1
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
2
|
Guerreiro DN, Arcari T, O'Byrne CP. The σ B-Mediated General Stress Response of Listeria monocytogenes: Life and Death Decision Making in a Pathogen. Front Microbiol 2020; 11:1505. [PMID: 32733414 PMCID: PMC7358398 DOI: 10.3389/fmicb.2020.01505] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Sensing and responding to environmental cues is critical for the adaptability and success of the food-borne bacterial pathogen Listeria monocytogenes. A supramolecular multi-protein complex known as the stressosome, which acts as a stress sensing hub, is responsible for orchestrating the activation of a signal transduction pathway resulting in the activation of σB, the sigma factor that controls the general stress response (GSR). When σB is released from the anti-sigma factor RsbW, a rapid up-regulation of the large σB regulon, comprised of ≥ 300 genes, ensures that cells respond appropriately to the new environmental conditions. A diversity of stresses including low pH, high osmolarity, and blue light are known to be sensed by the stressosome, resulting in a generalized increase in stress resistance. Appropriate activation of the stressosome and deployment of σB are critical to fitness as there is a trade-off between growth and stress protection when the GSR is deployed. We review the recent developments in this field and describe an up-to-date model of how this sensory organelle might integrate environmental signals to produce an appropriate activation of the GSR. Some of the outstanding questions and challenges in this fascinating field are also discussed.
Collapse
Affiliation(s)
- Duarte N Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Talia Arcari
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
3
|
Effects of Lmo2672 Deficiency on Environmental Adaptability, Biofilm Formation, and Motility of Listeria monocytogenes. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.95758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
4
|
Yao H, Kang M, Wang Y, Feng Y, Kong S, Cai X, Ling Z, Chen S, Jiao X, Yin Y. An essential role for hfq involved in biofilm formation and virulence in serotype 4b Listeria monocytogenes. Microbiol Res 2018; 215:148-154. [DOI: 10.1016/j.micres.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/22/2018] [Accepted: 07/07/2018] [Indexed: 11/28/2022]
|
5
|
Yan S, Luo Y, Zhou B, Ingram DT. Dual effectiveness of ascorbic acid and ethanol combined treatment to inhibit browning and inactivate pathogens on fresh-cut apples. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Liu X, Basu U, Miller P, McMullen LM. Differential gene expression and filamentation of Listeria monocytogenes 08-5923 exposed to sodium lactate and sodium diacetate. Food Microbiol 2017; 63:153-158. [DOI: 10.1016/j.fm.2016.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022]
|
7
|
Shen Q, Pandare P, Soni KA, Nannapaneni R, Mahmoud BS, Sharma CS. Influence of temperature on alkali stress adaptation in Listeria monocytogenes. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Transcriptional and phenotypic responses of Listeria monocytogenes to chlorine dioxide. Appl Environ Microbiol 2014; 80:2951-63. [PMID: 24610841 DOI: 10.1128/aem.00004-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Significant food-borne disease outbreaks have occurred from consumption of ready-to-eat foods, including produce, contaminated with Listeria monocytogenes. Challenging food matrices (e.g., cantaloupe, sprouts) with limited processing steps postharvest to reduce pathogen loads have underscored a need for new mitigation strategies. Chlorine dioxide (ClO2) is increasingly being used in produce and other food systems to reduce food-borne pathogen levels. The goal of this study was to characterize the transcriptional response and survival of L. monocytogenes 10403S exposed to ClO2. The transcriptional profile of log-phase cells exposed to 300 mg/liter ClO2 for 15 min was defined by whole-genome microarray. A total of 340 genes were significantly differentially expressed. Among the differentially expressed genes, 223 were upregulated (fold change ≥ 1.5; adjusted P value < 0.05) in role categories responsible for protein fate, cellular processes, and energy metabolism. There were 113 and 16 genes differentially expressed belonging to regulatory networks of σ(B) and CtsR, respectively. We assessed L. monocytogenes 10403S survival after exposure to 100, 300, and 500 mg/liter aqueous ClO2 in brain heart infusion (BHI) broth; there was a significant difference between cells exposed to 500 mg/liter ClO2 and those exposed to all other conditions over time (P value < 0.05). Isogenic ΔsigB and ΔctsR mutants exposed to 300 mg/liter ClO2 were more sensitive to ClO2 than the wild type under the same conditions. These results provide an initial insight into the mechanisms that L. monocytogenes employs to survive sublethal ClO2 and further our understanding of the inactivation mechanisms of this increasingly used sanitizer.
Collapse
|
9
|
Durack J, Ross T, Bowman JP. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PLoS One 2013; 8:e73603. [PMID: 24023890 PMCID: PMC3762727 DOI: 10.1371/journal.pone.0073603] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 07/29/2013] [Indexed: 12/29/2022] Open
Abstract
The ability of Listeria monocytogenes to adapt to various food and food- processing environments has been attributed to its robustness, persistence and prevalence in the food supply chain. To improve the present understanding of molecular mechanisms involved in hyperosmotic and low-temperature stress adaptation of L. monocytogenes, we undertook transcriptomics analysis on three strains adapted to sub-lethal levels of these stress stimuli and assessed functional gene response. Adaptation to hyperosmotic and cold-temperature stress has revealed many parallels in terms of gene expression profiles in strains possessing different levels of stress tolerance. Gene sets associated with ribosomes and translation, transcription, cell division as well as fatty acid biosynthesis and peptide transport showed activation in cells adapted to either cold or hyperosmotic stress. Repression of genes associated with carbohydrate metabolism and transport as well as flagella was evident in stressed cells, likely linked to activation of CodY regulon and consequential cellular energy conservation.
Collapse
Affiliation(s)
- Juliana Durack
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
10
|
Quereda JJ, Pucciarelli MG, Botello-Morte L, Calvo E, Carvalho F, Bouchier C, Vieira A, Mariscotti JF, Chakraborty T, Cossart P, Hain T, Cabanes D, García-Del Portillo F. Occurrence of mutations impairing sigma factor B (SigB) function upon inactivation of Listeria monocytogenes genes encoding surface proteins. MICROBIOLOGY-SGM 2013; 159:1328-1339. [PMID: 23657685 DOI: 10.1099/mic.0.067744-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria of the genus Listeria contain the largest family of LPXTG surface proteins covalently anchored to the peptidoglycan. The extent to which these proteins may function or be regulated cooperatively is at present unknown. Because of their unique cellular location, we reasoned that distinct LPXTG proteins could act as elements contributing to cell wall homeostasis or influencing the stability of other surface proteins bound to peptidoglycan. To test this hypothesis, we used proteomics to analyse mutants of the intracellular pathogen Listeria monocytogenes lacking distinct LPXTG proteins implicated in pathogen-host interactions, such as InlA, InlF, InlG, InlH, InlJ, LapB and Vip. Changes in the cell wall proteome were found in inlG and vip mutants, which exhibited reduced levels of the LPXTG proteins InlH, Lmo0610, Lmo0880 and Lmo2085, all regulated by the stress-related sigma factor SigB. The ultimate basis of this alteration was uncovered by genome sequencing, which revealed that these inlG and vip mutants carried loss-of-function mutations in the rsbS, rsbU and rsbV genes encoding regulatory proteins that control SigB activity. Attempts to recapitulate this negative selection of SigB in a large series of new inlG or vip mutants constructed for this purpose were, however, unsuccessful. These results indicate that inadvertent secondary mutations affecting SigB functionality can randomly arise in L. monocytogenes when using common genetic procedures or during subculturing. Testing of SigB activity could be therefore valuable when manipulating genetically L. monocytogenes prior to any subsequent phenotypic analysis. This test may be even more justified when generating deletions affecting cell envelope components.
Collapse
Affiliation(s)
- Juan J Quereda
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - M Graciela Pucciarelli
- Departamento de Biología Molecular, Universidad Autónoma de Madrid. Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC), 28049 Madrid, Spain.,Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Laura Botello-Morte
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Enrique Calvo
- Unidad de Proteómica, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Filipe Carvalho
- Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Christiane Bouchier
- Institut Pasteur, Plate-forme PF1 Génomique, Département Génomes et Génétique, Paris, France
| | - Ana Vieira
- Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Javier F Mariscotti
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, D-35392, Germany
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut National de la Santé et de la Recherche Médicale (INSERM) U604, Institut Pasteur, and the Institut Scientifique de Recherche Agronomique (INRA) USC2020, Institut Pasteur, Paris F-75015, France
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, D-35392, Germany
| | - Didier Cabanes
- Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
11
|
Markkula A, Lindström M, Johansson P, Björkroth J, Korkeala H. Roles of four putative DEAD-box RNA helicase genes in growth of Listeria monocytogenes EGD-e under heat, pH, osmotic, ethanol, and oxidative stress conditions. Appl Environ Microbiol 2012; 78:6875-82. [PMID: 22820328 PMCID: PMC3457484 DOI: 10.1128/aem.01526-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/13/2012] [Indexed: 01/21/2023] Open
Abstract
To examine the role of the four putative DEAD-box RNA helicase genes of Listeria monocytogenes EGD-e in stress tolerance, the growth of the Δlmo0866, Δlmo1246, Δlmo1450, and Δlmo1722 deletion mutant strains at 42.5°C, at pH 5.6 or pH 9.4, in 6% NaCl, in 3.5% ethanol, and in 5 mM H(2)O(2) was studied. Restricted growth of the Δlmo0866 deletion mutant strain in 3.5% ethanol suggests that Lmo0866 contributes to ethanol stress tolerance of L. monocytogenes EGD-e. The Δlmo1450 mutant strain showed negligible growth at 42.5°C, at pH 9.4, and in 5 mM H(2)O(2) and a lower maximum growth temperature than the wild-type EGD-e, suggesting that Lmo1450 is involved in the tolerance of L. monocytogenes EGD-e to heat, alkali, and oxidative stresses. The altered stress tolerance of the Δlmo0866 and Δlmo1450 deletion mutant strains did not correlate with changes in relative expression levels of lmo0866 and lmo1450 genes under corresponding stresses, suggesting that Lmo0866- and Lmo1450-dependent tolerance to heat, alkali, ethanol, or oxidative stress is not regulated at the transcriptional level. Growth of the Δlmo1246 and Δlmo1722 deletion mutant strains did not differ from that of the wild-type EGD-e under any of the conditions tested, suggesting that Lmo1246 and Lmo1722 have no roles in the growth of L. monocytogenes EGD-e under heat, pH, osmotic, ethanol, or oxidative stress. This study shows that the putative DEAD-box RNA helicase genes lmo0866 and lmo1450 play important roles in tolerance of L. monocytogenes EGD-e to ethanol, heat, alkali, and oxidative stresses.
Collapse
Affiliation(s)
- Annukka Markkula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
12
|
Francis GA, Gallone A, Nychas GJ, Sofos JN, Colelli G, Amodio ML, Spano G. Factors Affecting Quality and Safety of Fresh-Cut Produce. Crit Rev Food Sci Nutr 2012; 52:595-610. [DOI: 10.1080/10408398.2010.503685] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Listeria monocytogenes shows temperature-dependent and -independent responses to salt stress, including responses that induce cross-protection against other stresses. Appl Environ Microbiol 2012; 78:2602-12. [PMID: 22307309 DOI: 10.1128/aem.07658-11] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The food-borne pathogen Listeria monocytogenes experiences osmotic stress in many habitats, including foods and the gastrointestinal tract of the host. During transmission, L. monocytogenes is likely to experience osmotic stress at different temperatures and may adapt to osmotic stress in a temperature-dependent manner. To understand the impact of temperature on the responses this pathogen uses to adapt to osmotic stress, we assessed genome-wide changes in the L. monocytogenes H7858 transcriptome during short-term and long-term adaptation to salt stress at 7°C and 37°C. At both temperatures, the short-term response to salt stress included increased transcript levels of sigB and SigB-regulated genes, as well as mrpABCDEFG, encoding a sodium/proton antiporter. This antiporter was found to play a role in adaptation to salt stress at both temperatures; ΔmrpABCDEFG had a significantly longer lag phase than the parent strain in BHI plus 6% NaCl at 7°C and 37°C. The short-term adaptation to salt stress at 7°C included increased transcript levels of two genes encoding carboxypeptidases that modify peptidoglycan. These carboxypeptidases play a role in the short-term adaptation to salt stress only at 7°C, where the deletion mutants had significantly different lag phases than the parent strain. Changes in the transcriptome at both temperatures suggested that exposure to salt stress could provide cross-protection to other stresses, including peroxide stress. Short-term exposure to salt stress significantly increased H(2)O(2) resistance at both temperatures. These results provide information for the development of knowledge-based intervention methods against this pathogen, as well as provide insight into potential mechanisms of cross-protection.
Collapse
|
14
|
Soni KA, Nannapaneni R, Tasara T. The contribution of transcriptomic and proteomic analysis in elucidating stress adaptation responses of Listeria monocytogenes. Foodborne Pathog Dis 2011; 8:843-52. [PMID: 21495855 DOI: 10.1089/fpd.2010.0746] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The foodborne transmission of Listeria monocytogenes requires physiological adaptation to various conditions, including the cold, osmotic, heat, acid, alkaline, and oxidative stresses, associated with food hygiene, processing, and preservation measures. We review the current knowledge on the molecular stress adaptation responses in L. monocytogenes cells as revealed through transcriptome, proteome, genetic, and physiological analysis. The adaptation of L. monocytogenes to stress exposure is achieved through global expression changes in a large number of cellular components. In addition, the cross-protection of L. monocytogenes exposed to different stress environments might be conferred through various cellular machineries that seem to be commonly activated by the different stresses. To assist in designing L. monocytogenes mitigation strategies for ready-to-eat food products, further experiments are warranted to specifically evaluate the effects of food composition, additives, preservatives, and processing technologies on the modulation of L. monocytogenes cellular components in response to specific stresses.
Collapse
Affiliation(s)
- Kamlesh A Soni
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | | | | |
Collapse
|
15
|
Giotis ES, Muthaiyan A, Natesan S, Wilkinson BJ, Blair IS, McDowell DA. Transcriptome analysis of alkali shock and alkali adaptation in Listeria monocytogenes 10403S. Foodborne Pathog Dis 2010; 7:1147-57. [PMID: 20677981 PMCID: PMC3132107 DOI: 10.1089/fpd.2009.0501] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alkali stress is an important means of inactivating undesirable pathogens in a wide range of situations. Unfortunately, Listeria monocytogenes can launch an alkaline tolerance response, significantly increasing persistence of the pathogen in such environments. This study compared transcriptome patterns of alkali and non-alkali-stressed L. monocytogenes 10403S cells, to elucidate the mechanisms by which Listeria adapts and/or grows during short- or long-term alkali stress. Transcription profiles associated with alkali shock (AS) were obtained by DNA microarray analysis of midexponential cells suspended in pH 9 media for 15, 30, or 60 min. Transcription profiles associated with alkali adaptation (AA) were obtained similarly from cells grown to midexponential phase at pH 9. Comparison of AS and AA transcription profiles with control cell profiles identified a high number of differentially regulated open-reading frames in all tested conditions. Rapid (15 min) changes in expression included upregulation of genes encoding for multiple metabolic pathways (including those associated with Na+/H+ antiporters), ATP-binding cassette transporters of functional compatible solutes, motility, and virulence-associated genes as well as the σ(B) controlled stress resistance network. Slower (30 min and more) responses to AS and adaptation during growth in alkaline conditions (AA) involved a different pattern of changes in mRNA concentrations, and genes involved in proton export.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Food Microbiology Research Group, School of Health Sciences, University of Ulster, Northern Ireland, United Kingdom
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois
| | - Arunachalam Muthaiyan
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Brian J. Wilkinson
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois
| | - Ian S. Blair
- Food Microbiology Research Group, School of Health Sciences, University of Ulster, Northern Ireland, United Kingdom
| | - David A. McDowell
- Food Microbiology Research Group, School of Health Sciences, University of Ulster, Northern Ireland, United Kingdom
| |
Collapse
|
16
|
Huang A, Teplitski M, Rathinasabapathi B, Ma L. Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulatorPteris vittata. Can J Microbiol 2010; 56:236-46. [DOI: 10.1139/w10-005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arsenic hyperaccumulator fern Pteris vittata L. produces large amounts of root exudates that are hypothesized to solubilize arsenic and maintain a unique rhizosphere microbial community. Total heterotrophic counts on rich or defined media supplemented with up to 400 mmol/L of arsenate showed a diverse arsenate-resistant microbial community from the rhizosphere of P. vittata growing in arsenic-contaminated sites. Twelve bacterial isolates tolerating 400 mmol/L of arsenate in liquid culture were identified. Selected bacterial isolates belonging to different genera were tested for their resistance to osmotic and oxidative stresses. Results showed that growth was generally better under osmotic stress generated by arsenic than under that generated by NaCl or PEG 6000, demonstrating that arsenic detoxification metabolism also cross-protected bacterial isolates from arsenic-induced osmotic stress. After 32 h of growth, all arsenate at 1 mmol/L was reduced to arsenite by strains Naxibacter sp. AH4, Mesorhizobium sp. AH5, and Pseudomonas sp. AH21, but arsenite at 1 mmol/L remained unchanged. Sensitivity to hydrogen peroxide was similar to that in broad-host pathogen Salmonella enterica sv. Typhimurium wild type, except strain AH4. The results suggested that these arsenic-resistant bacteria are metabolically adapted to arsenic-induced osmotic or oxidative stresses in addition to the specific bacterial system to exclude cellular arsenic. Both these adaptations contribute to the high arsenic resistance in the bacterial isolates.
Collapse
Affiliation(s)
- Anhui Huang
- Soil and Water Science Department, University of Florida, Gainesville, FL 32601, USA
- Horticultural Science Department, University of Florida, Gainesville, FL 32601, USA
| | - Max Teplitski
- Soil and Water Science Department, University of Florida, Gainesville, FL 32601, USA
- Horticultural Science Department, University of Florida, Gainesville, FL 32601, USA
| | - Bala Rathinasabapathi
- Soil and Water Science Department, University of Florida, Gainesville, FL 32601, USA
- Horticultural Science Department, University of Florida, Gainesville, FL 32601, USA
| | - Lena Ma
- Soil and Water Science Department, University of Florida, Gainesville, FL 32601, USA
- Horticultural Science Department, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|
17
|
Bacterial stressors in minimally processed food. Int J Mol Sci 2009; 10:3076-3105. [PMID: 19742126 PMCID: PMC2738913 DOI: 10.3390/ijms10073076] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 11/17/2022] Open
Abstract
Stress responses are of particular importance to microorganisms, because their habitats are subjected to continual changes in temperature, osmotic pressure, and nutrients availability. Stressors (and stress factors), may be of chemical, physical, or biological nature. While stress to microorganisms is frequently caused by the surrounding environment, the growth of microbial cells on its own may also result in induction of some kinds of stress such as starvation and acidity. During production of fresh-cut produce, cumulative mild processing steps are employed, to control the growth of microorganisms. Pathogens on plant surfaces are already stressed and stress may be increased during the multiple mild processing steps, potentially leading to very hardy bacteria geared towards enhanced survival. Cross-protection can occur because the overlapping stress responses enable bacteria exposed to one stress to become resistant to another stress. A number of stresses have been shown to induce cross protection, including heat, cold, acid and osmotic stress. Among other factors, adaptation to heat stress appears to provide bacterial cells with more pronounced cross protection against several other stresses. Understanding how pathogens sense and respond to mild stresses is essential in order to design safe and effective minimal processing regimes.
Collapse
|
18
|
Giotis ES, Muthaiyan A, Blair IS, Wilkinson BJ, McDowell DA. Genomic and proteomic analysis of the Alkali-Tolerance Response (AlTR) in Listeria monocytogenes 10403S. BMC Microbiol 2008; 8:102. [PMID: 18577215 PMCID: PMC2443805 DOI: 10.1186/1471-2180-8-102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 06/24/2008] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Information regarding the Alkali-Tolerance Response (AlTR) in Listeria monocytogenes is very limited. Treatment of alkali-adapted cells with the protein synthesis inhibitor chloramphenicol has revealed that the AlTR is at least partially protein-dependent. In order to gain a more comprehensive perspective on the physiology and regulation of the AlTR, we compared differential gene expression and protein content of cells adapted at pH 9.5 and un-adapted cells (pH 7.0) using complementary DNA (cDNA) microarray and two-dimensional (2D) gel electrophoresis, (combined with mass spectrometry) respectively. RESULTS In this study, L. monocytogenes was shown to exhibit a significant AlTR following a 1-h exposure to mild alkali (pH 9.5), which is capable of protecting cells from subsequent lethal alkali stress (pH 12.0). Adaptive intracellular gene expression involved genes that are associated with virulence, the general stress response, cell division, and changes in cell wall structure and included many genes with unknown functions. The observed variability between results of cDNA arrays and 2D gel electrophoresis may be accounted for by posttranslational modifications. Interestingly, several alkali induced genes/proteins can provide a cross protective overlap to other types of stresses. CONCLUSION Alkali pH provides therefore L. monocytogenes with nonspecific multiple-stress resistance that may be vital for survival in the human gastrointestinal tract as well as within food processing systems where alkali conditions prevail. This study showed strong evidence that the AlTR in L. monocytogenes functions as to minimize excess alkalisation and energy expenditures while mobilizing available carbon sources.
Collapse
Affiliation(s)
- Efstathios S Giotis
- Food Microbiology Research Group, University of Ulster, Northern Ireland, UK
| | | | - Ian S Blair
- Food Microbiology Research Group, University of Ulster, Northern Ireland, UK
| | | | - David A McDowell
- Food Microbiology Research Group, University of Ulster, Northern Ireland, UK
| |
Collapse
|