, and different PCR assays were performed for the detection of virulence genes and different phylogroups. Additionally, strains were allocated to different serogroups based on the presence of O antigen via the slide agglutination method. Results Among the E. coli isolates tested, most of the isolates were multidrug resistant (97%) and harbored at least one virulence gene (100%). We observed ten virulence genes (sfa, eaeA, cnf1, etrA, papC, hlyA, aer, faeG, rfc, and sepA), of which sfa was the most commonly found (96.9%). Significant positive associations between some resistance phenotypes and virulence genes were observed (P < 0.05, OR > 1). The majority of the E. coli isolates belonged to phylogroup A (79.5%), and the others belonged to phylogroups B1 (7.5%), D (4.1%), B2 (5.8%), and F (0.7%). Among all the E. coli strains tested, serogroups O91 and O145 were the most prevalent, accounting for 15.4 and 14.4%, respectively. Conclusions Our results suggest that yaks with diarrhea serve as a reservoir of pathogenic E. coli carrying various virulence genes and resistance phenotypes. Therefore, clinicians and relevant authorities must ensure the regulatory use of antimicrobial agents and prevent the spread of these organisms through manure to farm workers and food-processing plants.
Collapse
|
28
|
Trongjit S, Angkittitrakul S, Chuanchuen R. Occurrence and molecular characteristics of antimicrobial resistance of Escherichia coli from broilers, pigs and meat products in Thailand and Cambodia provinces. Microbiol Immunol 2017; 60:575-85. [PMID: 27474453 DOI: 10.1111/1348-0421.12407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/06/2016] [Accepted: 07/24/2016] [Indexed: 11/29/2022]
Abstract
Nine hundred and forty-one samples were collected in Sa Keao, Thailand (n = 554) and Banteay Meanchey, Cambodia (n = 387) from July 2014 to January 2015. A total of 667 Escherichia coli isolates (381 isolates from Sa Keao and 286 isolates from Banteay Meanchey) were obtained and examined for antimicrobial susceptibility, class 1 integrons, ESBL genes and horizontal transfer of resistance determinants. Prevalence of E. coli in pig and broiler carcass samples from slaughterhouses and fresh markets was 36-85% in Sa Keao and 11-69% in Banteay Meanchey. The majority of these isolates were multidrug resistant (75.3%). Class 1 integrons were common in both Thai (47%) and Cambodian (62%) isolates, of which four resistance gene cassette arrays including aadA1, dfrA1-aadA1, dfrA12-aadA2 and aadA2-linF were identified. Class 1 integrons in two broiler isolates from Sa Keao (dfrA12-aadA2) and one broiler isolate from Banteay Meanchey (dfrA1-aadA1) were horizontally transferable. Sixteen isolates were confirmed to be ESBL-producing strains with ESBL gene blaCTX-M-15 , broad spectrum β-lactamase gene blaTEM-1 and the AmpC gene blaCMY-2 being detected. The blaTEM-1 gene was most prevalent and located on a conjugative plasmid.
Collapse
Affiliation(s)
- Suthathip Trongjit
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunpetch Angkittitrakul
- Research Group for Prevention Technology in Livestock, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40000, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
29
|
HAKIM H, TOYOFUKU C, OTA M, SUZUKI M, KOMURA M, YAMADA M, ALAM MS, SANGSRIRATANAKUL N, SHOHAM D, TAKEHARA K. Accuracy of the evaluation method for alkaline agents' bactericidal efficacies in solid, and the required time of bacterial inactivation. J Vet Med Sci 2017; 79:244-247. [PMID: 27890906 PMCID: PMC5326925 DOI: 10.1292/jvms.16-0553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022] Open
Abstract
An alkaline agent, namely food additive grade calcium hydroxide (FdCa (OH)2) in the powder form, was evaluated for its bactericidal efficacies in chicken feces at pH 13. The point for this evaluation was neutralization of the alkaline agent's pH at the time of bacterial recovery, since otherwise the results are substantially misleading. Without neutralization of the FdCa (OH)2 pH, the spiked bacteria were killed within min at the time of recovery in aqueous phase, but not in the solid form in feces, hence, it has been demonstrated that when bacteria were in solid, it took longer time than in liquid for the alkaline agent to inactivate them down to the acceptable level (≥3 log10 CFU/ml).
Collapse
Affiliation(s)
- Hakimullah HAKIM
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
- The United Graduate School of Veterinary Science, Gifu
University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Chiharu TOYOFUKU
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mari OTA
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mayuko SUZUKI
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Miyuki KOMURA
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Masashi YAMADA
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Md. Shahin ALAM
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
- The United Graduate School of Veterinary Science, Gifu
University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Natthanan SANGSRIRATANAKUL
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
- The United Graduate School of Veterinary Science, Gifu
University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Dany SHOHAM
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
- Bar-Ilan University, Begin-Sadat Center for Strategic
Studies, Ramat Gan 5290002, Israel
| | - Kazuaki TAKEHARA
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
- The United Graduate School of Veterinary Science, Gifu
University, 1-1, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
30
|
Odumosu BT, Ajetunmobi O, Dada-Adegbola H, Odutayo I. Antibiotic susceptibility pattern and analysis of plasmid profiles of Pseudomonas aeruginosa from human, animal and plant sources. SPRINGERPLUS 2016; 5:1381. [PMID: 27610300 PMCID: PMC4993735 DOI: 10.1186/s40064-016-3073-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022]
Abstract
Multidrug resistant organisms (MDROs) constitute a major public health threat globally. Clinical isolates of Pseudomonas aeruginosa remains one of the most studied MDROs however there is paucity of information regarding the susceptibility of its animal and plants isolates to antipseudomonas drug in Nigeria. From a total of 252 samples consisting of plants, animals and clinical samples, 54, 24 and 22 P. aeruginosa were isolated from vegetables, animals and clinical sources respectively. All the isolates were identified by standard biochemical methods. Antimicrobial susceptibility testing (AST) of the 100 P. aeruginosa isolates against 7 antipseudomonal drugs was carried out by disk diffusion method, the phenotypic detection of ESBL was done by double disk synergy test (DDST) while plasmid extraction on 20 selected isolates based on their resistance to 2 or more classes of antibiotics was carried out by alkaline lysis method and analysed with Lambda DNA/Hind lll marker respectively. The AST results revealed highest resistance of 91 and 55 % to ceftazidime and carbenicillin respectively while highest susceptibilities of 99 % for piperacillin–tazobactam and imipenem were recorded in overall assay. Fifteen out of 100 isolates specifically (10) from vegetables, (3) clinical and (2) poultry isolates showed synergy towards the beta-lactamase inhibitor indicating production of ESBL by DDST method. Detection of plasmids was among vegetable (n = 4), poultry (n = 4), cow (n = 3) and clinical isolates (n = 1). Plasmid profile for the selected isolates revealed 6 of the strains had one plasmids each while 5 strains possessed 2–4 plasmids and 1 strain had 5 plasmids. The sizes of the plasmid range from <1 to ≥23kbp. Detection of ESBL and Plasmids among the investigated isolates is suggestive of multiple interplay of resistance mechanism among the isolates. Plants and animal isolates of P. aeruginosa harbouring multiple mechanisms of resistance is of concern due to the danger it poses on the public health.
Collapse
Affiliation(s)
| | - Olabayo Ajetunmobi
- Department of Biosciences and Biotechnology, Babcock University, Ilisan-Remo, Nigeria
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, University of Ibadan, Ibadan, Nigeria
| | - Idowu Odutayo
- Department of Biosciences and Biotechnology, Babcock University, Ilisan-Remo, Nigeria
| |
Collapse
|
31
|
Iweriebor BC, Obi LC, Okoh AI. Macrolide, glycopeptide resistance and virulence genes in Enterococcus species isolates from dairy cattle. J Med Microbiol 2016; 65:641-648. [DOI: 10.1099/jmm.0.000275] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Benson C. Iweriebor
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Larry C. Obi
- Academic and Research Division, University of Fort Hare, Alice, Eastern Cape, South Africa
| | - Anthony I. Okoh
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
32
|
Wyrsch ER, Roy Chowdhury P, Chapman TA, Charles IG, Hammond JM, Djordjevic SP. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis. Front Microbiol 2016; 7:843. [PMID: 27379026 PMCID: PMC4908116 DOI: 10.3389/fmicb.2016.00843] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/22/2016] [Indexed: 11/18/2022] Open
Abstract
Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Ethan R Wyrsch
- The ithree Institute, University of Technology Sydney, Sydney NSW, Australia
| | - Piklu Roy Chowdhury
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia; NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, SydneyNSW, Australia
| | - Toni A Chapman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Sydney NSW, Australia
| | - Ian G Charles
- Institute of Food Research, Norwich Research Park Norwich, UK
| | - Jeffrey M Hammond
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Sydney NSW, Australia
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Sydney NSW, Australia
| |
Collapse
|
33
|
Simmons K, Islam MR, Rempel H, Block G, Topp E, Diarra MS. Antimicrobial Resistance of Escherichia fergusonii Isolated from Broiler Chickens. J Food Prot 2016; 79:929-38. [PMID: 27296596 DOI: 10.4315/0362-028x.jfp-15-575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to investigate the antibiotic resistance of Escherichia fergusonii isolated from commercial broiler chicken farms. A total of 245 isolates from cloacal and cecal samples of 28- to 36-day-old chickens were collected from 32 farms. Isolates were identified using PCR, and their susceptibility to 16 antibiotics was determined by disk diffusion assay. All isolates were susceptible to meropenem, amikacin, and ciprofloxacin. The most common resistances were against ampicillin (75.1%), streptomycin (62.9%), and tetracycline (57.1%). Of the 184 ampicillin-resistant isolates, 127 were investigated using a DNA microarray carrying 75 probes for antibiotic resistance genetic determinants. Of these 127 isolates, the β-lactamase blaCMY2, blaTEM, blaACT, blaSHV, and blaCTX-M-15 genes were detected in 120 (94.5%), 31 (24.4%), 8 (6.3%), 6 (4.7%), and 4 (3.2%) isolates, respectively. Other detected genes included those conferring resistance to aminoglycosides (aadA1, strA, strB), trimethoprims (dfrV, dfrA1), tetracyclines (tetA, tetB, tetC, tetE), and sulfonamides (sul1, sul2). Class 1 integron was found in 35 (27.6%) of the ampicillin-resistant isolates. However, our data showed that the tested E. fergusonii did not carry any carbapenemase blaOXA genes. Pulsed-field gel electrophoresis revealed that the selected ampicillin-resistant E. fergusonii isolates were genetically diverse. The present study indicates that the monitoring of antimicrobial-resistant bacteria should include enteric bacteria such as E. fergusonii, which could be a reservoir of antibiotic resistance genes. The detection of isolates harboring extended-spectrum β-lactamase genes, particularly blaCTX-M-15, in this work suggests that further investigations on the occurrence of such genes in broilers are warranted.
Collapse
Affiliation(s)
- Karen Simmons
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Agassiz, British Columbia, Canada V0M 1A0
| | - M Rashedul Islam
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada N1G 5C9
| | - Heidi Rempel
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Agassiz, British Columbia, Canada V0M 1A0
| | - Glenn Block
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Agassiz, British Columbia, Canada V0M 1A0
| | - Edward Topp
- London Research and Development Centre, AAFC, London, Ontario, Canada N5V 4T3
| | - Moussa S Diarra
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada N1G 5C9.
| |
Collapse
|
34
|
Li XL, He WL, Wang ZB, Xu TS. Effects of Chinese herbal mixture on performance, egg quality and blood biochemical parameters of laying hens. J Anim Physiol Anim Nutr (Berl) 2016; 100:1041-1049. [DOI: 10.1111/jpn.12473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/23/2015] [Indexed: 12/25/2022]
Affiliation(s)
- X. L. Li
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang Henan People's Republic of China
| | - W. L. He
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang Henan People's Republic of China
| | - Z. B. Wang
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang Henan People's Republic of China
| | - T. S. Xu
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang Henan People's Republic of China
| |
Collapse
|
35
|
Hakim H, Alam MS, Sangsriratanakul N, Nakajima K, Kitazawa M, Ota M, Toyofuku C, Yamada M, Thammakarn C, Shoham D, Takehara K. Inactivation of bacteria on surfaces by sprayed slightly acidic hypochlorous acid water: in vitro experiments. J Vet Med Sci 2016; 78:1123-8. [PMID: 27052464 PMCID: PMC4976267 DOI: 10.1292/jvms.16-0075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The capacity of slightly acidic hypochlorous acid water (SAHW), in both liquid and spray form, to inactivate bacteria was evaluated as a potential candidate for biosecurity enhancement in poultry production. SAHW (containing 50 or 100 ppm chlorine, pH 6) was able to inactivate Escherichia coli and Salmonella Infantis in liquid to below detectable levels (≤2.6 log10 CFU/ml) within 5 sec of exposure. In addition, SAHW antibacterial capacity was evaluated by spraying it using a nebulizer into a box containing these bacteria, which were present on the surfaces of glass plates and rayon sheets. SAHW was able to inactivate both bacterial species on the glass plates (dry condition) and rayon sheets within 5 min spraying and 5 min contact times, with the exception of 50 ppm SAHW on the rayon sheets. Furthermore, a corrosivity test determined that SAHW does not corrode metallic objects, even at the longest exposure times (83 days). Our findings demonstrate that SAHW is a good candidate for biosecurity enhancement in the poultry industry. Spraying it on the surfaces of objects, eggshells, egg incubators and transport cages could reduce the chances of contamination and disease transmission. These results augment previous findings demonstrating the competence of SAHW as an anti-viral disinfectant.
Collapse
Affiliation(s)
- Hakimullah Hakim
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ayeni FA, Odumosu BT, Oluseyi AE, Ruppitsch W. Identification and prevalence of tetracycline resistance in enterococci isolated from poultry in Ilishan, Ogun State, Nigeria. J Pharm Bioallied Sci 2016; 8:69-73. [PMID: 26957873 PMCID: PMC4766783 DOI: 10.4103/0975-7406.171729] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Tetracycline is one of the most frequently used antibiotics in Nigeria both for human and animal infections because of its cheapness and ready availability. The use of tetracycline in animal husbandry could lead to horizontal transfer of tet genes from poultry to human through the gut microbiota, especially enterococci. Therefore, this study is designed to identify different enterococcal species from poultry feces in selected farms in Ilishan, Ogun State, Nigeria, determine the prevalence of tetracycline resistance/genes and presence of IS256 in enterococcal strains. Materials and Methods: Enterococci strains were isolated from 100 fresh chicken fecal samples collected from seven local poultry farms in Ilishan, Ogun State, Nigeria. The strains were identified by partial sequencing of 16S rRNA genes. Antibiotic susceptibility of the isolates to vancomycin, erythromycin, tetracycline, gentamicin, amoxycillin/claulanate, and of loxacin were performed by disc diffusion method. Detection of tet, erm, and van genes and IS256 insertion element were done by polymerase chain reaction amplification. Results: Sixty enterococci spp. were identified comprising of Enterococcus faecalis 33 (55%), Enterococcus casseliflavus 21 (35%), and Enterococcus gallinarium 6 (10%). All the isolates were resistant to erythromycin (100%), followed by tetracycline (81.67%), amoxicillin/clavulanic acid (73.33%), ofloxacin (68.33%), vancomycin (65%), and gentamicin (20%). None of the enterococcal spp. harbored the van and erm genes while tet(M) was detected among 23% isolates and is distributed mostly among E. casseliflavus. IS256 elements were detected only in 33% of E. casseliflavus that were also positive for tet(M) gene. Conclusion: This study provides evidence that tetracycline resistance gene is present in the studied poultry farms in Ilishan, Ogun State, Nigeria and underscores the need for strict regulation on tetracycline usage in poultry farming in the studied location and consequently Nigeria.
Collapse
Affiliation(s)
- Funmilola A Ayeni
- Department of Pharmaceutical Microbiology, University of Ibadan, Nigeria, Vienna, Austria; Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Bamidele Tolulope Odumosu
- Department of Microbiology, University of Lagos, Akoka Yaba Lagos, Nigeria; Department of Bioscience and Biotechnology, Babcock University, Ilishan_Remo, Nigeria
| | - Adekola E Oluseyi
- Department of Bioscience and Biotechnology, Babcock University, Ilishan_Remo, Nigeria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| |
Collapse
|
37
|
Dhanani AS, Block G, Dewar K, Forgetta V, Topp E, Beiko RG, Diarra MS. Genomic Comparison of Non-Typhoidal Salmonella enterica Serovars Typhimurium, Enteritidis, Heidelberg, Hadar and Kentucky Isolates from Broiler Chickens. PLoS One 2015; 10:e0128773. [PMID: 26083489 PMCID: PMC4470630 DOI: 10.1371/journal.pone.0128773] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/01/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Non-typhoidal Salmonella enterica serovars, associated with different foods including poultry products, are important causes of bacterial gastroenteritis worldwide. The colonization of the chicken gut by S. enterica could result in the contamination of the environment and food chain. The aim of this study was to compare the genomes of 25 S. enterica serovars isolated from broiler chicken farms to assess their intra- and inter-genetic variability, with a focus on virulence and antibiotic resistance characteristics. METHODOLOGY/PRINCIPAL FINDING The genomes of 25 S. enterica isolates covering five serovars (ten Typhimurium including three monophasic 4,[5],12:i:, four Enteritidis, three Hadar, four Heidelberg and four Kentucky) were sequenced. Most serovars were clustered in strongly supported phylogenetic clades, except for isolates of serovar Enteritidis that were scattered throughout the tree. Plasmids of varying sizes were detected in several isolates independently of serovars. Genes associated with the IncF plasmid and the IncI1 plasmid were identified in twelve and four isolates, respectively, while genes associated with the IncQ plasmid were found in one isolate. The presence of numerous genes associated with Salmonella pathogenicity islands (SPIs) was also confirmed. Components of the type III and IV secretion systems (T3SS and T4SS) varied in different isolates, which could explain in part, differences of their pathogenicity in humans and/or persistence in broilers. Conserved clusters of genes in the T3SS were detected that could be used in designing effective strategies (diagnostic, vaccination or treatments) to combat Salmonella. Antibiotic resistance genes (CMY, aadA, ampC, florR, sul1, sulI, tetAB, and srtA) and class I integrons were detected in resistant isolates while all isolates carried multidrug efflux pump systems regardless of their antibiotic susceptibility profile. CONCLUSIONS/SIGNIFICANCE This study showed that the predominant Salmonella serovars in broiler chickens harbor genes encoding adhesins, flagellar proteins, T3SS, iron acquisition systems, and antibiotic and metal resistance genes that may explain their pathogenicity, colonization ability and persistence in chicken. The existence of mobile genetic elements indicates that isolates from a given serovar could acquire and transfer genetic material. Conserved genes in the T3SS and T4SS that we have identified are promising candidates for identification of diagnostic, antimicrobial or vaccine targets for the control of Salmonella in broiler chickens.
Collapse
Affiliation(s)
- Akhilesh S. Dhanani
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Glenn Block
- Pacific Agri-Food Research Center, Agriculture and Agri-Food Canada (AAFC), Agassiz, British Columbia, V0M 1A0, Canada
| | - Ken Dewar
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, H3A 1A4, Canada
| | - Vincenzo Forgetta
- Lady Davis Institute for Medical Research, Montréal, Québec, H3T 1E2, Canada
| | - Edward Topp
- Southern Crop Protection and Food Research Centre, AAFC, London, Ontario, N5V 4T3, Canada
| | - Robert G. Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Moussa S. Diarra
- Pacific Agri-Food Research Center, Agriculture and Agri-Food Canada (AAFC), Agassiz, British Columbia, V0M 1A0, Canada
- * E-mail:
| |
Collapse
|
38
|
Olonitola OS, Fahrenfeld N, Pruden A. Antibiotic resistance profiles among mesophilic aerobic bacteria in Nigerian chicken litter and associated antibiotic resistance genes. Poult Sci 2015; 94:867-74. [DOI: 10.3382/ps/pev069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2015] [Indexed: 01/19/2023] Open
|
39
|
Markland SM, LeStrange KJ, Sharma M, Kniel KE. Old Friends in New Places: Exploring the Role of ExtraintestinalE. coliin Intestinal Disease and Foodborne Illness. Zoonoses Public Health 2015; 62:491-6. [DOI: 10.1111/zph.12194] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Indexed: 12/13/2022]
Affiliation(s)
- S. M. Markland
- Department of Animal and Food Sciences; University of Delaware; Newark DE USA
| | - K. J. LeStrange
- Department of Animal and Food Sciences; University of Delaware; Newark DE USA
| | - M. Sharma
- Environmental Microbial and Food Safety Laboratory; USDA-Agricultural Research Service; Beltsville MD USA
| | - K. E. Kniel
- Department of Animal and Food Sciences; University of Delaware; Newark DE USA
| |
Collapse
|
40
|
Cai L, Park Y, Seong S, Yoo S, Kim I. Effects of rare earth elements-enriched yeast on growth performance, nutrient digestibility, meat quality, relative organ weight, and excreta microflora in broiler chickens. Livest Sci 2015. [DOI: 10.1016/j.livsci.2014.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Al-Tawfiq JA, Memish ZA. Potential risk for drug resistance globalization at the Hajj. Clin Microbiol Infect 2014; 21:109-14. [PMID: 25682276 DOI: 10.1016/j.cmi.2014.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/20/2022]
Abstract
Antibiotics were once considered the miracle cure for infectious diseases. The tragedy would be the loss of these miracles as we witness increased antibiotic resistance throughout the world. One of the concerns during mass gatherings is the transmission of antibiotic resistance. Hajj is one of the most common recurring mass gatherings, attracting millions of people from around the world. The transmission of drug-resistant organisms during the Hajj is not well described. In the current review, we summarize the available literature on the transmission and acquisition of antibiotic resistance during the Hajj and present possible solutions.
Collapse
Affiliation(s)
- J A Al-Tawfiq
- Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN, USA
| | - Z A Memish
- Ministry of Health, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
42
|
Abstract
Incompatibility group IncA/C plasmids are large, low copy, theta-replicating plasmids that have been described in the literature for over 40 years. However, they have only recently been intensively studied on the genomic level because of their associations with the emergence of multidrug resistance in enteric pathogens of humans and animals. These plasmids are unique among other enterobacterial plasmids in many aspects, including their modular structure and gene content. While the IncA/C plasmid genome structure has now been well defined, many questions remain pertaining to their basic biological mechanisms of dissemination and regulation. Here, we discuss the history of IncA/C plasmids in light of our recent understanding of their population distribution, genomics, and effects on host bacteria.
Collapse
Affiliation(s)
- Timothy J Johnson
- Department of Veterinary and Biomedical Sciences; University of Minnesota; Saint Paul, MN USA
| | | |
Collapse
|
43
|
Diarra MS, Malouin F. Antibiotics in Canadian poultry productions and anticipated alternatives. Front Microbiol 2014; 5:282. [PMID: 24987390 PMCID: PMC4060556 DOI: 10.3389/fmicb.2014.00282] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/22/2014] [Indexed: 12/31/2022] Open
Abstract
The use of antibiotics in food-producing animals has significantly increased animal health by lowering mortality and the incidence of diseases. Antibiotics also have largely contributed to increase productivity of farms. However, antibiotic usage in general and relevance of non-therapeutic antibiotics (growth promoters) in feed need to be reevaluated especially because bacterial pathogens of humans and animals have developed and shared a variety of antibiotic resistance mechanisms that can easily be spread within microbial communities. In Canada, poultry production involves more than 2600 regulated chicken producers who have access to several antibiotics approved as feed additives for poultry. Feed recipes and mixtures vary greatly geographically and from one farm to another, making links between use of a specific antibiotic feed additive and production yields or selection of specific antibiotic-resistant bacteria difficult to establish. Many on-farm studies have revealed the widespread presence of antibiotic-resistant bacteria in broiler chickens. While some reports linked the presence of antibiotic-resistant organisms to the use of feed supplemented with antibiotics, no recent studies could clearly demonstrate the benefit of antimicrobial growth promoters on performance and production yields. With modern biosecurity and hygienic practices, there is a genuine concern that intensive utilization of antibiotics or use of antimicrobial growth promoters in feed might no longer be useful. Public pressure and concerns about food and environmental safety (antibiotic residues, antibiotic-resistant pathogens) have driven researchers to actively look for alternatives to antibiotics. Some of the alternatives include pre- and probiotics, organic acids and essential oils. We will describe here the properties of some bioactive molecules, like those found in cranberry, which have shown interesting polyvalent antibacterial and immuno-stimulatory activities.
Collapse
Affiliation(s)
- Moussa S. Diarra
- Pacific Agri-Food Research Center, Agriculture and Agri-Food CanadaAgassiz, BC, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Centre d'Étude et de Valorisation de la Diversité Microbienne, Université de SherbrookeSherbrooke, QC, Canada
| |
Collapse
|
44
|
Temple WD, Skowrońska M, Bomke AA. Centrifugal spreader mass and nutrients distribution patterns for application of fresh and aged poultry litter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 139:200-207. [PMID: 24705099 DOI: 10.1016/j.jenvman.2014.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 11/03/2013] [Accepted: 02/13/2014] [Indexed: 06/03/2023]
Abstract
A spin-type centrifugal spreader was evaluated using fresh and aged poultry litter upon dry mass, product nitrogen (N), phosphorus (P) and potassium (K), incubation study soil available N and particle size distribution patterns. Relative to the aged litter (37% moisture content), the fresh litter (17% moisture content) had greater <1.00 mm particle size fraction weights and atmospheric particulate was launched, which posed as a potential fallout to adjacent fields, waterways and residences. Relative to the aged litter, the broadcast fresh litter resulted in higher coefficients of variation (CV) over its transverse distance, a narrower calculated space distance between passes for uniform spread and lower soil available N concentrations. For nitrogen application over the broadcast transverse distance the fresh litter displayed a high R(2) best fit 4th order polynomial distribution pattern, while the aged litter showed high R(2) best fit 6th order polynomial distribution pattern. A soil incubation study of the fresh and aged broadcast litter resulted in a more variable or lower R(2) best fit 2nd order polynomial distribution pattern. For both the fresh and aged litter, the calculated distance between passes to achieve a uniform mass distribution was greater than that required for the broadcast of soil available N. For the fresh litter, the soil available N and litter P concentration levels strongly correlated (relatively high p and R(2) values) with the <1.00 mm fraction weight, while for the aged litter this relationship was not as significant. In addition to reducing the health risk (i.e. pathogens, antibiotic residues and resistant bacteria) and/or environment issues (particulate fallout onto waterways, adjacent fields and/or residences) our study mass, particulate and N distribution patterns results suggest that poultry litter should be allowed to age before broadcast application is attempted.
Collapse
Affiliation(s)
- W D Temple
- Faculty of Land and Food Systems, University of British Columbia, MCML 185 - 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - M Skowrońska
- University of Life Sciences in Lublin, Department of Agricultural and Environmental Chemistry, Akademicka 15, 20-950 Lublin, Poland.
| | - A A Bomke
- Faculty of Land and Food Systems, University of British Columbia, MCML 185 - 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
45
|
Gaastra W, Kusters JG, van Duijkeren E, Lipman LJA. Escherichia fergusonii. Vet Microbiol 2014; 172:7-12. [PMID: 24861842 DOI: 10.1016/j.vetmic.2014.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
Escherichia fergusonii was introduced in the genus Escherichia almost 65 years later than Escherichia coli after which the genus was named. From then (1985) onwards mainly case reports on E. fergusonii associated with disease in individuals of veterinary or human origin have been reported and only very few more extensive studies became available. This has resulted in very fragmented knowledge on this organism. The aim of this manuscript is to give an overview of what is known on E. fergusonii today and to stimulate more research on this organism so that better insight can be obtained in the role that E. fergusonii plays in human and animal infections.
Collapse
Affiliation(s)
- W Gaastra
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - J G Kusters
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - E van Duijkeren
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - L J A Lipman
- Division of Veterinary Public Health, Institute for Risk Assessment Sciences, Utrecht University, The Netherlands.
| |
Collapse
|
46
|
Al-Moghazy M, Boveri S, Pulvirenti A. Microbiological safety in pistachios and pistachio containing products. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.07.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Duplex PCR methods for the molecular detection of Escherichia fergusonii isolates from broiler chickens. Appl Environ Microbiol 2014; 80:1941-8. [PMID: 24441160 DOI: 10.1128/aem.04169-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia fergusonii is an emerging pathogen that has been isolated from a wide range of infections in animals and humans. Primers targeting specific genes, including yliE (encoding a conserved hypothetical protein of the cellulose synthase and regulator of cellulose synthase island), EFER_1569 (encoding a hypothetical protein, putative transcriptional activator for multiple antibiotic resistance), and EFER_3126 (encoding a putative triphosphoribosyl-dephospho-coenzyme A [CoA]), were designed for the detection of E. fergusonii by conventional and real-time PCR methods. Primers were screened by in silico PCR against 489 bacterial genomic sequences and by both PCR methods on 55 reference and field strains. Both methods were specific and sensitive for E. fergusonii, showing amplification only for this bacterium. Conventional PCR required a minimum bacterial concentration of approximately 10(2) CFU/ml, while real-time PCR required a minimum of 0.3 pg of DNA for consistent detection. Standard curves showed an efficiency of 98.5%, with an R(2) value of 0.99 for the real-time PCR assay. Cecal and cloacal contents from 580 chickens were sampled from broiler farms located in the Fraser Valley (British Columbia, Canada). Presumptive E. fergusonii isolates were recovered by enrichment and plating on differential and selective media. Of 301 total presumptive isolates, 140 (46.5%) were identified as E. fergusonii by biochemical profiling with the API 20E system and 268 (89.0%) using PCR methods. E. fergusonii detection directly from cecal and cloacal samples without preenrichment was achieved with both PCR methods. Hence, the PCR methods developed in this work significantly improve the detection of E. fergusonii.
Collapse
|
48
|
Diarra MS, Delaquis P, Rempel H, Bach S, Harlton C, Aslam M, Pritchard J, Topp E. Antibiotic resistance and diversity of Salmonella enterica serovars associated with broiler chickens. J Food Prot 2014; 77:40-9. [PMID: 24405997 DOI: 10.4315/0362-028.jfp-13-251] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to analyze the antibiotic resistance phenotype and genotype of Salmonella isolated from broiler production facilities. A total of 193 Salmonella isolates recovered from commercial farms in British Columbia, Canada, were evaluated. Susceptibility to antibiotics was determined with the Sensititre system. Virulence and antibiotic resistance genes were detected by PCR assay. Genetic diversity was determined by pulse-field gel electrophoresis (PFGE) typing. Seventeen serovars of Salmonella were identified. The most prevalent Salmonella serovars were Kentucky (29.0% of isolates), Typhimurium (23.8%), Enteritidis (13.5%), and Hadar (11.9%); serovars Heidelberg, Brandenburg, and Thompson were identified in 7.7, 4.1, and 3.6% of isolates, respectively. More than 43% of the isolates were simultaneously resistant to ampicillin, amoxicillin-clavulanic acid, ceftiofur, cefoxitim, and ceftriaxone. This β-lactam resistance pattern was observed in 33 (58.9%) of the Salmonella Kentucky isolates; 2 of these isolates were also resistant to chloramphenicol, streptomycin, sulfisoxazole, and tetracycline. Genes associated with resistance to aminoglycosides (aadA1, aadA2, and strA), β-lactams (blaCMY-2, blaSHV, and blaTEM), tetracycline (tetA and tetB), and sulfonamide (sul1) were detected among corresponding resistant isolates. The invasin gene (invA) and the Salmonella plasmid virulence gene (spvC) were found in 97.9 and 25.9% of the isolates, respectively, with 33 (71.7%) of the 46 Salmonella Typhimurium isolates and 17 (65.4%) of the 26 Salmonella Enteritidis isolates carrying both invA and spvC. PGFE typing revealed that the antibiotic-resistant serovars were genetically diverse. These data confirm that broiler chickens can be colonized by genetically diverse antibiotic-resistant Salmonella isolates harboring virulence determinants. The presence of such strains is highly relevant to food safety and public health.
Collapse
Affiliation(s)
- Moussa Sory Diarra
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada V0M 1A0
| | - Pascal Delaquis
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada V0H 1Z0
| | - Heidi Rempel
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada V0M 1A0
| | - Susan Bach
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada V0H 1Z0
| | - Colleen Harlton
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada V0H 1Z0
| | - Mueen Aslam
- Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, Alberta, Canada T4L 1W1
| | - Jane Pritchard
- British Columbia Ministry of Agriculture, Abbotsford, British Columbia, Canada V3G 2M3
| | - Edward Topp
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada N5V 4T34
| |
Collapse
|
49
|
Fatima M, Rempel H, Kuang XT, Allen KJ, Cheng KM, Malouin F, Diarra MS. Effect of 3',5'-cyclic diguanylic acid in a broiler Clostridium perfringens infection model. Poult Sci 2013; 92:2644-50. [PMID: 24046411 DOI: 10.3382/ps.2013-03143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an effort to explore strategies to control Clostridium perfringens, we investigated the synergistic effect of a ubiquitous bacterial second messenger 3',5'-cyclic diguanylic acid (c-di-GMP) with penicillin G in a broiler challenge model. All chicks were inoculated in the crop by gavage on d 14, 15, and 16 with a mixture of 4 C. perfringens strains. Birds were treated with saline (control group) or 20 nmol of c-di-GMP by gavage or intramuscularly (IM) on d 24, all in conjunction with penicillin G in water for 5 d. Weekly samplings of ceca and ileum were performed on d 21 to 35 for C. perfringens and Lactobacillus enumeration. On d 35 of age, the IM treatment significantly (P < 0.05) reduced C. perfringens in the ceca, suggesting possible synergistic activity between penicillin G and c-di-GMP against C. perfringens in broiler ceca. Moreover, analysis of ceca DNA for the presence of a series of C. perfringens virulence genes showed a prevalence of 30% for the Clostridium perfringens alpha-toxin gene (cpa) from d 21 to 35 in the IM-treated group, whereas the occurrence of the cpa gene increased from 10 to 60% in the other 2 groups (control and gavage) from d 21 to 35. Detection of β-lactamase genes (blaCMY-2, blaSHV, and blaTEM) indicative of gram-negative bacteria in the same samples from d 21 to 35 did not show significant treatment effects. Amplified fragment-length polymorphism showed a predominant 92% similarity between the ceca of 21-d-old control birds and the 35-d-old IM-treated c-di-GMP group. This suggests that c-di-GMP IM treatment might be effective at restoring the normal microflora of the host on d 35 after being challenged by C. perfringens. Our results suggest that c-di-GMP can reduce the colonization of C. perfringens in the gut without increasing the selection pressure for some β-lactamase genes or altering the commensal bacterial population.
Collapse
Affiliation(s)
- Mussarat Fatima
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, PO Box 1000, 6947 Highway 7, Agassiz, BC, Canada V0M 1A0
| | | | | | | | | | | | | |
Collapse
|
50
|
In vitro and in vivo antibacterial activities of cranberry press cake extracts alone or in combination with β-lactams against Staphylococcus aureus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:90. [PMID: 23622254 PMCID: PMC3641957 DOI: 10.1186/1472-6882-13-90] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/18/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cranberry fruits possess many biological activities partly due to their various phenolic compounds; however the underlying modes of action are poorly understood. We studied the effect of cranberry fruit extracts on the gene expression of Staphylococcus aureus to identify specific cellular processes involved in the antibacterial action. METHODS Transcriptional profiles of four S. aureus strains grown in broth supplemented or not with 2 mg/ml of a commercial cranberry preparation (Nutricran®90) were compared using DNA arrays to reveal gene modulations serving as markers for biological activity. Ethanol extracted pressed cakes from fresh fruits also produced various fractions and their effects on marker genes were demonstrated by qPCR. Minimal inhibitory concentrations (MICs) of the most effective cranberry fraction (FC111) were determined against multiple S. aureus strains and drug interactions with β-lactam antibiotics were also evaluated. Incorporation assays with [(3)H]-radiolabeled precursors were performed to evaluate the effect of FC111 on DNA, RNA, peptidoglycan (PG) and protein biosynthesis. RESULTS Treatment of S. aureus with Nutricran®90 or FC111 revealed a transcriptional signature typical of PG-acting antibiotics (up-regulation of genes vraR/S, murZ, lytM, pbp2, sgtB, fmt). The effect of FC111 on PG was confirmed by the marked inhibition of incorporation of D-[(3)H]alanine. The combination of β-lactams and FC111 in checkerboard assays revealed a synergistic activity against S. aureus including strain MRSA COL, which showed a 512-fold drop of amoxicillin MIC in the presence of FC111 at MIC/8. Finally, a therapeutic proof of concept was established in a mouse mastitis model of infection. S. aureus-infected mammary glands were treated with amoxicillin, FC111 or a combination of both; only the combination significantly reduced bacterial counts from infected glands (P<0.05) compared to the untreated mice. CONCLUSIONS The cranberry fraction FC111 affects PG synthesis of S. aureus and acts in synergy with β-lactam antibiotics. Such a fraction easily obtained from poorly exploited press-cake residues, may find interesting applications in the agri-food sector and help reduce antibiotic usage in animal food production.
Collapse
|